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Abstract

Background: COVID-19 has continued to spread in the United States and globally. Closely monitoring public engagement and
perceptions of COVID-19 and preventive measures using social media data could provide important information for understanding
the progress of current interventions and planning future programs.

Objective: The aim of this study is to measure the public’s behaviors and perceptions regarding COVID-19 and its effects on
daily life during 5 months of the pandemic.

Methods: Natural language processing (NLP) algorithms were used to identify COVID-19–related and unrelated topics in over
300 million online data sources from June 15 to November 15, 2020. Posts in the sample were geotagged by NetBase, a third-party
data provider, and sensitivity and positive predictive value were both calculated to validate the classification of posts. Each post
may have included discussion of multiple topics. The prevalence of discussion regarding these topics was measured over this
time period and compared to daily case rates in the United States.

Results: The final sample size included 9,065,733 posts, 70% of which were sourced from the United States. In October and
November, discussion including mentions of COVID-19 and related health behaviors did not increase as it had from June to
September, despite an increase in COVID-19 daily cases in the United States beginning in October. Additionally, discussion was
more focused on daily life topics (n=6,210,255, 69%), compared with COVID-19 in general (n=3,390,139, 37%) and COVID-19
public health measures (n=1,836,200, 20%).
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Conclusions: There was a decline in COVID-19–related social media discussion sourced mainly from the United States, even
as COVID-19 cases in the United States increased to the highest rate since the beginning of the pandemic. Targeted public health
messaging may be needed to ensure engagement in public health prevention measures as global vaccination efforts continue.

(J Med Internet Res 2021;23(6):e26655) doi: 10.2196/26655
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Introduction

As COVID-19 continues its spread in the United States, a key
to controlling the spread while vaccination efforts continue is
to enlist the public in risk-mitigation behaviors [1,2]. Studying
the public’s social media posts regarding COVID-19 public
health measures may provide information about targets of
interventions, progress toward behavior goals, and the risk of
future outbreaks [3-9]. Although real-time reports on
pandemic-related tests and mortality are widely available, there
are fewer opportunities to gain near real-time insight into
behaviors and beliefs about the pandemic.

Social media, which people are using now more than ever to
communicate, has served as a useful data source for providing
rapid insight into the public’s behaviors and beliefs during the
pandemic [10-13]. Studies have noted a high prevalence of
COVID-19–related discussion—including such topics as
hygiene, shortages, and the spread of misinformation—and an
increase in COVID-19–related discussion as COVID-19 cases
increase [5,14,15]. However, existing findings are based on
evidence during only the beginning of the outbreak, from
December 2019 to April 2020, and the range of topics and
keywords explored is also limited [7,14-19]. Additionally,
studies analyzing COVID-19 behaviors and beliefs on social
media have primarily used Twitter as their source, which has
several limitations [14-16,19]. Most notably, highly rated
retweets are more likely to come from spam and bot accounts,
which are also actively posting about COVID-19, and can
obscure the targeting of signals from human discussions [20-22].
Further, previous studies each focused on a particular aspect of
the pandemic, such as misinformation relating to the pandemic,
without comparing the volume of discussion related to multiple
aspects to determine the public’s relative focus on particular
pandemic-related issues and behaviors. Therefore, there is a
need to assess how the public’s current reaction to the pandemic
has changed since the early stages, by examining broad online
discussion from more diverse sources.

Accordingly, we measured the prevalence of online discussion
that included topics in the categories of daily life, which may
or may not be related to COVID-19, and COVID-19–related
public health, from June through November 2020. We also
assessed the correlation between prevalence of discussion topics
and US COVID-19 new daily case rates (incidence). In
measuring these trends in social media data and the COVID-19
incidence rate in the United States, we sought to elucidate the
US public’s engagement with COVID-19–related public health
measures, which are crucial to addressing the current pandemic.

Methods

Data Sources
The data sample consisted of unstructured, English-language
posts from forums, such as Reddit, Facebook public pages, and
4Chan, and comments from news sites (Table S1 in Multimedia
Appendix 1) [23]. We defined forums as thread lists or
topic-specific pages, and excluded social media sites including
Twitter, YouTube, Instagram, and LinkedIn [24]. Signals
Analytics, an advanced analytics consulting firm that conducted
the analysis, accessed these data sources through a third-party
data vendor, NetBase [25,26]. These social media posts were
geotagged by NetBase both directly, by using geolocation data
from posts, and indirectly, by using author profiles and unique
domain codes (such as .uk). All data were deidentified by
NetBase before being transferred to Signals Analytics.

In addition to the social data, the study included US COVID-19
case data from the COVID-19 Dashboard by the Center for
Systems Science and Engineering at Johns Hopkins University
[27]. These data were updated daily using a public application
programming interface (API) and included total number of
deaths, new daily deaths, total active cases, and daily new cases
[28].

No personal identifying information (eg, usernames, emails, or
IP addresses) was shared as part of the analysis or reporting
process. This study was exempted from Institutional Review
Board review by Yale University as it did not engage in research
involving human subjects.

Approach
To determine trends in social media discussion during the
COVID-19 pandemic, we collected data posts from all internet
sources and applied natural language processing (NLP)
algorithms to identify and classify mentions of COVID-19,
COVID-19–related public health measures, and daily life topics
(Table S2 in Multimedia Appendix 1).

NetBase ran a daily query that we designed based on our project
scope on over 300 million online data sources from June 15 to
November 15, 2020 (Methods 1 in Multimedia Appendix 1).
There were several steps to narrow the sample retrieved from
the query to include only posts relevant to our research question
(Figure S1 in Multimedia Appendix 1). First, NLP algorithms
were run to remove advertisements and pornography-related
sites and posts (Methods 2 in Multimedia Appendix 1). Next,
a taxonomy of topics was applied (Methods 3 in Multimedia
Appendix 1). The posts that did not include discussion of topics
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from the taxonomy were deleted. Finally, all news articles and
blog posts were deleted from the sample, so that the only
remaining data posts were from social outlets (forums and
comments on news sites).

The taxonomy was comprised of two categories,
COVID-19–related public health measures and daily life
behaviors, each of which included multiple topics (Methods 4
in Multimedia Appendix 1). COVID-19 mentions was also an
individual topic in the taxonomy, independent of either category.
Any post that directly mentioned COVID-19 by name or
synonym, including slang such as “Miss Rona,” was classified
as including a COVID-19 mention (Table S2 in Multimedia
Appendix 1). Taxonomy categories and topics were not
exclusive, so that a post was classified as belonging to each
taxonomy topic and category that it contained mention of (Table
S2 in Multimedia Appendix 1).

Once all posts were classified according to the topics in the
taxonomy, we measured trends in these topics over time by
tracking the total number of posts that included mentions of
each taxonomy topic and category. Classifications of topics and
categories were not mutually exclusive, so the same post was
able to be classified into multiple topics across any category.
Trends were visualized by taxonomy category, COVID-19
mentions, and by the most commonly mentioned taxonomy
topics. These trends were visualized with the COVID-19
incidence rate in the United States. We chose to correlate the
trends in taxonomy topics with trends in the COVID-19
incidence rate rather than the COVID-19 death rate based on
previous literature, which found a correlation between trends
in online social chatter and COVID-19 incidence [3,5].

This approach allowed us to identify changes in both topics that
prior research in the early stage of the outbreak had shown to
be prevalent in COVID-19 discussion, and topics from daily
life and COVID-19 literature reviews that were not previously
known to be found in COVID-19 discussion, but that may have
become apparent as COVID-19 cases or current events changed
[15,16,29-33]. Additionally, our approach removed redundant
posts, limiting the effect of bots and reposts (Methods 3 in
Multimedia Appendix 1). The taxonomy classification was
validated by calculating positive predictive value and sensitivity
(Methods 5 in Multimedia Appendix 1). We also validated the
methodology by applying it to US-specific current events and
found that the approach revealed an increase in online social
discussion when the given current event topic was most relevant
(Figure S2 in Multimedia Appendix 1). This methodology was
shown to reveal insights into outbreak characterization and
event prediction for the e-cigarette or vaping use–associated
lung injury outbreak [34].

Results

The final data sample consisted of 9,065,733 online social posts
that mentioned at least one of the topics in our taxonomy from
June 15 to November 15, 2020 (Table 1). The majority (87%)
of posts in our sample came from sources that were categorized
as forums, including Reddit, Facebook, and 4Chan (Table 2;
Table S1 in Multimedia Appendix 1) [23]. The minority of posts
(13%) in our sample were derived from comment sections on
news sites, including The Hill, a media source focused on
politics and business, and Breitbart, a right-leaning media source
(Table 2; Table S1 in Multimedia Appendix 1) [35,36]. Most
posts in the sample were not able to be directly geotagged due
to sources’ data privacy measures and restrictions. A minority
were geotagged as from the United States, with the remaining
geotagged as from a country other than the United States (Table
S3 in Multimedia Appendix 1). Using indirect geotagging
provided by NetBase, it was estimated that about 70% of all
initial posts collected by the search query were from the United
States. In an independent data sample of 100 posts classified
by manual review, the algorithm had a positive predictive value
of over 80%, which was calculated as the number of posts
correctly classified by the taxonomy using NLP algorithms
divided by the number of all posts classified by the taxonomy.
This was a higher accuracy measure than is found in comparable
social media research [30]. Sensitivity was calculated as the
number of correct classifications of a topic using the NLP
algorithms divided by the total number of posts for the topic
identified by manual screening, and we found that our taxonomy
approach led to an average classification rate of 92% sensitivity.

Within the data sample, 6,210,255 (69%) posts were classified
as including discussion of daily life topics, while 3,390,139
(37%) contained mentions of COVID-19, and 1,836,200 (20%)
posts were classified as including discussion of
COVID-19–related public health topics (Table 1). The most
prevalent topics among the daily life posts were sex life
(n=887,457, 14%), food (n=838,513, 14%), and financial
concerns (n=710,757, 11%). The most prevalent topic in
COVID-19–related public health behaviors posts was wearing
face masks (n=1,120,344, 61%), followed by lockdowns
(n=457,705, 25%), and social distancing (n=242,105, 13%).

Online social posts including COVID-19 mentions and
discussion of COVID-19–related public health behaviors
increased in June 2020, as COVID-19 cases also increased, but
remained stagnant as cases began to increase in October (Figure
1). Discussion about wearing face masks was most prevalent
in mid-July, during the summer wave (mid-June to early
September) of COVID-19 cases, and remained at pre-June levels
in October and November, with the exception of a sharp increase
on October 2, 2020 (Figure 2).
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Table 1. Number of posts by taxonomy topic from June 15 to November 15, 2020 (N=9,065,733)a.

Number of posts with mentions (percent classified within category)Relevant taxonomy categories (percent classified within all posts) and topics

1,836,200COVID-19–related public health topics (20)

1,120,344 (61)Wearing face mask

457,705 (25)Lockdown

242,105 (13)Social distancing

94,301 (5)Quarantine

87,712 (5)Testing

64,679 (4)Excessive handwashing

31,775 (2)Contact tracing

16,681 (1)Reopening

14,569 (1)Screening

11,531 (1)Wearing gloves

11,076 (1)Disinfection

10,104 (1)Wearing face shield

6,210,255Daily life taxonomy topics (69)

887,457 (14)Sex life

838,513 (14)Food

710,757 (11)Financial

651,426 (10)Travel

476,468 (8)Smoking/vaping

451,815 (7)Mass gatherings

414,549 (7)Virtual communication

398,229 (6)Alcohol consumption

285,538 (5)Religion

280,155 (5)New skills/hobbies acquisition/DIY

257,819 (4)Drug use

257,415 (4)News/media consumption

246,074 (4)Reading

205,116 (3)Physical activity

198,057 (3)Work from home

177,522 (3)Socializing in person

171,421 (3)Stockpiling

164,262 (3)Relaxation techniques

127,623 (2)Excess sleep

109,510 (2)Pets

98,626 (2)Postponing plans

97,735 (2)Childcare

94,414 (2)Public transportation

88,196 (1)Reduced sleep quality

80,153 (1)Home school

77,278 (1)Non–COVID-19 hospital visits

72,235 (1)Doctor well visit

45,394 (1)Funerals
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Number of posts with mentions (percent classified within category)Relevant taxonomy categories (percent classified within all posts) and topics

28,106 (0)Family-centered time

21,546 (0)Outdoor culture

17,283 (0)Births

11,574 (0)Telehealth

2136 (0)Smokeless tobacco consumption

3,390,139COVID-19 mentions (37)

aPercentages do not sum to 100 because each post may have included discussion of multiple topics, including topics in different categories.

Table 2. Number of posts by source type from June 15 to November 15, 2020.

Total data sample
(N=9,065,733), n (%)

Posts with mentions of COVID-19
(N=3,390,139), n (%)

Posts with mentions of daily
life (N=6,210,255), n (%)

Posts with mentions of
COVID-19–related public
health behavior
(N=1,836,200), n (%)

Category of COVID-19
discussion topic

7,928,599 (87)2,749,451 (81)5,714,446 (92)1,494,401 (81)Forums

1,137,134 (13)640,688 (19)495,809 (8)341,799 (19)Comments

Figure 1. Online social discussion categories versus US daily new COVID-19 cases (June 15 to November 15, 2020).

J Med Internet Res 2021 | vol. 23 | iss. 6 | e26655 | p. 5https://www.jmir.org/2021/6/e26655
(page number not for citation purposes)

Massey et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Public health measures online social discussion versus US daily new COVID-19 cases (June 15 to November 15, 2020).

Discussion

Principal Findings
Our study had several important findings. From June to
November 2020, predominantly US-based online social chatter
was more focused on daily life than it was on public health
behaviors relating to COVID-19. In addition, although
discussion relating to COVID-19 and related public health
behaviors appeared to increase with rising US cases in the
summer wave (early June to early September), the volume of
COVID-19–related discussion was lower in the wave that began
in the fall (mid-October), despite the fact that, during the fall
wave, COVID-19 cases increased to their highest rates since
the pandemic began [37]. In particular, discussion of wearing
face masks, the most prevalent of any COVID-19 public health
behavior we studied, declined in mid-July despite the pandemic
continuing and evidence that wearing face masks has not been
universally adopted in the United States, and increased only
minimally once cases began to increase again in early October
[38,39]. One exception to this finding was the brief but stark
increase in COVID-19–related discussion on October 2, 2020,
which coincided with the announcement that President Donald
Trump had contracted COVID-19 [40]. Our finding that daily
life topics were more prevalent in social media chatter than
COVID-19–related public health behaviors and mentions of
COVID-19 is not immediately surprising given the differences

in scope. Nevertheless, we applied consistent methods over
time, and the decrease of COVID-19–related discussion in the
context of the fall rise in COVID-19 cases differs from the
pattern we visualized in the summer wave.

Our study expanded upon previous COVID-19–related social
media analyses in that our sources used forums and comments
on news sites instead of Twitter and our study was conducted
in later phases of the pandemic. Our study sources included
forums and comments on news sites, which we believe was an
advantage for a few reasons. First, forums are unique to other
forms of social media in that they tend to include more text,
with greater character allowances and less frequent use of
hashtags. This allows the NLP algorithms to be more accurately
applied, because forum users include more context to which
inclusion and exclusion criteria can be applied. Reddit has also
been found to include more discussion than links to external
sources, again providing more context to analyze [41]. Second,
forums, such as Reddit and public Facebook pages, and
comments on news sites, are already focused on specific topics
and therefore have more in-depth discussions on the same topic,
as opposed to other social media sites, which more often share
updates from individual users or links to other sites. The added
context from in-depth discussions also allows for more accurate
NLP classification. Third, as discussed earlier, retweets driven
by spam and bot accounts on Twitter can obscure the targeting
of signals from human discussion [20-22].
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Due to these differences in study design and time period, our
findings may not be consistent with those of previous studies
from the first wave of the COVID-19 pandemic. However,
future research may investigate whether the cause of the
different findings is a significant difference between the type
of social chatter found on forums and that found on Twitter and
other social media platforms, or whether the different findings
are due to a temporal trend of a decreased focus on COVID-19.
Although we found that online social chatter was more focused
on daily life than it was on COVID-19 public health behaviors,
previous research found the opposite. For instance, one study
from March 2020 that used data from Twitter found that social
media discussion about COVID-19–related health topics was
more common than discussion about daily life topics such as
socializing, the economy, or politics [42]. Earlier research also
found that COVID-19–related public health measures were
discussed not only more often than social topics, but also more
often than other COVID-19–related topics [7,15]. Thus, our
finding that online social chatter from June to November was
more focused on daily life than it was on COVID-19 public
health behaviors may indicate that the public’s focus on
COVID-19 preventative health behaviors had decreased since
previous studies were conducted in March and April, or our
results may have differed from these earlier studies because our
study used different data sources and excluded Twitter. There
have been related studies that have analyzed social media data
on Reddit—a major source of data in our analysis—during the
pandemic; however, none of these studies addressed our research
question directly, which was how levels of COVID-19–related
public health discussion compared to levels of daily life and
COVID-19–related discussion over time. We noted three studies
conducted during the time period from January to May 2020
discovered and measured common COVID-19–related topics
among online Reddit posts without determining the relative
prevalence of COVID-19–related public health discussion to
daily life discussion [43-45]. One additional study found that,
from February to May 2020, there was a positive correlation
between COVID-19–related news coverage and
COVID-19–related discussion on the r/Coronavirus subreddit,
but that the COVID-19–related discussion declined after
sustained media coverage, showing that public attention
saturates [46].

Although our results cannot be compared to previous studies
to show that public perception changed from the spring wave
to the summer and fall waves, there is precedent for the
interpretation that the public’s focus on COVID-19 public health
measures waned during the fall months. As public health experts

warned against relaxing preventive behaviors as pandemic
fatigue grew, activity and traffic data indicated that people may
have stopped adhering to public health recommendations to
stay home and avoid close contact with people outside their
household [47-50]. The decline of chatter regarding wearing
face masks, and the relative low rates of discussions on other
COVID-19–related public health behaviors, may reflect that
social media engagement with these issues decreased as the
pandemic progressed, and remained low among the US
population as the pandemic continued to confront a high
COVID-19 daily case rate.

Our study has several limitations. First, although our third-party
data provider, NetBase, reported that about 70% of posts were
from the United States based on indirect geotagging methods,
we do not know the location for most posts according to our
direct geotagging methods, which were only able to tag about
20% of posts (Table S3 in Multimedia Appendix 1). As a result,
we cannot make international comparisons, but our data set is
more representative of the United States than of any other
country. Second, the number of posts included in our data set
was much lower than previous studies, likely due to the types
of data sources used, which excluded social media sites such
as Twitter in order to exclude noise that might have obscured
signals in data, and our methodology, which included removing
posts not relevant to our more refined taxonomy. We used a
stringent exclusion criterion with a list of prespecified keywords
that may also have led to a smaller sample size, but our approach
aimed to create a sample with high accuracy levels. Third, we
were not able to include sentiment analysis or other content
analysis in our study, which is an area for further exploration.
Finally, there is no demographic information available from the
data posts directly due to privacy considerations and data use
agreements. Thus, we cannot determine whether our data sample
contains biases due to the demographics of the people who
posted. For instance, Reddit, which was the most common forum
source for our data sample, has been found to be used by a
younger, male audience [51,52].

Conclusion
In this study of predominantly US-based COVID-19 social
media data from June to November 2020, we observed that
COVID-19 and relevant public health measures were discussed
less than daily life behaviors on social media, and that discussion
on wearing face masks decreased throughout the summer and
into the fall, while cases increased. These discussion rates may
reveal a need for increased public health messaging as the
pandemic continues.
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