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Abstract

Background: The Multidimensional Prognostic Index (MPI) is an aggregate, comprehensive, geriatric assessment scoring
system derived from eight domains that predict adverse outcomes, including 12-month mortality. However, the prediction accuracy
of using the three MPI categories (mild, moderate, and severe risk) was relatively poor in a study of older hospitalized Australian
patients. Prediction modeling using the component domains of the MPI together with additional clinical features and machine
learning (ML) algorithms might improve prediction accuracy.

Objective: This study aims to assess whether the accuracy of prediction for 12-month mortality using logistic regression with
maximum likelihood estimation (LR-MLE) with the 3-category MPI together with age and gender (feature set 1) can be improved
with the addition of 10 clinical features (sodium, hemoglobin, albumin, creatinine, urea, urea-to-creatinine ratio, estimated
glomerular filtration rate, C-reactive protein, BMI, and anticholinergic risk score; feature set 2) and the replacement of the
3-category MPI in feature sets 1 and 2 with the eight separate MPI domains (feature sets 3 and 4, respectively), and to assess the
prediction accuracy of the ML algorithms using the same feature sets.

Methods: MPI and clinical features were collected from patients aged 65 years and above who were admitted to either the
general medical or acute care of the elderly wards of a South Australian hospital between September 2015 and February 2017.
The diagnostic accuracy of LR-MLE was assessed together with nine ML algorithms: decision trees, random forests, extreme
gradient boosting (XGBoost), support-vector machines, naïve Bayes, K-nearest neighbors, ridge regression, logistic regression
without regularization, and neural networks. A 70:30 training set:test set split of the data and a grid search of hyper-parameters
with 10-fold cross-validation—was used during model training. The area under the curve was used as the primary measure of
accuracy.

Results: A total of 737 patients (female: 370/737, 50.2%; male: 367/737, 49.8%) with a median age of 80 (IQR 72-86) years
had complete MPI data recorded on admission and had completed the 12-month follow-up. The area under the receiver operating
curve for LR-MLE was 0.632, 0.688, 0.738, and 0.757 for feature sets 1 to 4, respectively. The best overall accuracy for the nine
ML algorithms was obtained using the XGBoost algorithm (0.635, 0.706, 0.756, and 0.757 for feature sets 1 to 4, respectively).

Conclusions: The use of MPI domains with LR-MLE considerably improved the prediction accuracy compared with that
obtained using the traditional 3-category MPI. The XGBoost ML algorithm slightly improved accuracy compared with LR-MLE,
and adding clinical data improved accuracy. These results build on previous work on the MPI and suggest that implementing risk
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scores based on MPI domains and clinical data by using ML prediction models can support clinical decision-making with respect
to risk stratification for the follow-up care of older hospitalized patients.

(J Med Internet Res 2021;23(6):e26139) doi: 10.2196/26139
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Introduction

Background
Previous studies have highlighted the importance of using
functional measures to predict mortality among older
hospitalized patients, a complex population characterized by
different degrees of frailty, comorbidity burden, and
polypharmacy [1,2]. In particular, the Multidimensional
Prognostic Index (MPI), an objective and quantifiable
comprehensive geriatric assessment (CGA)–based tool
developed from 8 separate CGA domains, is an example of a
cumulative deficit model of frailty [3]. The MPI is strongly
associated with mortality [2], length of hospital stay [4], and
hospital readmission [3] in subpopulations suffering from acute
and chronic conditions, including general and geriatric hospital
patients. The MPI patient score is created by aggregating the
total scores from the 8 separate CGA tools and normalizing the
resulting total score to provide a value in the range from 0 to 1.
The latter is then categorized into three categories of risk: low
(0.0-0.33), moderate (0.34-0.66), and severe (0.67-1.0), allowing
clinicians to better tailor their care management.

Prediction accuracy for 12-month mortality (12MM) using the
area under the receiver operating curve (AUC) of 0.751 was
achieved with the three MPI categories when validated in an
older Italian population [2]. However, despite it being a
significant predictor of 12MM in a similar older hospital
population within Australia [5], its diagnostic accuracy was not
confirmed (AUC=0.64, with age and gender adjustment). The
relatively poor performance for prediction compared with the
prediction accuracy with the Italian cohort might be partly
explained by the homogenization of scores from the separate
MPI domains into a single aggregate-weighted scoring system.
Although this simplifies risk classification, the use of an
aggregate-weighted scoring system has been shown in general
to remove important domain-specific information, resulting in
poorer risk prediction [6]. Conversely, the use of individual
MPI domains in place of an aggregate score has the potential
to cause overfitting of the prediction model (ie, reduced bias),
which results in lower accuracy when used on independent data
sets (ie, increased variance) [7].

Machine learning (ML) is a branch of artificial intelligence in
which various algorithms are used to make predictions [8]. The
algorithms differ from standard statistical modeling approaches
such as those using least squares or maximum likelihood, which
focus on linear relationships and have no additional aspects to
their respective error functions (such as the use of regularization)
that help reduce the likelihood of model overfitting. The
strengths of ML algorithms include their ability to handle feature
selection in the presence of collinearity, and the ability to deal
with a larger number of features including complex nonlinear

patterns and interactions [9]. Furthermore, the validation of
ML-based approaches is generally more rigorous than that of
the standard statistical approaches, with special care taken to
consider the aforementioned trade-off between bias and variance
when developing the prediction model during the training
process [10]. Finally, model development is more data driven;
it does not rely solely on content knowledge, thereby increasing
the opportunity to identify previously unconsidered features for
enhanced prediction [8].

Objective
Given the relatively poor performance of the aggregate MPI
score in predicting 12MM in an Australian cohort, we seek to
improve the prediction accuracy in several ways. First, we use
the separate components of the MPI as input features for a
traditional logistic regression with maximum likelihood
estimation (LR-MLE). Second, we assess nine different
binary-classification ML algorithms that might perform better
than LR-MLE. Third, we add 10 routinely collected clinical
measures to the MPI domain-based feature data set.

Methods

Overview
Details of the data collection methods, including a description
of the study design, study cohort, and collected data, have been
previously published [5]. Briefly, the cohort consisted of patients
aged 65 years and above admitted to the Flinders Medical Centre
Acute Medical Unit and then transferred to either the general
medical or acute care of the elderly wards between September
14, 2015, and February 17, 2017. Flinders Medical Center is a
593-bed metropolitan teaching and trauma hospital within the
Southern Adelaide Local Health Network, which has a
catchment area of approximately 350,000 people. Acute care
of the elderly wards provides a comprehensive individualized
approach for assessing older frail medical inpatients using a
multidisciplinary team. The study was conducted in accordance
with the Declaration of Helsinki and the guidelines for Good
Clinical Practice. Approval for the study was obtained from the
local ethics committee (reference number: 170.15).

Feature Sets
The 63-item MPI is a prognostic tool based on averaging the
standardized scores obtained from the eight core domains of
the CGA, which were obtained in all study participants within
the first 3 days of hospital admission. We trained the prediction
models using four different feature sets. The first feature set
contained age, gender, and the 3-category MPI as three separate
dummy variables (n=5 features in total). The second feature set
contained the five features from the first feature set as well as
10 additional clinical features: BMI, anticholinergic risk score
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(ARS) [11], serum sodium, hemoglobin, serum albumin,
creatinine, urea, urea-to-creatinine ratio, estimated glomerular
filtration rate (eGFR), and C-reactive protein (CRP; n=15
features in total). The third and fourth feature sets included the
eight separate MPI domains used in the calculation of the overall
MPI score, in place of the 3-category MPI used in the first and
second feature sets, resulting in n=10 and n=20 features,
respectively. The eight MPI domains consist of cohabitation
status (living alone, with family or friends, or in an institute),
the total number of prescribed medications (taken at admission),
functional status evaluated with activities of daily living (ADL)
and instrumental ADL (IADL) scales; cognitive status evaluated
by the Short Portable Mental Status Questionnaire; evaluation
of pressure sores using the Exton Smith Scale (ESS);
comorbidities assessed using the Cumulative Illness Rating
Scale (CIRS); and nutritional status evaluated by the Mini
Nutritional Assessment (MNA). The additional biochemical
features are known to be associated with adverse outcomes in
older patient populations [12-18]. The target variable for the
prediction models was all-cause mortality within 12 months
(12MM), defined as death from any cause and obtained using
the Australian national death registry.

ML Algorithms
We implemented a systematic ML-based framework to construct
the 12MM prediction models. The steps included data
preprocessing, splitting of the data into training and validation
data sets, model development using the training data set for
each algorithm, and final assessment of the accuracy of each
algorithm using the validation data set. The data preprocessing
step included imputation of missing values and the scaling of
continuous features, which included all features except for
gender, the 3-category MPI, and cohabitation status. Any
continuous features with missing values were imputed using
the mean value of that feature before scaling the features and
data splitting. Continuous features were scaled to have a zero
mean and unit variance. Following preprocessing, the data were
split into a training data set for the development of the prediction
models and a test data set for accuracy validation. Data were
split randomly into two sets in the ratio 70:30 with the 69.9%
(515/737) sample defined as the training set and used for
development of the prediction models, and the 30.1% (222/737)
sample defined as the test (ie, validation) set and used to validate
the accuracy of the algorithm. Once the training set was defined,
an optimal model was developed for nine different ML
algorithms: decision trees (DTs), random forests (RFs), eXtreme
Gradient Boosting (XGBoost), support vector machines (SVM),
naïve Bayes, K-nearest neighbors (KNN), ridge regression
(logistic regression with L2 regularization), logistic regression
without regularization, and neural networks (NNs). A description
of each algorithm is provided in Multimedia Appendix 1.
Multimedia Appendix 2 provides the data set for the study and
Multimedia Appendices 3-7 contain the Python code for all of
the analysis performed for this study. All features were used
without creating interactions or higher-order terms. However,
as a sensitivity analysis, we also assessed each algorithm using
all linear and second-order polynomial terms, that is, after
squaring each feature and including all 2-way interactions.

For each algorithm, a grid search of hyper-parameters was
performed to find the optimal set of hyper-parameters for
training data accuracy. Each grid search was performed using
10-fold cross-validation, in which the training data set was split
into 10 equally sized discrete folds. A model was then created
using 90% (9/10 folds) of the data, and its accuracy was assessed
using the remaining fold of data. The process was repeated 10
times, with each fold held out for one of the 10 training steps
and used to assess the model accuracy for the training data. The
AUC was used as the accuracy metric during the grid search.
Once the optimal set of hyper-parameters was defined for each
of the algorithms based on the training data, the performance
of the optimal model for each ML algorithm was assessed on
the test data set using the AUC as the primary accuracy metric.
Although numerous accuracy measures are available for ML
algorithms, the AUC is the most used in clinical settings and
allows comparison with other studies, and we therefore used
this as our primary accuracy measure. However, for
completeness, we also report accuracy, precision, recall, and
F1 score, given the imbalance in the number of positive and
negative outcomes (dead and alive patients) that can, by itself,
lead to higher AUC values [19].

Logistic Regression With Maximum Likelihood
Estimation
For each feature set, the estimated logit coefficients obtained
for the LR-MLE using the training data set were used to predict
and assess the accuracy of the model on the test data set. The
odds ratios (ORs), 95% CIs, and P values for the training data
set with feature set 4 are reported.

Statistical Analysis
All analyses were performed using Python version 3.8.3. The
normal distribution of the features was assessed using
quantile-quantile plots and histograms, and descriptive statistics,
including the mean, median, or frequency, were used for each
feature as appropriate. Between-group comparisons for those
alive and deceased at 12 months were performed using
two-tailed independent t tests, Mann-Whitney tests, or chi-square
tests. Each ML algorithm was implemented using Python’s
scikit-learn library [20], except for the XGBoost algorithm,
which has its own Python package [21]. Relative importance
feature plots and calibration plots were produced for the best
algorithm, and violin plots were used to describe the distribution
of the most important features. The calibration of the
best-performing algorithm was shown by plotting the observed
versus predicted deciles of risk. LR-MLE was performed using
the logit function of Python’s statsmodels module, and the
LR-MLE models included all features within each feature set.
Descriptive statistics were analyzed using the SciPy library
(version 1.4.1) stats module, and plots were drawn using the
matplotlib and seaborn libraries.

Data Sharing Statement
All data generated or analyzed during this study are included
in Multimedia Appendix 2. The Python code used to analyze
the data is also available in the Multimedia Appendices 3-7.
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Results

Overview
The cohort included a total of 737 patients that were each
assessed for MPI and followed up for 12 months. There were
no missing values for age, sex, or each of the MPI domains.
Among the additional five variables used in feature set 4, there
were a total of 66 missing values, including sodium (n=1)

albumin (n=3) hemoglobin (n=2), urea (n=1) creatinine (n=1),
urea-to-creatinine ratio (n=1), eGFR (n=1), and CRP (n=56).
Table 1 describes the characteristics of the patients according
to their vital status at 12 months after mean imputation for
missing values. There were significant differences between the
two groups for all 20 features except for sex, the total number
of medications used, the Short Portable Mental Status
Questionnaire score, eGFR, creatinine, and the ARS.
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Table 1. Patient characteristics according to vital status at 12 months after hospital discharge.

P valueaDeceased (n=201)Alive (n=536)Characteristics

.00282 (74-88)79 (72-85)Age (years), median (IQR)

.14Gender, n (%)

92 (45.6)278 (51.9)Female

110 (54.4)257 (47.9)Male

<.001MPIb category, n (%)

39 (19.3)211 (39.4)Mild

136 (67.3)290 (54.2)Moderate

27 (13.4)34 (6.4)Severe

MPI domains

<.0015 (4-6)6 (5-6)ADLc, median (IQR)

<.0014 (3-6)6 (4-8)IADLd, median (IQR)

.051 (0-3)1 (0-2)SPMSQe, median (IQR)

<.00117 (15-18)18 (17-19)ESSf, median (IQR)

<.0012.6 (0.4)2.4 (0.4)CIRSg, mean (SD)

<.00118.0 (4.6)20.9 (3.9)MNAh, mean (SD)

.5510.3 (4.5)10.0 (4.4)Total number of medications, mean (SD)

.009Cohabitation status, n (%)

70 (34.7)199 (37.2)Living alone

104 (51.5)300 (56.1)Family or friends

28 (13.9)36 (6.7)Institute

<.00125.2 (22.0-29.1)26.9 (23.8-31.8)BMI (kg/m2), median (IQR)

.006138 (135-140)138 (135-140)Sodium (mmol/L), median (IQR)

<.00130.4 (5.7)32.5 (5.6)Albumin (g/L), mean (SD)

<.001112.0 (18.3)118.7 (18.2)Hemoglobin (g/L), mean (SD)

.1452.2 (26.6)55.3 (24.2)eGFRi (mL/min/1.73m2), mean (SD)

.04833.0 (14.2-84.0)29.0 (6.0-81.0)CRPj (mg/L), median (IQR)

.09103 (72-151)95 (74-134)Creatinine (mmol/L), median (IQR)

<.0018.90 (5.7-15.0)7.40 (5.3-11.6)Urea (mmol/L), median (IQR)

.0010.09 (0.06-0.10)0.08 (0.06-0.10)Urea-to-creatinine ratio, median (IQR)

.410 (0-2)0 (0-2)ARSk, median (IQR)

aUsing two-tailed independent t test, Mann-Whitney U test, or chi-square test, as appropriate.
bMPI: Multidimensional Prognostic Index.
cADL: activities of daily living.
dIADL: instrumental activities of daily living.
eSPMSQ: Short Portable Mental Status Questionnaire.
fESS: Exton Smith Scale.
gCIRS: Cumulative Illness Rating Scale.
hMNA: Mini Nutritional Assessment.
ieGFR: estimated glomerular filtration rate.
jCRP: C-reactive protein.
kARS: anticholinergic risk score.
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Correlation Matrix Heatmap
Figure 1 shows the Spearman ρ correlation matrix heatmap for
features in feature set 4. Moderate to strong positive correlations
were observed between creatinine and urea (ρ=0.75), ADL and
ESS (ρ=0.69), IADL and ESS (ρ=0.58), ADL and IADL
(ρ=0.57), and between CIRS and number of medications
(ρ=0.51). There were also strong to moderate negative

correlations between cohabitation status 1 and 2, that is, living
alone and living with family or friends (ρ=−0.84), eGFR and
creatinine (ρ=−0.94), eGFR and urea (ρ=−0.77), and CRP and
albumin (ρ=−0.41). The absolute strengths of all other
correlations were │ρ│≤0.40. The lack of many highly
correlated features suggested that the use of data reduction
techniques such as principal component analysis before
modeling was unnecessary.

Figure 1. Spearman ρ correlation matrix heatmap for feature set 4. ADL: activities of daily living; ARS: anticholinergic risk score; CIRS: Cumulative
Illness Rating Scale; Cohab1: living alone; Cohab2: living with family or friends; Cohab3: living in an institute; CRP: C-reactive protein; eGFR:
estimated glomerular filtration rate; ESS: Exton Smith Scale; Hgb: serum hemoglobin; IADL: instrumental activities of daily living; MNA: Mini
Nutritional Assessment; No.Meds: number of medications; SPMSQ: Short Portable Mental Status Questionnaire; Urea/Cr: urea-to-creatinine ratio.

ML Algorithms

Test Data Accuracy
Table 2 and Figure 2 describe the test accuracy results for the
four feature sets. The AUC for LR-MLE for feature sets 3 and
4 (0.738 and 0.757, respectively) that contained the eight MPI
domains were considerably higher than those for feature sets 1
and 2 (0.632 and 0.688, respectively) that contained the three
MPI categories. The AUC for LR-MLE was lower than those
for at least one of the ML algorithms for each feature set 1 to 3
and was very similar to the best ML algorithms for feature set

4 (0.757 for LR-MLE vs 0.757 for XGBoost and 0.758 for NN).
Overall, the best-performing ML algorithm was XGBoost, with
an AUC ranging from 0.635 to 0.757 for feature sets 1 and 4,
respectively, and a mean AUC of 0.714 for all four feature sets.
The AUC for LR-MLE and all nine ML algorithms was
improved with the addition of the clinical data (feature set 2 vs
feature set 1 and feature set 4 vs feature set 3). The AUC was
also improved for some, but not all, of the ML algorithms with
the addition of clinical data. Multimedia Appendix 8 provides
the results of accuracy, precision, recall, and F1 score for the
LR-MLR model and the nine ML algorithms. As with the AUC,
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values for accuracy and precision were comparable across the
various models with a range of 0.707 (KNN) to 0.752 (NN) for
accuracy and a range of 0.474 (KNN) to 0.654 (SVM) for
precision. However, there was a wider variability for recall and

F1 scores with recall ranging from 0.031 (DT) to 0.531 (naïve
Bayes) and the F1-score ranging from 0.059 (DT) to 0.751
(SVM).

Table 2. Diagnostic accuracy for logistic regression with maximum likelihood estimation and the 9 machine learning algorithms using feature sets 1
to 4 with the test data set.

AUCaModel

Value, mean (SD)Feature set 4f,dFeature set 3eFeature set 2c,dFeature set 1b

0.704 (0.06)0.7570.7380.6880.632LR-MLEg

Machine learning algorithms

0.714 (0.06)0.7570.7560.7060.635XGBh

0.708 (0.06)0.7580.7490.6890.637Neural network

0.702 (0.06)0.7510.7530.6840.621Random forest

0.698 (0.06)0.7490.7380.6710.632Ridgei

0.679 (0.06)0.7150.7310.6420.626KNNj

0.667 (0.05)0.6900.7070.6420.627Nonpenalized logistic regression

0.663 (0.04)0.7040.7050.6490.591Naïve Bayes

0.656 (0.09)0.7110.7370.6610.530SVMk

0.643 (0.06)0.6860.6950.5880.604Decision tree

aAUC: area under the receiver operating curve.
bMultidimensional Prognostic Index categories, age, gender (n=5 features).
cMultidimensional Prognostic Index categories, age, gender, BMI, anticholinergic risk score, laboratory data (n=15 features).
dLab data=serum albumin, sodium, serum hemoglobin, C-reactive protein, creatinine, urea, urea-to-creatinine ratio, and estimated glomerular filtration
rate.
eMultidimensional Prognostic Index domains, age, gender (n=10 features).
fMultidimensional Prognostic Index domains, age, gender, BMI, anticholinergic risk score, laboratory data (n=20 features).
gLR-MLE: logistic regression with maximum likelihood estimation.
hXGB: extreme gradient boosting.
iRidge: ridge regression.
jKNN: K-nearest neighbors.
kSVM: support vector machine.
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Figure 2. Test accuracy of the 9 machine learning algorithms using feature sets 1 to 4. AUC: area under the receiver operating curve; dt: decision tree;
knn: K-nearest neighbors; lr: logistic regression without penalization; nb: naive bayes; nn: neural network; rf: random forest; ridge: ridge regression;
ROC: receiver operating curve; svm: support vector machine; xgb: eXtreme gradient boosting.

Training Data Accuracy
Multimedia Appendices 9 and 10 show the AUC values for
LR-MLE and each ML algorithm for feature sets 1 to 4 using
the training data set. The accuracy for LR-MLE was slightly
higher for each feature set with the training data than for the
test data values shown in Table 2. In comparison, the accuracy
for each ML algorithm was considerably higher than that
obtained using the test data, especially for the RF, XGB, and
SVM, which obtained values of 0.956, 0.877, and 0.855,
respectively, using feature set 4 and the training data.

Calibration
Multimedia Appendix 11 shows the distribution of predicted
risk scores, the calibration plot, precision-recall curve, and
receiver operating characteristic curve for the XGBoost

algorithm using feature set 4. The calibration plot showed that
overall, the predicted risks of mortality were in line with each
observed risk decile. An AUC of 0.757 indicates fair to good
accuracy in terms of overall sensitivity and specificity. The
precision-recall curve indicates that the precision (ie, sensitivity
or the ability to identify the patients that died) gradually
decreased as the threshold for positivity decreased, and the
recall, that is, the value of a positive classification, increased.

Feature Importance and Distributions
Figure 3 shows the feature importance plots for the XGBoost
algorithm for the test data set using feature sets 1 to 4. In feature
set 4, the MNA, IADL, and CIRS domains had the highest
feature importance, indicating that they had the largest relative
importance among the included features. Living alone (Cohab1)
and urea were also highly ranked. The violin plots in Figure 4
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show the distribution of MNA, IADL, and CIRS domains and
urea—the four continuous features that accounted for the highest
relative importance for the XGBoost algorithm in test feature
set 4. The shape of the distributions was markedly different
among patients who remained alive and those who died for the

MNA score and the IADL score, which together accounted for
26.4% of the relative importance. The distributions were more
similar for the CIRS score and urea, which accounted for 7.5%
and 6.1% of the relative importance, respectively.

Figure 3. Feature importance plot for the eXtreme gradient boosting algorithm using test data with feature sets 1 to 4. ADL: activities of daily living;
ARS: anticholinergic risk score; CIRS: Cumulative Illness Rating Scale; Cohab1: living alone; Cohab2: living with family or friends; Cohab3: living
in an institute; Creat: creatinine; CRP: C-reactive protein; eGFR: estimated glomerular filtration rate; ESS: Exton Smith Scale; Hgb: serum hemoglobin;
IADL: instrumental activities of daily living; MNA: Mini Nutritional Assessment; MPI: Multidimensional Prognostic Index; MNA: Mini Nutritional
Assessment; ROC: receiver operating curve; SPMSQ: Short Portable Mental Status Questionnaire; Ur/Cr: urea-to-creatinine ratio.
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Figure 4. Violin plots showing distributions for the top 4 features for eXtreme gradient boosting in the second test feature set by patient vial status at
12 months after hospital discharge. CIRS: Cumulative Illness Rating Scale; IADL: instrumental activities of daily living; MNA: Mini Nutritional
Assessment.

LR-MLE Accuracy
Table 3 shows the standardized odds ratios, 95% CIs, and P
values for the LR-MLE model using test feature set 4. The
variables that were statistically significant also had the largest

standardized effect sizes: the MNA (OR 0.57, 95% CI 0.44-0.74;
P<.001), CIRS domain (OR 1.81, 95% CI 1.32-2.49; P<.001),
and the number of medications prescribed (OR 0.69, 95% CI
0.52-0.93; P=.02).
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Table 3. Odds ratios (95% CIs) for the logistic regression with maximum likelihood estimation model using the test data with feature set 4a.

P valueOdds ratio (95% CI)Feature

.211.20 (0.90-1.61)Age

.960.99 (0.71-1.39)ADLb

.440.88 (0.63-1.22)IADLc

.910.99 (0.78-1.25)SPMSQd

.510.89 (0.62-1.27)ESSe

<.0011.81 (1.32-2.49)CIRSf

.140.82 (0.63-1.07)BMI

<.0010.57 (0.44-0.74)MNAg

.740.96 (0.77-1.20)Sodium

.101.77 (0.89-3.51)Urea

.500.85 (0.53-1.36)Creatinine

.150.83 (0.64-1.07)Albumin

.350.88 (0.68-1.14)Hemoglobin

.020.69 (0.52-0.93)Number of medications

.661.06 (0.82-1.36)ARSh

.531.15 (0.74-1.80)eGFRi

.610.94 (0.73-1.20)CRPj

Cohabitation

N/Al1.00kAlone

.750.96 (0.73-1.25)Family or friends

.121.22 (0.95-1.57)Institute

Gender

N/A1.00kFemale

.180.69 (0.40-1.18)Male

.641.13 (0.67-1.91)Urea-to-creatinine

aAll continuous variables were scaled before analysis to have a mean of zero and an SD of 1. Gender and cohabitation status were dummy coded for
each category.
bADL: activities of daily living.
cIADL: instrumental activities of daily living.
dSPMSQ: Short Portable Mental Status Questionnaire.
eESS: Exton Smith Scale.
fCIRS: Cumulative Illness Rating Scale.
gMNA: Mini Nutritional Assessment.
hARS: anticholinergic risk score.
ieGFR: estimated glomerular filtration rate.
jCRP: C-reactive protein.
kThis is the reference group. Therefore, there is no CI.
lN/A: not applicable.

Sensitivity Analysis
In the sensitivity analysis that included all features as both first-
and second-order terms, all results for the AUC for the nine ML

algorithms were very similar to those obtained using only first
order terms (data not shown).
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Discussion

Principal Findings
In this study, we applied a range of ML binary-classification
algorithms to data from 737 older inpatients in an Australian
teaching hospital to develop and test a 12MM prediction model
that can potentially be used in clinical settings to assist with
risk management. The test data accuracy using the eight MPI
domains and age and gender reached an AUC of 0.738 using
LR-MLE, considerably higher than that obtained using the MPI
categories plus age and gender (AUC=0.632). The addition of
10 clinical features improved the prediction accuracy further to
AUC=0.757, which matched the accuracy obtained for the best
overall ML-based algorithm (XGBoost), which outperformed
most of the other algorithms except for the largest feature set
in which the NN algorithm had similar accuracy (AUC=0.758).

The major strengths of our study include the use of both
LR-MLE and a wide range of commonly used ML algorithms
to compare the prediction accuracy for aggregate versus
domain-based data. In the development of the ML algorithms,
we also used a systematic ML framework, with a grid search
of the hyperparameter space and 10-fold cross-validation for
each algorithm. The much-improved accuracy warrants the
calculation of individual patient risk scores, which, with
appropriately developed technology platforms linked to the MPI
domain and clinical information, can be used to better stratify
patient risk and provide appropriate posthospital discharge
surveillance and care [22,23].

Comparison With Prior Work
The prediction accuracy using the MPI categories and the test
data set (AUC=0.632) was very similar to the poor accuracy
obtained previously with follow-up on only 697 of the same
patients (AUC=0.62), in which all records were used for
assessing prediction accuracy rather than using separate training
and testing data sets [5]. However, the higher accuracy obtained
using the eight individual component features of the MPI
combined with clinical data led to an accuracy similar to that
originally reported for the three-category MPI within the original
Italian MPI cohort [2]. In addition, the improvement in
prediction accuracy with ML algorithms for some but not all
feature sets provides general support for the use of ML in
addition to LR-MLE when developing risk scores, at least for
moderately sized data sets and feature numbers. The accuracy
values obtained for precision, recall, and F1 score, which are
less subject to variation than the AUC in imbalanced data sets,
were of the same order for LR-MLE and the XGBoost algorithm
and within the upper range of values obtained for these metrics.

The significantly higher accuracy obtained by using the separate
domains of the MPI compared with using the 3-category
aggregate MPI supports other studies in which the use of
component domain data outperformed an aggregate score. In a
meta-analysis of 6 studies comparing individual domain feature
input to aggregate weighted scores for mortality and intensive
care unit transfer, prediction using ML algorithms or
multivariate regression with separate features considerably
enhanced prediction compared with that obtained using the
aggregate scoring systems (AUC=0.80 vs AUC=0.73) [6]. These

findings suggest that caution should be used when employing
aggregate risk scoring systems and the need to consider the
underlying individual components. In addition, in our study,
certain MPI domains, including the MNA, IADL, ESS, and
CIRS, had either strong feature importance using the XGBoost
algorithm or were strongly associated with 12MM using
LR-MLE. Therefore, it may also be possible to obtain predictive
accuracy similar to or better than that of the 3-category MPI
feature sets in this study, by using data collected for only a
subset of the eight MPI domains and by using the individual
items for these specific domains. However, such an approach
requires validation using data collected from additional
retrospective and/or future prospective cohorts.

Unlike many ML algorithms that attempt to reduce the potential
for overfitting and increased variance, the traditional LR-MLE
approach to prediction modeling is not implicitly designed to
deal with bias, multicollinearity, nonlinearity, or feature
interactions. Thus, although the addition of features and model
complexity generally improves a model’s performance during
training, a new and larger model does not guarantee similar
improvements in model fit in the validation phase. Indeed,
without some form of additional penalty term in the model’s
loss function to ensure that the training model is not being
overfit, a decrease in testing accuracy is not uncommon [24].
When an additional L2 penalty term was applied to the Logistic
Regression classifier, the resulting ridge regression ML
classification algorithm provided a slight increase in prediction
accuracy for all four test feature sets (mean AUC of 0.698 for
ridge regression vs AUC of 0.667 for nonregularized logistic
regression). This reduction in strength (ie, regularization) of the
estimated parameters for the ridge regression and the other ML
algorithms during the training phase of model development may
partly explain the higher test accuracy for LR-MLE in which
there is no equivalent model training or an additional penalty
term to help ensure that the LR-MLE coefficients are not inflated
and that residual error is not overly reduced. Similarly, although
many of the ML algorithms had better training performance
than the LR-MLE, this did not translate into better test
performance, suggesting that these ML algorithms often overfit
the data during training, a problem that could potentially be
solved with greater tuning of the algorithm’s hyper-parameters.

A common criticism of ML approaches compared with standard
statistical approaches is that they rely on blackbox algorithms
in which the source of the improved performance is not readily
transparent [25,26]. One method to overcome this lack of
transparency is through the calculation of feature importance,
which shows the relative importance of each feature in terms
of reducing prediction error [26]. By using this method, we
demonstrated the very high relative importance of the MNA
and IADL domains of the MPI regarding risk for 12MM. Thus,
although the ML algorithms do not generally provide a single
specific effect estimate and CI for each variable or feature, our
findings support other studies in which the MNA [27] and the
IADL [28] have been shown to be independently and strongly
associated with medium-term mortality in similar cohorts. These
two features were also the strongest independent features in the
LR-MLE model using feature set 4, emphasizing their
importance in 12MM prediction.
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The independent predictive ability of functional, cognitive, and
psychological measures in predicting mortality in older
hospitalized patients has been previously identified, with the
IADL, mini mental state examination, and geriatric depression
scale all shown to be independent predictors of mortality after
risk adjustment for clinical characteristics [1]. However, the
prediction accuracy in that study was modest (AUC=0.690),
suggesting that complementary clinical data may have further
improved prediction. The improvement in performance with
the addition of blood biochemistry data, BMI, and ARS in our
study highlights the independent predictive value of clinical
data. Many of these features are known markers of malnutrition
or frailty [29,30] and are associated with poorer outcomes in
older patients [12,31,32]. Their independence with the MPI
domains is demonstrated by weak univariate correlations,
indicating their potential to add predictive power to that obtained
from the domains. As each biochemical marker is routinely
measured in hospital laboratories, it is highly feasible to
incorporate them into hospital-based prediction algorithms.

Our results for the ML algorithms, based on a rigorous train-test
validation approach with a grid search of hyper-parameters for
each algorithm during training, demonstrate the potential of
such methods in predicting mortality in clinical settings. In
particular, the XGBoost algorithm, which is known as a superior
and fast prediction ML algorithm, had the highest overall level
of accuracy for the feature sets using the validation data set,
and one of the highest levels of accuracy using the training data
set, suggesting that the prediction accuracy observed for our
cohort is likely to be repeatable in other cohorts with a similar
patient profile. A distinguishing feature of the XGBoost
algorithm is its approach of building a strong learner from an
ensemble of weak learners (ie, separate DTs) by building
successive trees, in which additional weight is placed on harder
to predict subsets of the training data [33]. XGBoost uses a
second-order Taylor series expansion to approximate the value
of the loss function and incorporates regularization to avoid
overfitting [21]. These features together ensure a fast solution
as well as an unbiased estimate of prediction accuracy, both of
which are important in building an automated risk prediction
model at a system level within a clinical setting.

Limitations
Our study had several limitations. In using only routine geriatric
assessment tools and basic biochemical, medication, and

demographic data, it is likely that we were limited in our ability
to obtain higher levels of predictive accuracy. The development
of better prediction models should be possible using a richer
set of features, such as additional information on demographics,
comorbidities, laboratory test measurements, and medication
type. Specifically, the Charlson Comorbidity Index, which
determines the risk of medium-term mortality due to a specific
set of 17 different comorbidities, is generally readily calculable
using the secondary diagnosis codes captured in most
administrative databases [34]. Similarly, routine hospital blood
tests capture biomarker data associated with 12MM [35], and
most hospitals capture medication data that can be used to assess
the predictive capacity of medication type, dose, and
polypharmacy. Other potentially predictive features include the
number of hospitalizations and GP visits in the previous 12
months [36]. Our study data were also limited by its relatively
small size, given that the test data set included only 222 patients
and 64 deaths. ML methods have been found to generally require
larger data sets, and particularly a higher number of events
before stable measures of prediction performance are obtained
in comparison with standard statistical models [37]. Despite
this limitation, we still achieved moderate to good validation
accuracy using data sets with a relatively limited number of
events. In addition, although we were careful to use
cross-validation throughout the model training process and to
validate each model in a held-out test data set, we cannot be
sure that our prediction accuracy will be the same in different
cohorts of the same patient population or in different older
populations such as persons living in aged care facilities. Further
validation of the models in additional retrospective cohorts as
well as prospective cohorts is required to ensure generalizability.

Conclusions
An MPI domain-based approach, together with clinical and
demographic data, improved the prediction of mortality
compared with a logistic regression model that used the
aggregate MPI score. The ML algorithms in this study generally
provided improved prediction accuracy compared with
LR-MLE. These results build on previous work for the MPI
and suggest that implementing risk scores based on MPI
domains and clinical data with ML prediction models can be
used to support clinical decision-making with respect to the
medium-term follow-up care of older hospitalized patients.
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