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Abstract

Background: Clinical decision support systems are designed to utilize medical data, knowledge, and analysis engines and to
generate patient-specific assessments or recommendations to health professionals in order to assist decision making. Artificial
intelligence–enabled clinical decision support systems aid the decision-making process through an intelligent component.
Well-defined evaluation methods are essential to ensure the seamless integration and contribution of these systems to clinical
practice.

Objective: The purpose of this study was to develop and validate a measurement instrument and test the interrelationships of
evaluation variables for an artificial intelligence–enabled clinical decision support system evaluation framework.

Methods: An artificial intelligence–enabled clinical decision support system evaluation framework consisting of 6 variables
was developed. A Delphi process was conducted to develop the measurement instrument items. Cognitive interviews and pretesting
were performed to refine the questions. Web-based survey response data were analyzed to remove irrelevant questions from the
measurement instrument, to test dimensional structure, and to assess reliability and validity. The interrelationships of relevant
variables were tested and verified using path analysis, and a 28-item measurement instrument was developed. Measurement
instrument survey responses were collected from 156 respondents.

Results: The Cronbach α of the measurement instrument was 0.963, and its content validity was 0.943. Values of average
variance extracted ranged from 0.582 to 0.756, and values of the heterotrait-monotrait ratio ranged from 0.376 to 0.896. The final

model had a good fit (χ26
2=36.984; P=.08; comparative fit index 0.991; goodness-of-fit index 0.957; root mean square error of

approximation 0.052; standardized root mean square residual 0.028). Variables in the final model accounted for 89% of the
variance in the user acceptance dimension.

Conclusions: User acceptance is the central dimension of artificial intelligence–enabled clinical decision support system success.
Acceptance was directly influenced by perceived ease of use, information quality, service quality, and perceived benefit. Acceptance
was also indirectly influenced by system quality and information quality through perceived ease of use. User acceptance and
perceived benefit were interrelated.
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Introduction

Clinical Decision Support Systems
Clinical decision support systems are computer-based enterprise
systems designed to utilize massive data, medical knowledge,
and analysis engines as well as to generate patient-specific
assessments or recommendations to health professionals in order
to assist clinical decision making through human–computer
interaction [1,2]. These systems provide services ranging from
simple reminders to complex risk prediction [3] and support
health care providers in diagnosis, treatment decisions, and
population health management. Clinical decision support
systems assist one or more levels of decision making: alerting,
interpreting, critiquing, assisting, diagnosing, and managing
[4]. Diagnostic support systems are a subset of clinical decision
support systems that are specifically designed to support
clinician in diagnosing patients [5]. Artificial intelligence
(AI)–enabled clinical decision support systems combine the
knowledge reasoning techniques of AI and the functional models
of clinical decision support systems [6].

AI-Enabled Clinical Decision Support Systems:
Characteristics, Usage, and Benefits
AI-enabled clinical decision support systems include an
intelligent component [6], and in comparison to traditional
clinical decision support systems, represent a paradigm shift.
They are designed to aid clinicians by converting raw
medical-related data, documents, and expert practice into a set
of sophisticated algorithms, applying techniques such as
machine learning, knowledge graphs, natural language
processing, and computer vision so that users find suitable
solutions to their medical problems and make clinical decisions
[7]. AI-enabled clinical decision support systems have the
potential to improve clinicians’ performance, quality of health
care, and patient safety [8].

Diagnostics are a primary use case of AI-enabled clinical
decision support systems, and these systems have been applied
in the field of rare disease diagnosis [9], sepsis detection or
prediction [10], fracture detection [11], and cancer detection or
diagnosis [12,13]. In addition, current AI-enabled clinical
decision support systems are also used in medication therapy
[14,15] and health care management [16,17].

The greatest benefits of AI-enabled clinical decision support
systems reside in their ability to learn from real-world use and
experience (ie, training) and their capabilities for improving
their performance (ie, adaptation) [18]. By using techniques
such as knowledge graphs and natural language processing, AI
can deal with large amounts of text classification, information
retrieval, and information extraction from the corpora that is
provided by hospital electronic health records. Based on
structured data, AI can support more comprehensive and more
personalized decision-making suggestions for clinicians through
techniques such as machine learning. Another benefit is that

the functionality and utility from combining clinical decision
support systems with AI techniques surpass those of traditional
clinical decision support systems, and the system improves and
supports the decision-making process by providing intelligent
behavioral patterns, with the ability to learn new clinical
knowledge [7].

Need for AI-Enabled Clinical Decision Support System
Evaluation
A comprehensive evaluation framework with common elements
and interoperability is necessary to serve as a reference for
AI-enabled clinical decision support system design and
evaluation, with focuses on cross-disciplinary communication
and collaboration, and there is a pressing need to develop robust
methodologies and empirically based tools for such evaluation.
The factors driving this need are the uncertain added value of
AI-enabled clinical decision support system implementation,
lack of attention, and the possible benefits of comprehensive
evaluation implementations.

First, the added value of AI-enabled clinical decision support
system implementations in a clinical setting is not firmly
established, though evidence exists that such implementations
offer potential benefit to patients, clinicians, and health care in
general [19]. Introducing this type of system in clinical settings
is not without risk [8]. Similar to any other newly introduced
technology, AI-enabled clinical decision support systems may
disrupt clinical service, threaten patient safety [20], and cause
more negative than positive impacts [19]. As a result, there are
concerns that AI-enabled clinical decision support system
implementation can introduce new errors and have unintended
consequences [21]. Additionally, the effect of these systems on
clinical, social, and economic outcomes is still controversial
which highlights the need to evaluate recognized value
parameters [22]. Second, attention to evaluation of clinical
decision support systems, in general, and AI-enabled clinical
decision support systems, in particular, remains weak [23],
which has resulted in a paucity of data on safety, effectiveness,
cost benefits, and impacts of AI-enabled clinical decision
support systems on patients and health systems [24,25]. Finally,
the evaluation of AI-enabled clinical decision support systems
is a learning and knowledge-gaining process, and it also helps
to identify the gaps to be filled [26]. Findings of comprehensive
evaluations could be used to help improve implementations
[27].

AI-Enabled Clinical Decision Support System
Evaluation Methodologies
The approach to AI-enabled clinical decision support system
evaluation is influenced by a sociotechnical regime, which
informs and guides the development of the robust and focused
evaluation method of this study. It has increasingly been
acknowledged that evaluations of such systems are based on a
sociological understanding of the complex practices in which
the information technologies are to function [28]. A careful

J Med Internet Res 2021 | vol. 23 | iss. 6 | e25929 | p. 2https://www.jmir.org/2021/6/e25929
(page number not for citation purposes)

Ji et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/25929
http://www.w3.org/Style/XSL
http://www.renderx.com/


balance between social and technical value is required in order
to ensure that unwanted consequences do not pose a threat to
patients [26] and clinical practices.

A well-defined success measure, based on users’ perspectives,
that specifies aspects of AI-enabled clinical decision support
systems that determine their success [29] is critical for a robust
performance and usefulness evaluation framework. Due to the
user-centric nature of information system development and
evaluation [30,31], evaluation of AI-enabled clinical decision
support system success aims to recognize factors relevant to
user acceptance and utility, thus analysis of articulated users’
opinions is necessary [32]. Clinicians are the direct users of
AI-enabled clinical decision support systems; the adoption of
the product depends on the individual physicians who decide
to use it [5]. In many scenarios, clinicians make decisions for
patients, and clinicians are responsible for the medical decisions
they make. Predicting and managing users’ attitudes toward
AI-enabled clinical decision support systems lead to an in-depth
understanding of these systems via situated practice [33] and
help developers and medical managers maximize user
acceptance. Lack of a well-defined success measure is likely to
lead to inappropriate evaluation that does not reflect the clinical
impact of AI-enabled clinical decision support systems and may
hamper technology advancement[19].

A comprehensive evaluation methodology involves a
multidisciplinary process and diverse stakeholder involvement,
which, when applied to AI-enabled clinical decision support
system evaluation, refers to a mixed methodology not only
based on tenets in medicine and information technology but
also social and cognitive psychology [30]. Using both qualitative
and quantitative methods within a single research project has
been shown to provide a richer understanding of a given topic
than using solely either a qualitative or quantitative approach,
facilitate better and more accurate inferences, and provide an
integrated perspective [34]. A similar benefit would likely apply
when employing mixed methods in designing an AI-enabled
clinical decision support system evaluation scheme.

AI-enabled clinical decision support system interface with a
diverse set of clinical and nonclinical users and stakeholders
whose inputs are integral to the evaluation process. Health care
enterprises are multiprofessional organizations that often include
dual hierarchical structures involving clinical practitioners and
managers [35], and in such settings, AI-enabled clinical decision
support systems are not only tools for clinical practitioners who
interact directly with the system (eg, physicians, nurses,
pharmacists) but also for nonclinical workers (eg, medical
administrators). Additionally, there is still an important group
of invisible stakeholders, namely patients, who can be affected
by these systems use even without direct interaction. The
relationships of such diverse groups of stakeholders can prove
to be complex, with competing interests and values; therefore,
the views, beliefs, and assumptions of stakeholders must be
exposed and considered within the AI-enabled clinical decision
support system evaluation process [33,36].

Objective
We aimed to address the gap in evaluation knowledge and
methodologies by identifying which variables influence

AI-enabled clinical decision support system success and using
these variables to develop a parsimonious evaluation framework.
Specifically, we (1) proposed an evaluation framework with 6
variables and hypotheses about interrelationships between the
6 variables based on the literature review, (2) developed and
validated an instrument using the 6 variables for assessing the
success of diagnostic AI-enabled clinical decision support
systems, and (3) tested the hypotheses using path analysis with
latent variables in a structural equation model.

Methods

Ethics Approval
This study was approved by the Ethics Review Committee,
Children’s Hospital of Shanghai/Shanghai Children’s Hospital,
Shanghai Jiao Tong University (file number 2020R050-E01).

Overview
Our study combined qualitative and quantitative methodologies
to validate a proposed evaluation framework, which consisted
of a model with hypotheses and containing 6 variables.. A
Chinese-language measurement instrument was developed with
the goal to measure and quantify the 6 variables, following
established instrument development paradigm. A literature
review and a Delphi process were conducted to develop the
measurement instrument items, cognitive interviews, pretest,
and web-based survey. Exploratory factor analysis was used to
construct the constituent questions of the measurement
instrument, reliability and validity tests were performed, and
the interrelations of the variables were tested and verified.

Theory
Evaluation methodologies are informed by a rich corpus of
theory, which provides a robust foundation for designing an
AI-enabled clinical decision support system evaluation
framework. In this study and in previous review work [37],
three classic theories were used, namely, the DeLone and
McLean Model of Information Systems Success [38], the
Information Systems Continuance Model [39,40], and the
Information Value Chain Theory [29].

An updated model of information systems success that captures
multidimensionality and interdependency was proposed by
DeLone and McLean in 2003 [38]; the model is a basic and
flexible framework of information system evaluation that can
adapt to the complexity of the clinical environment [41-44]. In
considering the importance of user acceptance and retention to
an information system’s success, the information systems
continuance model describes the path from expectation
confirmation to the formation of users’ intention to continuance
[39]. The information value chain theory underlines decision
improvement as the main purpose of technology and provides
a mechanism to separate process outcomes from clinical
outcomes [45].
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Evaluation Framework Model Variable and
Measurement Instrument Item Selection

Literature Search
A set of evaluation model variables and a candidate set of
medical AI and clinical decision support system evaluation
items were collected through a literature review [35]. A broad
search strategy was employed, using multiple databases
including Cochrane, MEDLINE, EMBASE, Web of Science,
PubMed, CINAHL, PsycINFO, and INSPEC. Studies published
from January 2009 to May 2020 were utilized to inform the
clinical decision support system evaluation items selection and
studies published January 2009 to April 2020 for the AI
evaluation items discovery. A candidate set of 6 model variables
(Multimedia Appendix 1) and a candidate set of 45 evaluation
items were identified.

Delphi Process
The candidate set of evaluation items was examined and
finalized using a Delphi process. Delphi is a structured group
communication process, designed to obtain a consensus of
opinion from a group of experts [46].

Snowball sampling was used to identify a group of experts.
Expert selection criteria were (1) clinical practitioners who
worked in a medical specialty at least 10 years, preferably had
a PhD (minimum postgraduate qualification), had a professional
title at the advanced level or above, had an appointment or
affiliation with a professional organization, and had more than
1 year of practical experience (with respect to AI-enabled
clinical decision support systems); (2) hospital chief information
officers who worked in an information system specialty at least
10 years, had a postgraduate qualification, had a midlevel
professional title or above, and had an appointment or affiliation
with a professional information system organization; or (3)
information technology engineers working in medical
information system enterprises who worked in AI or clinical
decision support systems at least 5 years, had a postgraduate
qualification, and had a midlevel position title or above.

In addition to these selection criteria, a measure of degree of
expert authority was introduced to add or remove experts from
each round of the Delphi process. The degree of expert authority
Cr was defined Cr = (Ca + Cs) / 2, using 2 self-evaluated
scores—Ca is their familiarity with the problem, and Cs is their
knowledge base to judge the program. Cs and Ca ranged between
1 and 5, with a higher value indicating more reliable judgment
and more familiarity with the problem. If the self-rated degree
of expert authority was >3, the expert was retained, otherwise
the expert was removed from group. As a result, a total of 11
experts were selected from diverse areas of expertise and
professional focus: clinical practitioners, hospital chief
information officers, and information technology engineers
working in medical information system enterprises.

The experts were invited to participate in the modified Delphi
process via email. Those who accepted were sent an email with
a link to the round 1 consultation. Experts were required to
provide a relevance score for each item in the candidate set
using a 4-point Likert scale (1=not relevant, 2=relevant but

requires major revision, 3=relevant but requires minor revision,
4=very relevant and requires no revision). Experts were given
2 weeks to complete each round. A reminder was sent 2 days
before the deadline to those who had not completed the survey.
The 2-round Delphi process was carried out from May to July
2020.

The content validity was assessed in the last round of the Delphi
process. Item-content validity was calculated as the percentage
of expert ratings ≥3; if item-content validity was ≥0.8 (ie, expert
endorsement), the item was retained. The mean item-content
validity, representing the content validity of the measurement
instrument of all retained items from the last round was
computed. At the end of this step, the set of evaluation items
for the measurement instrument were finalized. The final set
consisted of 29 evaluation items.

Measurement Instrument Refinement
The measurement instrument consisted of the set of evaluation
items measured by a web-based survey. A draft set of survey
questions was refined by employing cognitive interviews and
a pretest. Interviewees (n=5) who were postgraduates majoring
in health informatics or end-users of AI-enabled clinical decision
support systems (ie, clinicians) were asked to verbalize the
mental process entailed in providing answers. The pretest
included 20 end-users. The interviews and pretest were
conducted in July 2020 and aimed to assess the extent to which
the survey questions reflected the domain of interest and that
answers produced valid measurements. Responses used a Likert
scale from 1 (strongly disagree) to 7 (strongly agree). The
wording of the questions was subsequently modified based on
the feedback from the respondents. The web-based survey was
initiated in July and was closed in September 2020.

Study Population
The evaluation entities chosen in this study were AI-enabled
clinical decision support systems designed to support the risk
assessment of venous thromboembolism among inpatients:
AI-enabled clinical decision support systems that automatically
capture electronic medical records based on natural language
processing supporting assessment based on individual risk of
thrombosis (eg, Caprini scale or Wells scoring), with monitoring
of users and reminders sent to users to provide additional data
were targeted.

Survey Participants and Sample Size
Users of target AI-enabled clinical decision support systems
who had at least 1 month of user experience were included. The
convenience sample participants were based in 3 hospitals in
Shanghai that implemented venous thromboembolism risk
assessment AI-enabled clinical decision support systems in
clinical settings. We appointed an investigator at each hospital
site who was responsible for stating the objective of the study,
for identifying target respondents, and for monitoring the length
of time it took the participants to complete the survey. This was
a voluntary survey. The investigators transmitted the electronic
questionnaire link to the respondents through the WeChat
communication app.
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To ensure usability for exploratory factor analysis [47] and to
obtain parameter estimates with standard errors small enough
to be of practical use in structural equation modeling [48,49],
the required sample size was calculated using to
participant-to-item ratio (ranging from 5:1 to 10:1), yielding
n=150. A response rate ≥70% was targeted to support external
validity [50].

Quality Control Measures
Quality control measures were implemented to ensure logical
consistency, with completeness checks before the questionnaire
was submitted by the responders. Before submitting, respondents
could review or change their answers. In order to avoid
duplicates caused by repeat submissions, respondents accessed
the survey via a WeChat account. Submitted questionnaires
meeting the following criteria were deleted: (1) filling time
<100 seconds, or (2) the answer of following 2 questions were
contradictory: “How often do you use the AI-enabled clinical
decision support systems?” versus “You use the AI-enabled
clinical decision support systems frequently.” Finally, we asked
the point-of-contact individuals in each hospital to send online
notifications to survey respondents at least 3 times at regular
intervals in order to improve the response rate.

Statistical Analysis

Overview
Statistical analyses were performed (SPSS Amos, version 21,
IBM Corp) to (1) identify items of measurement instrument that
were not related to AI-enabled clinical decision support system
success for deletion, (2) explore the latent constructs of the
measurement instrument, and (3) evaluate reliability and validity
of the measurement instrument.

Measurement Instrument Item Reduction
Critical ratio and significance were calculated using independent
t tests between high- (upper 27%) and low- (lower 27%) score
groups. Item-scale correlation was calculated using Pearson
correlation. Corrected item-to-total correlations and the effect
on Cronbach α if an item was deleted were calculated using
reliability analysis. Item-scale correlation and corrected
item-to-total correlations were indications of the degree to which
each item was correlated with the total score. Criteria for

potential elimination were (1) nonsignificant critical ratio
(P>.05), (2) item-scale correlation <0.40, (3) corrected
item-to-total correlation <0.40, (4) an increased α if the item
was deleted [51,52], that is, if α increased with an item removed,
we considered removal of the item from the measurement
instrument [49].

Latent Construct of Measurement Instrument
Construct of the measurement tool was tested using exploratory
factor analysis. Principal component analysis was applied for
factor extraction, and the Promax with Kaiser normalization
rotation strategy was used to redefine the factors to improve
their interpretability. The cutoff strategy was based on verify if
the data set was suitable for exploratory factor analysis—the
Bartlett test of sphericity should be statistically significant
(P<.05) and a Kaiser-Meyer-Olkin value ≥.60 is considered
mediocre [49], a value ≥.90 is marvelous [53]. Only factors with
an eigenvalue ≥0.50 were retained.

Reliability and Validity of Measurement Instrument
Cronbach α coefficients were calculated to assess internal
consistencies of the scale and each subscale; values >.80 are
preferred [49,50]. Convergent validity and discriminant validity
were tested using maximum likelihood estimation confirmatory
factor analysis in structural equation modeling. Average variance
extracted was used as an indicator of convergent validity, and
values >.50 were considered acceptable. The
heterotrait-monotrait ratio of correlations was used to test
discriminant validity. A heterotrait-monotrait ratio value <0.90
provided sufficient evidence of the discriminant validity of
constructs [54].

Path Analysis
Interrelationships between variables selected for the evaluation
framework were hypothesized in a model (Figure 1). The model
was tested using path analysis with latent variables in structural
equation modeling. We used the following indicators to assess
competence of the model fit: chi-square (significant if P>.05),
ratio of chi-square to degrees of freedom <2.00), comparative
fit index >0.95, goodness-of-fit index >0.95, root mean square
error of approximation <0.06, and standardized root mean square
residual ≤0.08 [52,55].
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Figure 1. Evaluation model hypotheses.

Results

Measurement Instrument

Delphi Process and Evaluation Item Selection
Of the 11 experts invited to participate (Multimedia Appendix
2), all accepted in round 1 (100% response rate) and 10 accepted

in round 2 (91% response rate). Most respondents in round 2
(9/10, 90%) identified themselves as expert or very expert
(Cr≥4.0) with respect to AI-enabled clinical decision support
systems. Consensus was reached in round 2: 29 items obtained
at least 80% endorsement (Table 1).
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Table 1. Accepted items in the Delphi process.

Cronbach α if
item was deleted

Corrected item-to-
total correlation

Item-scale corre-

lationa
Critical ratioa

(t value)
Item-content
validityVariables and items

Perceived ease of use

.9610.6150.6436.4191.00Learnability

.9610.5960.6287.3841.00Operability

.9600.6690.70010.4960.90User interface

.9610.6220.65510.5301.00Data entry

.9610.6210.6557.9381.00Advice display

.9610.6410.6667.8361.00Legibility

System quality

.9610.5650.6067.8261.00Response time

.9620.4980.5417.9491.00Stability

Information quality

.9610.5600.5889.2471.00Security

.9600.7260.74611.3461.00Diagnostic performance

Decision changes

.9610.6370.6678.5930.90Changes in order behavior

.9610.6000.6348.8430.90Changes in diagnosis

Process changes

.9600.6990.72611.1121.00Productivity

.9590.8230.84014.0781.00Effectiveness

.9590.8090.82613.7201.00Overall usefulness

.9600.6880.7118.8431.00Adherence to standards

.9600.6960.7178.9451.00Medical quality

.9600.6920.7158.3660.80User knowledge and skills

Outcome changes

.9600.7190.74110.9740.90Change in clinical outcomes

.9600.6920.71610.7690.80Change in patient-reported outcomes

Service quality

.9610.5550.5909.6240.90Operation and maintenance

.9610.6140.6409.6011.00Information updating to keep timeliness

Acceptance

.963b0.282b0.323b4.6860.80Usage

.9590.8410.85614.1741.00Expectations confirmation

.9590.7980.81612.2480.80Satisfaction of system quality

.9590.8130.82813.4370.80Satisfaction of information quality

.9600.7140.73711.0310.80Satisfaction of service quality

.9590.8600.87315.0531.00Overall satisfaction

.9590.8400.85513.5000.90Intention of use

aFor all values in this column, P<.001.
bBased on this value, the item meets the standard for potential deletion.
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Measurement Instrument Formatting
Based on the feedback from the cognitive interviews and
pretesting, we made modifications to the wording of 4 items
and added explanations to 2 items in order to make them easier
to understand. This self-administered measurement instrument
with 29 items was used to collected survey data.

Results of Survey

Characteristics of Survey Respondents
Survey responses were collected from a total of 201 respondents
(Multimedia Appendix 3) from 3 hospitals in Shanghai, China,
of which 156 responses (77.6%) were valid. No data were
missing. The ratio of participants to items was 5.4 to 1.

Reduction of Items for the Measurement Instrument
One item—usage behavior—was deleted based on item-scale
correlation, corrected item-to-total correlation, and effect on
Cronbach-α-if-the-item-was-deleted criteria (Table 1).

Latent Construct of the Measurement Instrument
Exploratory factor analysis was deemed to be appropriate

(Kaiser-Meyer-Olkin .923; χ378
2=3859.495; and significant

Bartlett test of sphericity, P<.001). Eight components, which
explained 80.6% of the variance, were extracted (Table 2;
Multimedia Appendix 4; Multimedia Appendix 5). For
interpretability, we classified decision change, process change
and outcome change as one factor—Perceived benefit—thereby,
the constructs of measurement instrument reflected the 6
variables in the hypothesis model.

Table 2. Principal component analysis results.

RotationExtractionComponent

Sums of squared loadingsCumulative variance (%)Variance (%)Sums of squared loadings

11.35451.59651.59614.447Perceived ease of use

9.82460.5378.9412.504System quality

11.29965.6205.0821.423Information quality

5.68769.9484.3281.212Service quality

6.44972.9533.0050.841Decision change

7.73675.7332.7800.779Process change

6.58878.2882.5550.715Outcome change

5.99780.6382.3500.658Acceptance

Reliability and Validity of Measurement Instrument
The 28-item scale appeared to be internally consistent (Cronbach
α=.963). The Cronbach α for the 6 subscales ranged from .760
to .949. Content validity of the overall scale was 0.943. Values
of average variance extracted ranged from .582 to .756 and met

the >.50 restrictive criterion, which indicated acceptable
convergent validity. The values of heterotrait-monotrait ratio
ranged from 0.376 to 0.896 and met the <0.90 restrictive
criterion, which indicated acceptable discriminant validity of
constructs (Table 3, Multimedia Appendix 6).

Table 3. Internal consistency, convergent validity, and discriminant validity of constructs.

Composite
reliability

Average vari-
ance extracted

Heterotrait-monotrait ratioVariables

Acceptance

Perceived

benefit

Service

quality
Information
quality

System

quality
Perceived ease
of use

.892.5820.7360.6570.4120.7650.7531Perceived ease of
use

.803.6740.6360.4550.3760.63710.753System quality

.760.6200.7670.7290.72110.6370.765Information quality

.858.7520.6730.65410.7210.3760.412Service quality

.935.5950.89610.6540.7290.4550.657Perceived benefit

.949.75610.8960.6730.7670.6360.736Acceptance

J Med Internet Res 2021 | vol. 23 | iss. 6 | e25929 | p. 8https://www.jmir.org/2021/6/e25929
(page number not for citation purposes)

Ji et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Model Validation

Hypothesized Model Modification
The chi-square of the hypothesized model was significant

(χ30
2=126.962, P<.001; ratio of chi-square over degrees of

freedom 4.232). Model fit indices (comparative fit index 0.921;
goodness-of-fit index 0.874; root mean square error of
approximation 0.144; standardized root mean square residual
0.131) suggested the hypothesized model needed to be modified
in order to have a better fitting model: 2 paths, predicting
Acceptance from Information quality and Service quality, were
added, and one path, predicting Perceived ease of use from
Service quality, was moved, which significantly improved the
model and lowered the chi-square values. This meant that in
addition to the relationship between Perceived ease of use and
Information quality or Acceptance, there was also a direct
relationship between Information quality and Acceptance.

Revised Model Fit and Pathway Coefficients
The chi-square of the revised model was not significant

(χ26
2=36.984, P=.08; ratio of chi-square over degrees of freedom

1.422). Model fit indices (comparative fit index 0.991;
goodness-of-fit index 0.957; root mean square error of
approximation 0.052; standardized root mean square residual
0.028) indicated a good-fitting model (Figure 2). All of the path
coefficients between measured variables and factors in the final
model were significant (2-tailed, P<.05). Better System quality
(P<.001) and better Information quality (P<.001) significantly
increased Perceived ease of use. Better Information quality
(P=.04), better Service quality (P<.001), and Perceived ease of
use (P<.001) significantly increased Acceptance. Acceptance
and Perceived benefit were interrelated (Figure 2, Table 4).
Variables in the final model accounted for 89% of the variance
in Acceptance (Table 5). Parameter estimation of error in
measurement, standardized total effects, direct effects, and
indirect effects are shown in Multimedia Appendix 7-10.

Figure 2. Final evaluation model (comparative fit index 0.991; goodness-of-fit index 0.957; root mean square error of approximation 0.052; standardized
root mean square residual 0.028).
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Table 4. Parameter estimation for path coefficients.

P valueCritical ratioStandard errorStandardized re-
gression weights

Regression weightsPathway

<.0017.1390.0410.4460.292System qualityPerceived ease of use

<.0016.4840.0580.4050.378Information qualityPerceived ease of use

.042.0700.0570.0990.117Information qualityAcceptance

<.0014.5250.0520.2320.235Service qualityAcceptance

<.0014.9330.0840.3250.413Perceived ease of useAcceptance

N/AN/AN/Aa0.8661AcceptanceExpectations confirmation

<.0017.2410.0720.5360.522AcceptanceUser satisfaction

<.00115.8040.0620.8930.981AcceptanceIntention of use

N/AN/AN/A0.5951BenefitDecision change

<.0017.9350.1610.9231.274BenefitProcess change

<.0017.5070.1570.7881.182BenefitOutcome change

<.0017.6570.0780.9250.599AcceptanceBenefit

<.0017.6570.0780.3880.599BenefitAcceptance

aN/A: not applicable.

Table 5. Squared multiple correlations.

EstimateVariables

0.538Perceived ease of use

0.932Benefit

0.621Outcome change

0.851Process change

0.491Decision change

0.89Acceptance

0.75Expectations confirmation

0.797Intention of use

0.853User satisfaction

Discussion

Main Findings
User acceptance was established as central to AI-enabled clinical
decision support system success in the evaluation framework.
A 28-item measurement instrument was evaluated, yielding an
instrument that quantifies 6 variables: System quality,
Information quality, Service quality, Perceived ease of use, User
acceptance, and Perceived benefit.

User Acceptance is the Central Dimension
User acceptance is the traditional focus of evaluation in
determining the success of an information system [15,17,32].
User acceptance is a synthesized concept—we used expectation
confirmation, user satisfaction, and intention of use as secondary
indicators. The item system usage was removed; DeLone and
McLean [38] suggested that “intention to use,” that is, intention
of use in our study, may be a worthwhile alternative measure
in some contexts. Our work demonstrated that the use or nonuse

of AI-enabled clinical decision support systems is not a universal
success criterion. Therefore, the item was removed from the
measurement instrument. The nature of health care settings,
wherein diverse perspectives, power asymmetry, and politically
led changes co-exist, supports this approach [26]. The use of
an AI-enabled clinical decision support system tends to be
mandatory, thus it is difficult to interpret users’ evaluations with
respect to system usage. Our model demonstrated that User
Acceptance of AI-enabled clinical decision support systems was
directly determined by Perceived ease of use, Information
quality, Service quality, and Perceived benefit.

Perceived Ease of Use
In this study, perceived ease of use encompassed
human–computer interaction (eg, user interface, data entry,
information display, legibility, response time), ease of learning,
and workflow integration [17,56,57]. Perceived ease of use was
a mediation variable between System quality, Information
quality, and Acceptance. System quality did not directly affect
user Acceptance, but indirectly exerted influence through
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Perceived ease of use, principally because clinicians’ intuitive
feelings of ease of use are fixed on external, tangible, and
accessible features. Engineering-oriented performance
characteristics of an AI-enabled clinical decision support system
and necessary supporting functionalities are not their main
concerns.

Information Quality
Information quality refers to reliable and valid suggestions,
provided by an AI-enabled clinical decision support systems,
and directly and indirectly affected user Acceptance. Suggestions
without reliability or validity not only reflects low diagnostic
performance of AI-enabled clinical decision support systems
but also may excessively interrupt daily work [36,58], negatively
affecting ease of use and further lowering user acceptance.

Service Quality
Service quality required by clinicians emphasizes knowledge
updating for timeliness and system improvement [9,56].

Perceived Benefit
Perceived benefit and user Acceptance were interrelated; and
clinicians are always concerned with the usefulness of
AI-enabled clinical decision support system adoption for
themselves, groups, and patients [19]. AI-enabled clinical
decision support system products with anticipated benefits are
more likely to be accepted by clinicians. As demonstrated in
our study, Perceived benefit was not the conclusive criterion of
AI-enabled clinical decision support system success even if it
could be measured with precision [59]. There will be a
comparison between assumptions and expectations of personal
preference with perceived benefit [36]. When clinicians are not
willing to accept a new AI-enabled clinical decision support
systems, the system will face adoption difficulties in clinical
practice even if the system is considered to be a benefit to
quality of care and patients’ outcomes in general.

Recommendations of Benefit Measures for AI-Enabled
Clinical Decision Support Systems

Decision Changes
We recommend using Decision change as an outcome measure
rather than appropriate decisions. Decision change for
AI-enabled clinical decision support system usage underlines
decision inconsistency between system and human. These
decision-making suggestions might correct users’clinical orders,
particularly for those who have insufficient practical experience
[21]. Consequently, measuring user decision change (eg, tests
cancel, order optimization) is more straightforward than
measuring appropriate decisions.

Process Changes
Process change, which is similar to perceived usefulness [39],
mainly covers individual, group, or organization levels of
performance improvement. This study used knowledge, skills,
confidence [17,25,60-62], and work efficiency [17,61] as
indicators of individual performance and used quality of health
care and documentation [57,62-66] as indicators of group or
organization performance.

Outcome Changes
Outcome measures tended to be complicated indicators of
AI-enabled clinical decision support system success, which
often failed to be objective in clinical settings [15,58]. Beneficial
patient outcomes from AI-enabled clinical decision support
system implementations are the concern of all stakeholders. But
there remains a paucity of high-quality evidence for outcome
measures [19]. Consequently, although both subjective and
objective measures of AI-enabled clinical decision support
system success should compensate for the shortcomings of each
other, our work showed that it is valuable to evaluate clinicians’
attitude toward perceived benefit for patients that can be
obtained from specific AI-enabled clinical decision support
system implementation under the health care contexts when
objective measures are difficult to qualify.

Limitations
This study is an innovative attempt and pilot examination of an
evaluation framework in relation to AI-enabled clinical decision
support system success. This evaluation framework is widely
applicable, with a broad scope in clinically common and
multidisciplinary interoperable scenarios. In order to test the
validity of the variables and the hypotheses about their
relationships, an empirical methodology was needed.
Specifically, the items of the measurement instrument were
developed targeting diagnostic AI-enabled clinical decision
support systems, and AI-enabled clinical decision support
systems designed to support the risk assessment of the venous
thromboembolism among inpatients was the focus. Thus, one
potential limitation may arise due to this narrow focus. A future
expanded evaluation framework would require validation among
diverse populations and encompassing AI-enabled clinical
decision support systems with diverse functions.

Implications and Conclusion
This study offers unique insight into AI-enabled clinical decision
support system evaluation from a user-centric perspective, and
the evaluation framework can support stakeholders to understand
user acceptance of AI-enabled clinical decision support system
products with various functionalities. Given the commonality
and interoperability of this evaluation framework, it is widely
applicable in different implementations, that is, this framework
can be used to evaluate success of various AI-enabled clinical
decision support systems.

From a theoretical point of view, this framework can be an
evaluation approach to help in describing and understanding
AI-enabled clinical decision support system success with a user
acceptance–centric evaluation process. There are also practical
implications in terms of how this evaluation framework is
applied in clinical settings. The 28-item diagnostic AI-enabled
clinical decision support system success measurement
instrument, divided into 6 model variables, showed good
psychometric qualities. The measurement instrument can be a
useful resource for health care organizations or academic
institutions designing and conducting evaluation projects on
specific AI-enabled clinical decision support systems. At the
same time, if the measurement instrument is to be used for
AI-enabled clinical decision support system products with
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different functionalities in a specific scenario, item
modifications, cross-cultural adaptation, and tests of reliability

and validity testing (in accordance with scale development
guidelines [52]) is needed.
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