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Abstract

Background: Dysphonia influences the quality of life by interfering with communication. However, a laryngoscopic examination
is expensive and not readily accessible in primary care units. Experienced laryngologists are required to achieve an accurate
diagnosis.

Objective: This study sought to detect various vocal fold diseases through pathological voice recognition using artificial
intelligence.

Methods: We collected 189 normal voice samples and 552 samples of individuals with voice disorders, including vocal atrophy
(n=224), unilateral vocal paralysis (n=50), organic vocal fold lesions (n=248), and adductor spasmodic dysphonia (n=30). The
741 samples were divided into 2 sets: 593 samples as the training set and 148 samples as the testing set. A convolutional neural
network approach was applied to train the model, and findings were compared with those of human specialists.

Results: The convolutional neural network model achieved a sensitivity of 0.66, a specificity of 0.91, and an overall accuracy
of 66.9% for distinguishing normal voice, vocal atrophy, unilateral vocal paralysis, organic vocal fold lesions, and adductor
spasmodic dysphonia. Compared with the accuracy of human specialists, the overall accuracy rates were 60.1% and 56.1% for
the 2 laryngologists and 51.4% and 43.2% for the 2 general ear, nose, and throat doctors.

Conclusions: Voice alone could be used for common vocal fold disease recognition through a deep learning approach after
training with our Mandarin pathological voice database. This approach involving artificial intelligence could be clinically useful
for screening general vocal fold disease using the voice. The approach includes a quick survey and a general health examination.
It can be applied during telemedicine in areas with primary care units lacking laryngoscopic abilities. It could support physicians
when prescreening cases by allowing for invasive examinations to be performed only for cases involving problems with automatic
recognition or listening and for professional analyses of other clinical examination results that reveal doubts about the presence
of pathologies.
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Introduction

The impact of a voice disorder has been increasingly recognized
as a public health concern. Dysphonia influences the quality of
physical, social, and occupational aspects of life by interfering
with communication [1]. A nationwide insurance claims data
analysis of treatment seeking for dysphonia showed a prevalence
rate of 0.98% among 55 million individuals [2], and this rate
reached 2.5% among those older than 70 years [2]. However,
the overall dysphonia incidence for the aging population is
estimated to be much higher (12%-35%) [3], which may imply
that dysphonia is commonly overlooked by patients, resulting
in underdiagnosis.

According to the state-of-the-art clinical practice guidelines for
dysphonia of the American Academy of Otolaryngology-Head
and Neck Surgery Foundation, a laryngoscopic examination is
recommended if dysphonia fails to resolve or improve within
4 weeks [4]. A comparison of diagnoses made by primary care
physicians and those made by laryngologists and
speech-language pathologists with experience in interpreting
stroboscopy at multidisciplinary voice clinics indicated that the
primary care physicians’diagnoses of dysphonia were different
in 45%-70% of cases [4]. However, the laryngoscopic
examination is an invasive procedure. To achieve an accurate
diagnosis, it must be performed by an experienced laryngologist.
The examination equipment is expensive and not generally
available in primary care units. In places without sufficient
medical resources, delayed diagnoses and treatments are
common [5]. Therefore, a noninvasive diagnostic tool is needed
to resolve this problem. Although this tool cannot replace the
laryngoscopic examination by an experienced physician, it is
worthwhile to develop because a noninvasive tool to screen
significant clinical conditions could encourage patients to visit
a voice clinic for further evaluation.

Several recent studies have attempted to distinguish normal and
abnormal voices by using various machine learning–based
classifiers that have the potential for detecting pathological
voices [5-9]. To date, the highest accuracy of pathological voice
detection achieved by using a deep neural network has been

99.32% [5]. However, the differential diagnosis of various types
of pathological voices has not been widely reported. The
vibration patterns of vocal fold observed by high-speed video
for common vocal fold diseases, including vocal atrophy,
unilateral vocal paralysis, and organic vocal fold lesions, are
completely different [10]. We hypothesized that different
vibration patterns could result in different voice features. This
study sought to detect various vocal fold diseases through
pathological voice recognition using a deep learning approach.

Methods

Sample Collection
This study was performed following the principles expressed
in the Declaration of Helsinki, and approved by the Institutional
Ethics and Research Committee of Cheng Hsin General Hospital
and Fu Jen Catholic University. Voice samples were obtained
from the Voice Center of Chen Hsin General Hospital and the
Department of Otorhinolaryngology-Head and Neck Surgery
of Fu Jen Catholic University Hospital. These samples included
189 normal voice samples and 552 samples of voice disorders,
including vocal atrophy (n=224), unilateral vocal paralysis
(n=50), organic vocal fold lesions (n=248), and adductor
spasmodic dysphonia (n=30). Voice samples of a sustained
vowel sound /a:/ followed by continuous speech of a Mandarin
passage [11] (Multimedia Appendix 1) were recorded at a
comfortable loudness level with a microphone-to-mouth distance
of approximately 15-20 cm using a high-quality microphone
with a digital amplifier and a 40- to 45-dB background noise
level. The sampling rate was 44,100 Hz with 16-bit resolution,
and data were saved in an uncompressed .wav format.

Comparison and Evaluation
We first divided the 741 samples into 2 sets: 593 samples for
the training set and 148 samples for the testing set. Using
computer-based randomization, we selected 152 of the 189
normal voice samples, 40 of the 50 unilateral vocal paralysis
samples, 24 of the 30 adductor spasmodic dysphonia samples,
179 of the 224 vocal atrophy samples, and 198 of the 248
organic vocal fold lesion samples for the training set (Table 1).

Table 1. Details of the voice samples used for experiments (N=741).

Test set (n=148)Training set (n=593)Sample

37152Normal

1040Unilateral vocal paralysis

624Adductor spasmodic dysphonia

45179Vocal atrophy

50198Organic vocal fold lesions

To manage the limited size of the training set, we used a mix-up
approach for data augmentation [12]. The mix-up approach has
been applied for audio scene classification using convoluted

neural networks (CNNs) to reduce overfitting and obtain higher
prediction accuracy [13]. We randomly selected 2 voice files
and mixed them into 1 voice file with randomly selected weights
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to construct the virtual training examples. Next, we randomly
cropped each of these voice files to achieve 10 voice files with
a length of 11.88 seconds (plateau point of the training length
within the graphics processing unit memory limitations of our
hardware, according to our preliminary tests). Additionally, we
used oversampling to adjust the class distribution of the data
[14].

A 2D graph is ideal for extracting features when using CNNs.
Therefore, we performed Mel frequency cepstral coefficients
(MFCCs) for the processed voice file to obtain a spectrogram.
Feature extraction from MFCCs was performed using
pre-emphasis, windowing, fast Fourier transform, Mel filtering,
nonlinear transformation, and discrete cosine transform [15].
The first feature consisted of 40-dimension MFCCs [16,17].
Next, for the second and third features, we calculated the MFCC
trajectories over time (delta MFCCs) and the second-order delta
of MFCCs. Therefore, there were 3 channels of input features
that could be considered a color image (ie, red–green–blue in
the computer vision field).

CNNs have distinct feature representation–related
characteristics, among which the lower layers provide general
feature-extraction capabilities and the higher layers include
information that is increasingly more specific to the original
classification task [18]. This allows verbatim reuse of the
generalized feature-extraction and representation of the lower
CNN layers; the higher layers are fine-tuned toward secondary
problem domains with characteristics related to the original.
Therefore, instead of designing a new CNN with random
parameter initialization, it is more suitable to adopt a pretrained
CNN and fine-tune its parameterization toward specific
classification domains. Spectrograms were quite different from
normal images at first glance. However, the low-level features,
including edges, corners, and shapes, were common in the
normal images and spectrograms [19]. In a previous study, a
spectrogram-based crowd sounds analysis using pretrained CNN
models from the ImageNet data set showed great accuracy when
distinguishing crowd emotions [19]. Another study also proved
that pretrained CNN models yielded better performance than
nontrained CNN models for classifying normal or pathological
cases [18]. We used different CNN architectures, such as
EfficientNet-B0 to B6 [20], SENet154 [21],
Se_resnext101_32x4d [21], and se_resnet152 [21] models, from
the ImageNet data set that have been pretrained for transfer
learning. We classified pathological conditions into 2 (normal
voice; adductor spasmodic dysphonia plus organic vocal fold
lesions plus unilateral vocal paralysis plus vocal atrophy), 3
(normal voice; adductor spasmodic dysphonia; organic vocal
fold lesions plus unilateral vocal paralysis plus vocal atrophy),
4 (normal voice; adductor spasmodic dysphonia; organic vocal
fold lesions; unilateral vocal paralysis plus vocal atrophy), or
5 (normal voice; adductor spasmodic dysphonia; organic vocal

fold lesions; unilateral vocal paralysis; vocal atrophy) different
conditions and trained the CNN. For the final prediction of an
input instance, we used the maximum probability to obtain the
label.

In terms of hyperparameter settings for fine-tuning among the
training set, 474 of 593 samples (79.9%) were used for initial
training and 119 of 593 samples (20.1%) were used for
validation. We added the dropout function and different data
augmentation methods to prevent the model from overfitting in
our data set [22,23]. The dropout rate was set at 0.25-0.5 for
regularization. Then, we trained the model using minibatches
of 32 that were selected based on memory consumption [24].
The learning rate was tuned based on cosine annealing and a
1–cycle policy strategy [25,26]. By using the cosine annealing
schedule, the model repeatedly fitted the gradient to the local
minimum. The network was trained end-to-end using the Adam
optimization algorithm, and it optimized the cross-entropy as
a loss function [27]. For different classification problems in the
model head, we applied a SoftMax layer as an output layer for
multiclass classification or a sigmoid layer for binary
classification. Finally, we assembled the model by average
output probability to receive more robust results to minimize
the bias of prediction error to improve the prediction accuracy
of the CNN models [25]. The machine learning process was
performed using Python 3.8 (Python Software Foundation) and
PyTorch 1.7.1 for Ubuntu 18.04 (Facebook's AI Research lab
[FAIR]). Furthermore, we invited 2 laryngologists and 2 general
ear, nose, and throat (ENT) physicians who could speak
Mandarin to categorize the voice samples of the testing sets into
5 classifications. We compared their classifications with those
of our model.

Statistical Analysis
The effectiveness of our model was evaluated by several metrics,
including accuracy, sensitivity, specificity, F1 score,
receiver-operating characteristic (ROC) curve, and area under
the curve (AUC). All metrics were calculated using Python.

Results

Voice samples in this study were composed of a sustained vowel
sound and a continuous essay speech. We first compared the
results by training different parts: the vowel sound alone, the
essay alone, and the whole voice sample (ie, the vowel sound
and essay). Because the vowel sound and essay group (F1
score=0.65) achieved better F1 scores than the vowel sound
group (F1 score=0.54) and the essay group (F1 score =0.57),
we applied whole voice samples during subsequent machine
learning. Figure 1 shows the changes in the loss function value
over the training and validation sets, which demonstrated that
our model could converge after running the optimization for a
number of epochs.
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Figure 1. Illustration of the changes of the loss function value over the training and validation sets.

Table 2 presents the training results for the different
classification methods, including 2 (normal voice; adductor
spasmodic dysphonia plus organic vocal fold lesions plus
unilateral vocal paralysis plus vocal atrophy), 3 (normal voice;
adductor spasmodic dysphonia; organic vocal fold lesions plus
unilateral vocal paralysis plus vocal atrophy), 4 (normal voice;
adductor spasmodic dysphonia; organic vocal fold lesions;
unilateral vocal paralysis; vocal atrophy), or 5 (normal voice;
adductor spasmodic dysphonia; organic vocal fold lesions;
unilateral vocal paralysis; vocal atrophy) different conditions
trained by the CNN. The 2-classification condition could equally
distinguish pathological voices from normal voices. In our
model, the accuracy of pathological voice detection reached

95.3%; the sensitivity was 99%, specificity was 84%, and AUC
was 0.98. Using the 3-classification condition, we aimed to
identify adductor spasmodic dysphonia patients from those with
other vocal fold pathologies. The accuracy was 91.2%,
sensitivity was 82%, specificity was 93%, and AUC was 0.91.
Using the 4-classification condition, vocal atrophy and unilateral
vocal paralysis could be clinically grouped as “glottic
insufficiency.” For this condition, the accuracy was 71.0%,
sensitivity was 75%, specificity was 89%, and AUC was 0.88.
Using the 5-classification condition, the accuracy was 66.9%,
sensitivity was 66%, specificity was 91%, and AUC was 0.85.
Figure 2 shows the confusion matrix of these results. Figure 3
shows the ROC curves of these results.

Table 2. Performance of the artificial intelligence model for classifying voice disorders under different classification conditions.

Average area under the curve valuesF1 scoreAccuracy, %SpecificitySensitivityClass

0.980.9795.30.840.992

0.960.8091.20.930.823

0.880.7571.00.890.754

0.850.6666.90.910.665
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Figure 2. Confusion matrix of 2, 3, 4, and 5 classifications. AN = pathological voice; NC = normal voice; SD = adductor spasmodic dysphonia;
PAATOL = unilateral vocal paralysis/vocal atrophy/organic vocal fold lesions; OL = organic vocal fold lesions; PAAT = unilateral vocal paralysis/vocal
atrophy; PA = unilateral vocal paralysis; AT = vocal atrophy.
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Figure 3. Receiver operating characteristic curves of 2, 3, 4, and 5 classifications. NC = normal voice; SD = adductor spasmodic dysphonia; PAATOL
= unilateral vocal paralysis/vocal atrophy/organic vocal fold lesions; OL = organic vocal fold lesions; PAAT = unilateral vocal paralysis/vocal atrophy;
PA = unilateral vocal paralysis; AT = vocal atrophy.

Furthermore, we invited four ENT specialists to identify vocal
fold pathology by voice using these 5 classifications. The results
are shown in Table 3 and Figure 4. The accuracy rates were

60.1% and 56.1% for the 2 laryngologists and 51.4% and 43.2%
for the 2 general ENT specialists.

Table 3. Comparison of the performance for a 5-classification condition by our artificial intelligence model and 4 human experts.

Accuracy, %SpecificitySensitivityTest participants

66.90.910.66Deep learning model

60.10.890.61Laryngologist A (11 years of experience)

56.10.880.63Laryngologist B (10 years of experience)

51.40.880.54General ENTa C (8 years of experience)

43.20.850.42General ENT D (14 years of experience)

aENT: ear, nose, and throat.
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Figure 4. Confusion matrix of 5 classifications in human specialists. NC = normal voice; SD = adductor spasmodic dysphonia; OL = organic vocal
fold lesions; PA = unilateral vocal paralysis; AT = vocal atrophy.

Discussion

Principal Findings
During this study, we built a CNN model that could distinguish,
with high specificity (91%), different pathological voices
attributable to common vocal diseases based on voice alone.
To the best of our knowledge, no previous study has used
artificial intelligence to distinguish different types of
pathological voices speaking Mandarin. Using our model, we
obtained better results by training the CNN with a whole voice
sample than by training it with the vowel sound only or with
the essay speech only.

Our model could distinguish normal voice and adductor
spasmodic dysphonia with great performance for the
5-classification condition (AUC values: 0.985 and 0.997,

respectively). The overall accuracy of our model was also better
than that of all ENT specialists participating in the study. This
was compatible with our clinical observation that the first
impression of the pathological voice is usually over-ruled by
the laryngoscopic examination. Additionally, laryngologists
demonstrated higher accuracy when diagnosing voice disorders
than general ENT specialists. This may imply that it would be
possible to improve the accuracy of human physicians in terms
of their impressions of pathological voices by increasing clinical
experience. After comparing the accuracy of each classification,
we found that artificial intelligence was markedly better than
laryngologists when identifying organic vocal fold lesions
(artificial intelligence, 68%; laryngologist A, 60%; laryngologist
B, 24%). However, laryngologists were slightly better at vocal
atrophy identification (artificial intelligence, 51%; laryngologist
A, 51%; laryngologist B, 56%).
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Organic vocal fold lesions, unilateral vocal paralysis, and vocal
atrophy could result in a closure gap during phonation, inducing
a weak and breathy sound [28-30], and vocal fold tension
imbalance, inducing diplophonia (when a voice is perceived as
being produced with 2 concurrent pitches) [31]. Specifically,
in the case of organic vocal fold lesions during vibration, the
lesion divided the fold into 2 oscillators. However, in the case
of unilateral vocal paralysis, vibrating frequencies were different
between the normal vocal fold and paralysis vocal fold. Vocal
atrophy will show a breakdown of vibration with a visible
repetition in the loss of normal vibration every few glottal cycles
[10]. However, the difference in the vibration pattern could only
be observed by high-speed video and multislice digital
videokymography [10], and the resulting pathological voice is
difficult for humans to identify. We speculated that our model
may identify related features through deep learning to achieve
better outcomes.

Laryngologists could distinguish aged and young patients, and
they could validate their judgment during the test based on their
knowledge. Vocal atrophy is the most common vocal fold
pathology in older patients [3]. Therefore, laryngologists may
classify the pathological voice as vocal atrophy if they judged
that the voice was that of an aged person.

Regarding misclassification, we have found that our model
could successfully identify normal voice and spasmodic
dysphonia. However, it was relatively difficult to differentiate
organic vocal lesions, unilateral vocal paralysis, and vocal
atrophy from each other. Although the vibration patterns were
different for these 3 diseases, the different severity levels of
disease could result in different degrees of hoarseness. For
example, with tiny vocal nodules compared with huge vocal
polyps, unilateral vocal paralysis with fair compensation
compared with unilateral vocal paralysis with a huge closure
gap, and vocal atrophy with a mild anterior closure gap
compared with vocal atrophy with a huge closure gap, there
could be different degrees of hoarseness in the same group. We
assumed that the less severe cases in each group may not show
the typical pathological vibration pattern. Further studies are
needed to validate our hypothesis.

Four human specialists required 40-80 minutes to identify 148
voice samples of the test set; however, our model only required
30 seconds to perform the same task. The processing time of
our model is quite promising in terms of the development of
future screening tools.

Comparison With Prior Work
Most previous studies have used sustained vowel sounds for
pathological voice detection [5,7,8]. However, other studies
have used continuous speech samples for analyses [6]. CNNs
extract features automatically from the spectrogram of voice
recordings for dysphonia diagnosis, and a larger amount of
training data yields better results [32]. Therefore, the CNN used
here may have extracted more features from these entire voice
samples, thereby achieving better training results with our
model.

In this study, we used our voice database for the deep learning
approach. The most widely used voice disorder database is the

Massachusetts Eye & Ear Infirmary (MEEI) Voice Disorders
Database (commercially available from KayPENTAX Inc.).
The MEEI voice samples (53 normal and 662 pathological
voices) are composed of the vowel /ah/ (53 normal and 657
pathological voices) and the utterance of a sentence (“When the
sunlight strikes raindrops in the air, they act as a prism and form
a rainbow”) [33]. However, the voice recordings in the MEEI
database were recorded at various sampling rates (10, 25, and
50 kHz), and normal and pathological voice recordings were
recorded in 2 different environments [32]. Therefore, it was not
clear whether artificial intelligence was classifying voice
features or environments when trained using the MEEI samples.

The other widely used voice disorder database is the
Saarbruecken Voice Database, which contains voice recordings
from more than 2000 individuals. Each participant file contains
recordings of sustained vowel sounds of /a/, /i/, and /u/ in low,
neutral, high, and low–high–low pitches, as well as a continuous
speech sentence (“Guten Morgen, wie geht as Ihnen?”). All
these samples were recorded at 50-kHz sampling rates and 16-bit
resolution [32]. The Saarbruecken Voice Database is considered
to be superior to the MEEI database because it uses the same
recording environment and the same sampling rates. However,
it contains 71 different dysphonia pathologies and many patients
recorded in this database had multiple disorders. Therefore, it
is difficult to achieve denotation before machine learning.

Our database has several advantages. First, all voice data were
from patients visiting our clinics who had detailed chart
documents that were carefully reviewed by 2 experienced
laryngologists (H-CH and S-YC). Therefore, the quality of the
primary data was better than that of the primary data of other
studies during which voice data were retrieved from a public
database. Second, all voice data were recorded using 44.1-kHz
sampling rates and 16-bit resolution, which comprise the
standard audio CD format. This widely used format could
increase the usability of this data set. Third, we focused on 4
vocal fold diseases that were chosen by experienced
laryngologists based on the cause of hoarseness, clinical
significance, and prevalence of the disease.

In terms of the cause of hoarseness, adductor spasmodic
dysphonia is a focal laryngeal dystonia characterized by irregular
and uncontrolled voice breaks that interrupt normal speech [34].
However, organic vocal fold lesions, unilateral vocal paralysis,
and vocal atrophy could induce a breathy sound with a different
diplophonia pattern [10]. The voice pattern of adductor
spasmodic dysphonia is quite different from that of the other
pathologies included in this study, and classic cases of adductor
spasmodic dysphonia could be diagnosed based on voice alone
by experienced laryngologists. The accuracy rates of adductor
spasmodic dysphonia among laryngologists using the
5-classification condition were 100% and 83% during this study.
Therefore, we anticipated that the sensitivity and specificity for
diagnosing adductor spasmodic dysphonia could be higher than
those of other categories. However, during the first attempt at
CNN training, the accuracy of adductor spasmodic dysphonia
identification was poor (data not shown). When we attempted
to splice the original voice file into 1-second clips while training
the model, we found that the voice break in adductor spasmodic
dysphonia did not always emerge within every 1-second period.
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After prolonging the duration of the voice clips in the training
model, the results improved substantially. This also emphasized
that the domain knowledge could significantly influence the
training results by tuning the training model according to real
clinical conditions.

According to a meta-analysis, in terms of clinical significance,
patients with neurologic voice disorders have more challenges
than patients with inflammatory or traumatic laryngeal diseases
[1]. Specifically, adductor spasmodic dysphonia showed the
worst Voice Handicap Index (VHI) score, followed by unilateral
vocal paralysis [1]. This result was compatible with our clinical
observation that adductor spasmodic dysphonia could markedly
interfere with communication and socialization during the daily
lives of patients. Although adductor spasmodic dysphonia is a
rare disease with a prevalence of 14 out of 100,000 [35], it is
worthwhile to offer a model for rapid screening because the
symptoms can be treated easily and effectively by regular
intralaryngeal botulinum toxin type A injections or surgery [35].

According to VHI scores, unilateral vocal paralysis could also
induce a severe voice handicap [1]. The most common cause
of unilateral vocal paralysis is an idiopathic or postviral
infection, which accounts for 67% of cases [36]. However, 6%
of patients have underlying malignancies that invade the
recurrent laryngeal nerve or vagus nerve [36]. Computed
tomography of the skull base, neck, and chest is often
recommended during the search for a potential cause of the
voice disorder [37]. Thyroid disease, including benign nodules,
thyroid malignancy, thyroiditis, hyperthyroidism, and
hypothyroidism, may also result in vocal fold paresis [38].
Heman-Ackah et al [38] reported that 47.4% of patients with
unilateral vocal paralysis are diagnosed with concurrent thyroid
disease. Therefore, it is important to determine an early
diagnosis of unilateral vocal paralysis to investigate the
existence of underlying disease.

Organic vocal fold lesions comprise benign lesions, such as
nodules, polyps, cysts, polypoid vocal folds, precancerous
leukoplakia, and malignant lesions [39,40]. The cause of
hoarseness with benign and malignant vocal fold lesions
involves changes in the laryngeal mucosa and mass effects
[10,40]. To date, it has been difficult to differentiate organic
vocal fold lesions further by voice alone because they involve
various pathologies. However, it is worthwhile to inform patients
about the possibility of organic vocal fold lesions and to advise
them to undergo further investigations. Early stage malignant
lesions and benign lesions could be treated with office-based
surgery, which is safer and relatively inexpensive compared
with surgery in the operating room [29,41,42]

The most common cause of vocal atrophy is aging. Aging may
result in atrophic musculature and a thinner lamina propria of

the vocal fold [43]. However, vocal atrophy can also occur in
a relatively young population [28]. It may result from a
congenital anomaly or prolonged laryngopharyngeal reflux [44].
The symptoms associated with vocal atrophy are relatively
subtle compared with those of other vocal fold diseases [45].
The concern about significant underlying diseases is also
reduced with vocal atrophy. However, vocal atrophy is the most
common vocal fold pathology among patients older than 65
years [3]. With the aging of the population, vocal atrophy may
become a significant geriatric issue in the future.

Limitations
Our study had some drawbacks. First, all the voice files were
recorded in the studio with a silent environment, with sensitive
audio-recording technology, and using a certain format. Further
studies are needed to validate this approach in different
recording environments. Second, all the voice data in this study
are from Mandarin speakers. Further studies are needed to
compare the results of speakers of different languages. Third,
the voice sample numbers of each class were unequal because
of the different disease prevalence. We have applied several
data augmentation methods to ameliorate the influence of these
unequal data. Fraile et al [46] showed that laryngeal pathology
detection using voice records based on MFCC and prior
differentiation by sex can significantly improve the performance.
Fang et al [47] also showed that a deep neural network
combining supervectors with medical records could improve
pathological voice classifications. Therefore, in the future, we
will combine demographic data with voice records to improve
our model.

Conclusions
We demonstrated that voice alone could be used for common
vocal fold disease recognition using a deep learning application
after training with our Mandarin pathological voice database.
Specifically, adductor spasmodic dysphonia, organic vocal fold
lesions, unilateral vocal paralysis, and vocal atrophy could be
recognized, which could increase the potential of this approach
to be more beneficial than simply distinguishing a pathological
voice from a normal voice. This approach shows clinical
potential for use during general screening of different vocal fold
diseases based on voice and could be included in quick
evaluations during general health examinations. It could also
be used for telemedicine in remote regions that lack
laryngoscopy services in primary care units. Overall, it could
support physicians during prescreening of cases by allowing
for invasive examinations to be performed only for cases
involving problems with automatic recognition or listening and
for professional analyses of other clinical examination results
that reveal doubts about the presence of pathologies.
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Abbreviations
AUC: area under the curve
CNNs: convoluted neural networks
ENT: ear, nose, and throat
MEEI: Massachusetts Eye & Ear Infirmary
MFCCs: Mel frequency cepstral coefficients
ROC: receiver-operating characteristic
VHI: Voice Handicap Index
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