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Abstract

Background: Health recommender systems (HRSs) offer the potential to motivate and engage users to change their behavior
by sharing better choices and actionable knowledge based on observed user behavior.

Objective: We aim to review HRSs targeting nonmedical professionals (laypersons) to better understand the current state of
the art and identify both the main trends and the gaps with respect to current implementations.

Methods: We conducted a systematic literature review according to the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines and synthesized the results. A total of 73 published studies that reported both an
implementation and evaluation of an HRS targeted to laypersons were included and analyzed in this review.

Results: Recommended items were classified into four major categories: lifestyle, nutrition, general health care information,
and specific health conditions. The majority of HRSs use hybrid recommendation algorithms. Evaluations of HRSs vary greatly;
half of the studies only evaluated the algorithm with various metrics, whereas others performed full-scale randomized controlled
trials or conducted in-the-wild studies to evaluate the impact of HRSs, thereby showing that the field is slowly maturing. On the
basis of our review, we derived five reporting guidelines that can serve as a reference frame for future HRS studies. HRS studies
should clarify who the target user is and to whom the recommendations apply, what is recommended and how the recommendations
are presented to the user, where the data set can be found, what algorithms were used to calculate the recommendations, and what
evaluation protocol was used.

Conclusions: There is significant opportunity for an HRS to inform and guide health actions. Through this review, we promote
the discussion of ways to augment HRS research by recommending a reference frame with five design guidelines.

(J Med Internet Res 2021;23(6):e18035) doi: 10.2196/18035
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Introduction

Research Goals
Current health challenges are often related to our modern way
of living. High blood pressure, high glucose levels, and physical
inactivity are all linked to a modern lifestyle characterized by
sedentary living, chronic stress, or a high intake of energy-dense
foods and recreational drugs [1]. Moreover, people usually make

poor decisions related to their health for distinct reasons, for
example, busy lifestyles, abundant options, and a lack of
knowledge [2]. Practically, all modern lifestyle health risks are
directly affected by people’s health decisions [3], such as an
unhealthy diet or physical inactivity, which can contribute up
to three-fourth of all health care costs in the United States [4].
Most risks can be minimized, prevented, or sometimes even
reversed with small lifestyle changes. Eating healthily,
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increasing daily activities, and knowing where to find validated
health information could lead to improved health status [5].

Health recommender systems (HRSs) offer the potential to
motivate and engage users to change their behavior [6] and
provide people with better choices and actionable knowledge
based on observed behavior [7-9]. The overall objective of the
HRS is to empower people to monitor and improve their health
through technology-assisted, personalized recommendations.
As one approach of modern health care is to involve patients
in the cocreation of their own health, rather than just leaving it
in the hands of medical experts [10], we limit the scope of this
paper to HRSs that focus on laypersons, for example, nonhealth
care professionals. These HRSs are different from clinical
decision support systems that provide recommendations for
health care professionals. However, laypersons also need to
understand the rationale of recommendations, as echoed by
many researchers and practitioners [11]. This paper also studies
the role of a graphical user interface. To guide this study, we
define our research questions (RQs) as follows:

RQ1: What are the main applications of the recent HRS, and
what do these HRSs recommend?

RQ2: Which recommender techniques are being used across
different HRSs?

RQ3: How are the HRSs evaluated, and are end users involved
in their evaluation?

RQ4: Is a graphical user interface designed, and how is it used
to communicate the recommended items to the user?

Recommender Systems and Techniques
Recommender techniques are traditionally divided into different
categories [12,13] and are discussed in several state-of-the-art
surveys [14]. Collaborative filtering is the most used and mature
technique that compares the actions of multiple users to generate
personalized suggestions. An example of this technique can
typically be found on e-commerce sites, such as “Customers
who bought this item also bought...” Content-based filtering is
another technique that recommends items that are similar to
other items preferred by the specific user. They rely on the
characteristics of the objects themselves and are likely to be
highly relevant to a user’s interests. This makes content-based
filtering especially valuable for application domains with large
libraries of a single type of content, such as MedlinePlus’
curated consumer health information [15]. Knowledge-based

filtering is another technique that incorporates knowledge by
logic inferences. This type of filtering uses explicit knowledge
about an item, user preferences, and other recommendation
criteria. However, knowledge acquisition can also be dynamic
and relies on user feedback. For example, a camera
recommender system might inquire users about their
preferences, fixed or changeable lenses, and budget and then
suggest a relevant camera. Hybrid recommender systems
combine multiple filtering techniques to increase the accuracy
of recommendation systems. For example, the companies you
may want to follow feature in LinkedIn uses both content and
collaborative filtering information [16]: collaborative filtering
information is included to determine whether a company is
similar to the ones a user already followed, whereas content
information ensures whether the industry or location matches
the interests of the user. Finally, recommender techniques are
often augmented with additional methods to incorporate
contextual information in the recommendation process [17],
including recommendations via contextual prefiltering,
contextual postfiltering, and contextual modeling [18].

HRSs for Laypersons
Ricci et al [12] define recommender systems as:

Recommender Systems (RSs) are software tools and
techniques providing suggestions for items to be of
use to a user [13,19,20]. The suggestions relate to
various decision-making processes, such as what
items to buy, what music to listen to, or what online
news to read.

In this paper, we analyze how recommender systems have been
used in health applications, with a focus on laypersons. Wiesner
and Pfeifer [21] broadly define an HRS as:

a specialization of an RS [recommender system] as
defined by Ricci et al [12]. In the context of an HRS,
a recommendable item of interest is a piece of
nonconfidential, scientifically proven or at least
generally accepted medical information.

Researchers have sought to consolidate the vast body of
literature on HRSs by publishing several surveys, literature
reviews, and state-of-the-art overviews. Table 1 provides an
overview of existing summative studies on HRSs that identify
existing research and shows the number of studies included, the
method used to analyze the studies, the scope of the paper, and
their contribution.
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Table 1. An overview of the existing health recommender system overview papers.

ContributionScopeMethodPapers, nReview

Identifying challenges (eg, cyber-attacks, difficult
integration, and data mining can cause ethical is-
sues) and opportunities (eg, integration with per-
sonal health data, gathering user preferences, and
increased consistency)

Provides an overview of the litera-
ture in 2013

Systematic review8Sezgin and Özkan
(2013) [22]

Providing a framework to incorporate domain
understanding, evaluation, and specific methodol-
ogy into the development process

Stresses the importance of the inter-

face and HCIa of an HRSb
Survey17Calero Valdez et al

(2016) [23]

Proposing a hybrid HRSProvides an overview of existing
recommender systems with more
focus on health care systems

Systematic review7Kamran and Javed
(2015) [24]

Presenting a novel proposal for the integration of
a recommender system into smart home care

Research empirical results and
practical implementations of HRSs

Systematic review22Afolabi et al
(2015) [25]

Identifying HRSs that do not have many mobile
health care apps

Identifies and analyzes HRSs avail-
able in mobile apps

Systematic review8Ferretto et al
(2017) [26]

Proposing a multidisciplinary taxonomy, including
integration with electronic health records and the
incorporation of health promotion theoretical
factors and behavior change theories

Identifies, categorizes, and analyzes
existing knowledge on the use of
HRSs for patient interventions

Systematic review19Hors-Fraile et al
2018 [27]

Identifying challenges subdivided into patient and
user challenges, recommender challenges, and
evaluation challenges

Discusses HRSs to find personal-
ized, complex medical interventions
or support users with preventive
health care measures

Survey24Schäfer et al
(2017) [28]

Identifying challenges of incorporating recom-
mender systems into CTHC. Proposing a future
research agenda for CTHC systems

Research limitations of current

CTHCc systems

Systematic review15Sadasivam et al
(2016) [29]

Outlining an evaluation approach and discussing
challenges and open issues

Introduces HRSs and explains their
usefulness to personal health record
systems

SurveyNot reportedWiesner and
Pfeifer (2014) [21]

Reflecting on theory development and applicationsExplores approaches to the develop-
ment of a recommendation system
for archives of public health mes-
sages

SurveyNot reportedCappella et al
(2015) [30]

aHCI: human-computer interaction.
bHRS: health recommender system.
cCTHC: computer-tailored health communication.

As can be seen in Table 1, the scope of the existing literature
varies greatly. For example, Ferretto et al [26] focused solely
on HRSs in mobile apps. A total of 3 review studies focused
specifically on the patient side of the HRS: (1) Calero Valdez
et al [23] analyzed the existing literature from a human-computer
interaction perspective and stressed the importance of a good
HRS graphical user interface; (2) Schäfer et al [28] focused on
tailoring recommendations to end users based on health context,
history, and goals; and (3) Hors-Fraile et al [27] focused on the
individual user by analyzing how HRSs can target behavior
change strategies. The most extensive study was conducted by
Sadasivam et al [29]. In their study, most HRSs used
knowledge-based recommender techniques, which might limit
individual relevance and the ability to adapt in real time.
However, they also reported that the HRS has the opportunity
to use a near-infinite number of variables, which enables
tailoring beyond designer-written rules based on data. The most
important challenges reported were the cold start [31] where
limited data are available at the start of the intervention, limited

sample size, adherence, and potential unintended consequences
[29]. Finally, we observed that these existing summative studies
were often restrictive in their final set of papers.

Our contributions to the community are four-fold. First, we
analyze a broader set of research studies to gain insights into
the current state of the art. We do not limit the included studies
to specific devices or patients in a clinical setting but focus on
laypersons in general. Second, through a comprehensive
analysis, we aim to identify the applications of recent HRS apps
and gain insights into actionable knowledge that HRSs can
provide to users (RQ1), to identify which recommender
techniques have been used successfully in the domain (RQ2),
how HRSs have been evaluated (RQ3), and the role of the user
interface in communicating recommendations to users (RQ4).
Third, based on our extensive literature review, we derive a
reference frame with five reporting guidelines for future
layperson HRS research. Finally, we collected and coded a
unique data set of 73 papers, which is publicly available in
Multimedia Appendix 1 [7-9,15,32-100] for other researchers.

J Med Internet Res 2021 | vol. 23 | iss. 6 | e18035 | p. 3https://www.jmir.org/2021/6/e18035
(page number not for citation purposes)

De Croon et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Methods

Search Strategy
This study was conducted according to the key steps required
for systematic reviews according to PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [101]. A literature search was conducted using the
ACM Digital Library (n=2023), IEEExplore (n=277), and
PubMed (n=93) databases. As mentioned earlier, in this
systematic review we focused solely on HRSs with a focus on
laypersons. However, many types of systems, algorithms, and
devices can be considered as a HRS. For example, push
notifications in a mobile health app or health tips prompted by
web services can also be considered as health-related
recommendations. To outline the scope, we limited the search
terms to include a recommender or recommendation, as reported
by the authors. The search keywords were as follows, using an
inclusive OR: (recommender OR recommendation systems OR
recommendation system) AND (health OR healthcare OR
patient OR patients).

In addition, a backward search was performed by examining
the bibliographies of the survey and review papers discussed
in the Introduction section and the reference list of included
studies to identify any additional studies. A forward search was
performed to search for articles that cited the work summarized
in Table 1.

Study Inclusion and Exclusion Criteria
As existing work did not include many studies (Table 1) and
focused on a specific medical domain or device, such as mobile
phones, this literature review used nonrestrictive inclusion
criteria. Studies that met all the following criteria were included
in the review: described an HRS whose primary focus was to
improve health (eg, food recommenders solely based on user
preferences [102] were not included); targeted laypersons (eg,
activity recommendations targeted on a proxy user such as a
coach [103] were not included); implemented the HRS (eg,
papers describing an HRS concept are not included); reported
an evaluation, either web-based or offline evaluation;
peer-reviewed and published papers; published in English.

Papers were excluded when one of the following was true: the
recommendations of HRSs were unclear; the full text was
unavailable; or a newer version was already included.

Finally, when multiple papers described the same HRS, only
the latest, relevant full paper was included.

Classification
To address our RQs, all included studies were coded for five
distinct coding categories.

Study Details
To contextualize new insights, the publication year and
publication venue were analyzed.

Recommended Items
HRSs are used across different health domains. To provide
details on what is recommended, all papers were coded

according to their respective health domains. To not limit the
scope of potential items, no predefined coding table was used.
Instead, all papers were initially coded by the first author. These
resulting recommendations were then clustered together in
collaboration with the coauthors into four categories, as shown
in Multimedia Appendix 2.

Recommender Techniques
This category encodes the recommender techniques that were
used: collaborative filtering [104], content-based filtering [105],
knowledge-based filtering [106], and their hybridizations [107].
Some studies did not specify any algorithmic details or
compared multiple techniques. Finally, when an HRS used
contextual information, it was coded whether they used pre- or
postfiltering or contextual modeling.

Evaluation Approach
This category encodes which evaluation protocols were used
to measure the effect of HRSs. We coded whether the HRSs
were evaluated through offline evaluations (no users involved),
surveys, heuristic feedback from expert users, controlled user
studies, deployments in the wild, and randomized controlled
trials (RCTs). We also coded sample size and study duration
and whether ethical approval was gathered and needed.

Interface and Transparency
Recommender systems are often perceived as a black box, as
the rationale for recommendations is often not explained to end
users. Recent research increasingly focuses on providing
transparency to the inner logic of the system [11]. We encoded
whether explanations are provided and, in this case, how such
transparency is supported in the user interface. Furthermore,
we also classified whether the user interface was designed for
a specific platform, categorized as mobile, web, or other.

Data Extraction, Intercoder Reliability, and Quality
Assessment
The required information for all included technologies and
studies was coded by the first author using a data extraction
form. Owing to the large variety of study designs, the included
studies were assessed for quality (detailed scores given in
Multimedia Appendix 1) using the tool by Hawker et al [108].
Using this tool, the abstract and title, introduction and aims,
method and data, sample size (if applicable), data analysis,
ethics and bias, results, transferability or generalizability, and
implications and usefulness were allocated a score between 1
and 4, with higher scoring studies indicating higher quality. A
random selection with 14% (10/73) of the papers was listed in
a spreadsheet and coded by a second researcher following the
defined coding categories and subcategories. The decisions
made by the second researcher were compared with the first.
With the recommended items (Multimedia Appendix 2), there
was only one small disagreement between physical activity and
leisure activity [32], but all other recommended items were
rated exactly the same; the recommender techniques had a
Cohen κ value of 0.71 (P<.001) and the evaluation approach
scored a Cohen κ value of 0.81 (P<.001). There was moderate
agreement (Cohen κ=0.568; P<.001) between the researchers
concerning the quality of the papers. The interfaces used were
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in perfect agreement. Finally, the coding data are available in
Multimedia Appendix 1.

Results

Study Details
The literature in three databases yielded 2340 studies, of which
only 23 were duplicates and 53 were full proceedings, leaving

2324 studies to be screened for eligibility. A total of 2161
studies were excluded upon title or abstract screening because
they were unrelated to health or targeted at medical professionals
or because the papers did not report an evaluation. Thus, the
remaining 163 full-text studies were assessed for eligibility.
After the removal of 90 studies that failed the inclusion criteria
or met the exclusion criteria, 73 published studies remained.
The search process is illustrated in Figure 1.

Figure 1. Flow diagram according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. EC: exclusion
criteria; IC: inclusion criteria.

All included papers were published in 2009 or later, following
an upward trend of increased popularity. The publication venues
of HRSs are diverse. Only the PervasiveHealth [33-35], RecSys
[36,37,109], and WI-IAT [38-40] conferences published 3
papers each that were included in this study. The Journal of
Medical Internet Research was the only journal that occurred
more frequently in our data set; 5 papers were published by
Journal of Medical Internet Research [41-45]. The papers were
first rated using Hawker tool [108]. Owing to a large number
of offline evaluations, we did not include the sample score to
enable a comparison between all included studies. The papers
received an average score of 24.32 (SD 4.55, max 32; data set

presented in Multimedia Appendix 1). Most studies scored very
poor on reporting ethics and potential biases, as illustrated in
Figure 2. However, there is an upward trend over the years in
more adequate reporting of ethical issues and potential biases.
The authors also limited themselves to their specific case studies
and did not make any recommendations for policy (last box plot
is presented in Figure 2). All 73 studies reported the use of
different data sets. Although all recommended items were health
related, only Asthana et al [46] explicitly mentioned using
electronic health record data. Only 14% (10/73) [7,47-55]
explicitly reported that they addressed the cold-start problem.
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Figure 2. Distribution of the quality assessment using Hawker tool.

Recommended Items

Overview
Most HRSs operated in different domains and thus
recommended different items. In this study, four nonmutually
exclusive categories of recommended items were identified:
lifestyle 33% (24/73), nutrition 36% (26/73), general health
information 32% (23/73), and specific health condition–related
recommendations 12% (9/73). The only significant trend we
found is the increasing popularity of nutrition advice.
Multimedia Appendix 2 shows the distribution of these
recommended items.

Lifestyle
Many HRSs, 33% (24/73) of the included studies, suggest
lifestyle-related items, but they differ greatly in their exact
recommendations. Physical activity is often recommended.
Physical activities are often personalized according to personal
interests [56] or the context of the user [35]. In addition to
physical activities, Kumar et al [32] recommend eating,
shopping, and socializing activities. One study analyzes the data
and measurements to be tracked for an individual and then
recommends the appropriate wearable technologies to stimulate
proactive health [46]. A total of 7 studies [7,9,42,53,57-59]
more directly try to convince users to alter their behavior by
recommending them to change, or alter their behavior: for
example, Rabbi et al [7] learn “a user’s physical activity and
dietary behavior and strategically suggests changes to those
behaviors for a healthier lifestyle.” In another example, both
Marlin et al [59] and Sadasivam et al [42] motivate users to stop
smoking by providing them with tailored messages, such as
“Keep in mind that cravings are temporary and will pass.”
Messages could reflect the theoretical determinants of quitting,
such as positive outcome expectations and self-efficacy
enhancing small goals [42].

Nutrition
The influence of food on health is also clear from the large
subset of HRSs dealing with nutrition recommendations. A
mere 36% (26/73) of the studies recommend nutrition-related
information, such as recipes [50], meal plans [36], restaurants
[60], or even help with choosing healthy items from a restaurant

menu [61]. Wayman and Madhvanath [37] provide automated,
personalized, and goal-driven dietary guidance to users based
on grocery receipt data. Trattner and Elsweiler [62] use
postfiltering to focus on healthy recipes only and extended them
with nutrition advice, whereas Ge et al [48] require users to first
enter their preferences for better recommendations. Moreover,
Gutiérrez et al [63] propose healthier alternatives through
augmented reality when the users are shopping. A total of 7
studies specifically recommend healthy recipes
[47,48,50,62,64-66]. Most HRSs consider the health condition
of the user, such as the DIETOS system [67]. Other systems
recommend recipes that are synthesized based on existing
recipes and recommend new recipes [64], assist parents in
making appropriate food for their toddlers [47], or help users
to choose allergy-safe recipes [65].

General Health Information
According to 32% (23/73) of the included studies, providing
access to trustworthy health care information is another common
objective. A total of 5 studies focused on personalized,
trustworthy information per se [15,55,68-70], whereas 5 others
focused on guiding users through health care forums [52,71-74].
In total, 3 studies [55,68,69] provided personalized access to
general health information. For example, Sanchez Bocanegra
et al [15] targeted health-related videos and augmented them
with trustworthy information from the United States National
Library of Medicine (MedlinePlus) [110]. A total of 3 studies
[52,72,74] related to health care forums focused on finding
relevant threads. Cho et al [72] built “an autonomous agent that
automatically responds to an unresolved user query by posting
an automated response containing links to threads discussing
similar medical problems.” However, 2 studies [71,73] helped
patients to find similar patients. Jiang and Yang [71] investigated
approaches for measuring user similarity in web-based health
social websites, and Lima-Medina et al [73] built a virtual
environment that facilitates contact among patients with
cardiovascular problems. Both studies aim to help users seek
informational and emotional support in a more efficient way.
A total of 4 studies [41,75-77] helped patients to find appropriate
doctors for a specific health problem, and 4 other studies
[51,78-80] focused on finding nearby hospitals. A total of 2
studies [78,79] simply focused on the clinical preferences of
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the patients, whereas Krishnan et al [111] “provide health care
recommendations that include Blood Donor recommendations
and Hospital Specialization.” Finally, Tabrizi et al [80]
considered patient satisfaction as the primary feature of
recommending hospitals to the user.

Specific Health Conditions
The last group of studies (9/73, 12%) focused on specific health
conditions. However, the recommended items vary significantly.
Torrent-Fontbona and Lopez Ibanez [81] have built a
knowledge-based recommender system to assist diabetes patients
in numerous cases, such as the estimated carbohydrate intake
and past and future physical activity. Pustozerov et al [43] try
to “reduce the carbohydrate content of the desired meal by
reducing the amount of carbohydrate-rich products or by

suggesting variants of products for replacement.” Li and Kong
[82] provided diabetes-related information, such as the need for
a low-sodium lunch, targeted on American Indians through a
mobile app. Other health conditions supported by recommender
systems include depression and anxiety [83], mental disorders
[45], and stress [34,54,84,85]. Both the mental disorder [45]
and the depression and anxiety [83] HRSs recommend mobile
apps. For example, the app MoveMe suggests exercises tailored
to the user’s mood. The HRS to alleviate stress includes
recommending books to read [54] and meditative audios [85].

Recommender Techniques

Overview
The recommender techniques used varied greatly. Table 2 shows
the distributions of these recommender techniques.

Table 2. Overview of the different recommender techniques used in the studies.

Total studies, n (%)StudyMain techniquea

3 (4)[59,69,76]Collaborative filtering

7 (10)[15,32,54,63,72,86,87]Content-based filtering

16 (22)[9,38,44,50,57,64,66,68,79,81,82,84,88-91]Knowledge-based filtering

32 (44)[7,29,34,36,37,39-41,43,46-48,53,55,56,61,65,67,69,70,73,74,77,78,80,85,92-96,111]Hybrid

4 (5)[33,35,58,97]Context-based techniques

3 (4)[45,83,98]Not specified

8 (11)[8,49,52,60,62,71,75,99]Comparison between tech-
niques

aThe papers are classified based on how the authors reported their techniques.

Recommender Techniques in Practice
The majority of HRSs (49/73, 67%) rely on knowledge-based
techniques, either directly (17/49, 35%) or in a hybrid approach
(32/49, 65%). Knowledge-based techniques are often used to
incorporate additional information of patients into the
recommendation process [112] and have been shown to improve
the quality of recommendations while alleviating other
drawbacks such as cold-start and sparsity issues [14]. Some
studies use straightforward approaches, such as if-else reasoning
based on domain knowledge [9,79,81,82,88,90,100]. Other
studies use more complex algorithms such as particle swarm
optimization [57], fuzzy logic [68], or reinforcement algorithms
[44,84].

In total, 32 studies reported using a combination of
recommender techniques and are classified as hybrid
recommender systems. Different knowledge-based techniques
are often combined. For example, Ali et al [56] used a
combination of rule-based reasoning, case-based reasoning, and
preference-based reasoning to recommend personalized physical
activities according to the user’s specific needs and personal
interests. Asthana et al [46] combined the knowledge of a
decision tree and demographic information to identify the health
conditions. When health conditions are known, the system
knows which measurements need to be monitored. A total of 7
studies used a content-based technique to recommend

educational content [15,72,87], activities [32,86], reading
materials [54], or nutritional advice [63].

Although collaborative filtering is a popular technique [113],
it is not used frequently in the HRS domain. Marlin et al [59]
used collaborative filtering to personalize future smoking
cessation messages based on explicit feedback on past messages.
This approach is used more often in combination with other
techniques. A total of 2 studies [38,92] combined content-based
techniques with collaborative filtering. Esteban et al [92], for
instance, switched between content-based and collaborative
approaches. The former approach is used for new physiotherapy
exercises and the latter, when a new patient is registered or when
previous recommendations to a patient are updated.

Context-Based Recommender Techniques
From an HRS perspective, context is described as an aggregate
of various information that describes the setting in which an
HRS is deployed, such as the location, the current activity, and
the available time of the user. A total of 5 studies use contextual
information to improve their recommendations but use a
different technique; a prefilter uses contextual information to
select or construct the most relevant data for generating
recommendations. For example, in Narducci et al [75], the set
of potentially similar patients was restricted to consultation
requests in a specific medical area. Rist et al [33] applied a
rule-based contextual prefiltering approach [114] to filter out
inadequate recommendations, for example, “if it is dark outside,
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all outdoor activities, such as ‘take a walk,’ are filtered out”
[33] before they are fed to the recommendation algorithm.
However, a postfilter removes the recommended items after
they are generated, such as filtering outdoor activities while it
is raining. Casino et al [97] used a postfiltering technique by
running the recommended items through a real-time constraint
checker. Finally, contextual modeling, which was used by 2
studies [35,58], uses contextual information directly in the
recommendation function as an explicit predictor of a user’s
rating for an item [114].

Location, agenda, and weather are examples of contextual
information used by Lin et al [35] to promote the adoption of
a healthy and active lifestyle. Cerón-Rios et al [58] used a
decision tree to analyze user needs, health information, interests,
time, location, and lifestyle to promote healthy habits. Casino
et al [97] gathered contextual information through smart city
sensor data to recommend healthier routes. Similarly, contextual
information was acquired by Rist et al [33] using sensors
embedded in the user’s environment.

Comparisons
A total of 8 papers compared different recommender techniques
to find the most optimal algorithm for a specific data set, end
users, domain, and goal. Halder et al [52] used two well-known
health forum data sets (PatientsLikeMe [115] and HealthBoards
[116]) to compare 7 recommender techniques (among
collaborative filtering and content-based filtering) and found
that a hybrid approach scored best [52]. Another example is the
study by Narducci et al [75], who compared four
recommendation algorithms: cosine similarity as a baseline,
collaborative filtering, their own HealthNet algorithm, and a
hybrid of HealthNet and cosine similarity. They concluded that
a prefiltering technique for similar patients in a specific medical
area can drastically improve the recommendation accuracy [75].
The average and SD of the resulting ratings of the two
collaborative techniques are compared with random
recommendations by Li et al [60]. They show that a hybrid
approach of a collaborative filter augmented with the calculated
health level of the user performs better. In their nutrition-based
meal recommender system, Yang et al [49] used item-wise and
pairwise image comparisons in a two-step process. In
conclusion, the 8 studies showed that recommendations can be
improved when the benefits of multiple recommender techniques
are combined in a hybrid solution [60] or contextual filters are
applied [75].

Evaluation Approach

Overview
HRSs can be evaluated in multiple ways. In this study, we found
two categories of HRS evaluations: (1) offline evaluations that
use computational approaches to evaluate the HRS and (2)
evaluations in which an end user is involved. Some studies used
both, as shown in Multimedia Appendix 3.

Offline Evaluations
Of the total studies, 47% (34/73) do not involve users directly
in their method of evaluation. The evaluation metrics also vary
greatly, as many distinct metrics are reported in the included

papers (Multimedia Appendix 3). Precision 53% (18/34),
accuracy 38% (13/34), performance 35% (12/34), and recall
32% (11/34) were the most commonly used offline evaluation
metrics. Recall has been used significantly more in recent
papers, whereas accuracy also follows an upward trend.
Moreover, performance was defined differently across studies.
Torrent-Fontbona and Lopez Ibanez [81] compared the “amount
of time in the glycaemic target range by reducing the time below
the target” as performance. Cho et al [72] compared the
precision and recall to report the performance. Clarke et al [84]
calculated their own reward function to compare different
approaches, and Lin et al [35] measured system performance
as the number of messages sent in their in the wild study.
Finally, Marlin et al [59] tested the predictive performance using
a triple cross-validation procedure.

Other popular offline evaluation metrics are accuracy-related
measurements, such as mean absolute (percentage) error, 18%
(6/34); normalized discounted cumulative gain (nDCG), 18%
(6/34); F1 score, 15% (5/34); and root mean square error, 15%
(5/34). The other metrics were measured inconsistently. For
example, Casino et al [97] reported that they measure robustness
but do not outline what they measure as robustness. However,
they measured the mean absolute error. Torrent-Fontbona and
Lopez Ibanez [81] defined robustness as the capability of the
system to handle missing values. Effectiveness is also measured
with different parameters, such as its ability to take the right
classification decisions [75] or in terms of key opinion leaders’
identification [41]. Finally, Li and Zaman [68] measured trust
with a proxy: “evaluate the trustworthiness of a particular user
in a health care social network based on factors such as role and
reputation of the user in the social community” [68].

User Evaluations

Overview

Of the total papers, 53% (39/73) included participants in their
HRS evaluation, with an average sample size of 59 (SD 84)
participants (excluding the outlier of 8057 participants, as
recruited in the study by Cheung et al [83]). On average, studies
ran for more than 2 months (68, SD 56 days) and included all
age ranges. There is a trend of increasing sample size and study
duration over the years. However, only 17 studies reported the
study duration; therefore, these trends were not significant.
Surveys (12/39, 31%), user studies (10/39, 26%), and
deployments in the wild (10/39, 26%) were the most used user
evaluations. Only 6 studies used an RCT to evaluate their HRS.
Finally, although all the included studies focused on HRSs and
were dealing with sensitive data, only 12% (9/73)
[9,34,42-45,73,83,95] reported ethical approval by a review
board.

Surveys

No universal survey was found, as all the studies deployed a
distinct survey. Ge et al [48] used the system usability scale and
the framework of Knijnenburg et al [117] to explain the user
experience of recommender systems. Esteban et al [95] designed
their own survey with 10 questions to inquire about user
experience. Cerón-Rios [58] relied on the ISO/IEC (International
Organization of Standardization/International Electrotechnical
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Commission) 25000 standard to select 7 usability metrics to
evaluate usability. Although most studies did not explicitly
report the surveys used, user experience was a popular
evaluation metric, as in the study by Wang et al [69]. Other
metrics range from measuring user satisfaction [69,99] and
perceived prediction accuracy [59] (with 4 self-composed
questions). Nurbakova et al [98] combined data analytics with
surveys to map their participants’ psychological background,
including orientations to happiness measured using the Peterson
scale [118], personality traits using the Mini-International
Personality Item Pool [119], and Fear of Missing Out based on
the Przybylski scale [120].

Single-Session Evaluations (User Studies)

A total of 10 studies recruited users and asked them to perform
certain tasks in a single session. Yang et al [49] performed a
60-person user study to assess its feasibility and effectiveness.
Each participant was asked to rate meal recommendations
relative to those made using a traditional survey-based approach.
In a study by Gutiérrez et al [63], 15 users were asked to use
the health augmented reality assistant and measure the qualities
of the recommender system, users’ behavioral intentions,
perceived usefulness, and perceived ease of use. Jiang and Xu
[77] performed 30 consultations and invited 10 evaluators
majoring in medicine and information systems to obtain an
average rating score and nDCG. Radha et al [8] used
comparative questions to evaluate the feasibility. Moreover,
Cheng et al [89] used 2 user studies to rank two degrees of
compromise (DOC). A low DOC assigns more weight to the
algorithm, and a high DOC assigns more weight to the user’s
health perspective. Recommendations with a lower DOC are
more efficient for the user’s health, but recommendations with
a high DOC could convince users to believe that the
recommended action is worth doing. Other approaches used are
structured interviews [58], ranking [86,89], asking for
unstructured feedback [40,88], and focus group discussions
[87]. Finally, 3 studies [15,75,90] evaluated their system through
a heuristic evaluation with expert users.

In the Wild

Only 2 studies tested their HRS into the wild recruited patients
(people with a diagnosed health condition) in their evaluation.
Yom-Tov et al [44] provided 27 sedentary patients with type 2
diabetes with a smartphone-based pedometer and a personal
plan for physical activity. They assessed the effectiveness by
calculating the amount of activity that the patient performed
after the last message was sent. Lima-Medina et al [73]
interviewed 45 patients with cardiovascular problems after a
6-month study period to measure (1) social management results,
(2) health care plan results, and (3) recommendation results.
Rist et al [33] performed an in-situ evaluation in an apartment
of an older couple and used the data logs to describe the usage
but augmented the data with a structured interview.

Yang et al [49] conducted a field study of 227 anonymous users
that consisted of a training phase and a testing phase to assess
the prediction accuracy. Buhl et al [99] created three user groups
according to the recommender technique used and analyzed log
data to compare the response rate, open email rate, and
consecutive log-in rate. Similarly, Huang et al [76] compared

the ratio of recommended doctors chosen and reserved by
patients with the recommended doctors. Lin et al [35] asked 6
participants to use their HRSs for 5 weeks, measured system
performance, studied user feedback to the recommendations,
and concluded with an open-user interview. Finally, Ali et al
[56] asked 10 volunteers to use their weight management
systems for a couple of weeks. However, they do not focus on
user-centric evaluation, as “only a prototype of the [...] platform
is implemented.”

Rabbi et al [7] followed a single case with multiple baseline
designs [121]. Single-case experiments achieve sufficient
statistical power with a large number of repeated samples from
a single individual. Moreover, Rabbi et al [7] argued that HRSs
suit this requirement “since enough repeated samples can be
collected with automated sensing or daily manual logging
[121].” Participants were exposed to 2, 3, or 4 weeks of the
control condition. The study ran for 7-9 weeks to compensate
for the novelty effects. Food and exercise log data were used
to measure changes in food calorie intake and calorie loss during
exercise.

Randomized Controlled Trials

Only 6 studies followed an RCT approach. In the RCT by
Bidargaddi et al [45], a large group of patients (n=192) and
control group (n=195) were asked to use a web-based
recommendation service for 4 weeks that recommended mental
health and well-being mobile apps. Changes in well-being were
measured using the Mental Health Continuum-Short Form [122].
The RCT by Sadasivam et al [42] enrolled 120 current smokers
(n=74) and control group (n=46) as a follow-up to a previous
RCT [123] that evaluated their portal to specifically evaluate
the HRS algorithm. Message ratings were compared between
the intervention and control groups.

Cheung et al [83] measured app loyalty through the number of
weekly app sessions over a period of 16 weeks with 8057 users.
In the study by Paredes et al [34], 120 participants had to use
the HRS for at least 26 days. Self-reported stress assessment
was performed before and after the intervention. Agapito et al
[67] used an RCT with 40 participants to validate the sensitivity
(true positive rate/[true positive rate+false negative rate]) and
specificity (true negative rate/[true negative rate+false positive
rate]) of the DIETOS HRS. Finally, Luo et al [93] performed
a small clinical trial for more than 3 months (but did not report
the number of participants). Their primary outcome measures
included two standard clinical blood tests: fasting blood glucose
and laboratory-measured glycated hemoglobin, before and after
the intervention.

Interface

Overview

Only 47% (34/73) of the studies reported implementing a
graphical user interface to communicate the recommended health
items to the user. As illustrated in Table 3, 53% (18/34) use a
mobile interface, usually through a mobile (web) app, whereas
36% (14/34) use a web interface to show the recommended
items. Rist et al [33] built a kiosk into older adults’ homes, as
illustrated in Figure 3. Gutiérrez et al [63] used Microsoft
HoloLens to project healthy food alternatives in augmented
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reality surrounding a physical object that the user holds, as shown in Figure 4.

Table 3. Distribution of the interfaces used among the different health recommender systems (n=34).

Total studies, n (%)StudyInterface

18 (53)[7,34,35,40,44,48,56,58,66,69,77,78,82-84,86,88,97]Mobile

14 (41)[9,15,37,41,45,49,61,70,73,75,79,85,90,95]Web

1 (3)[33]Kiosk

1 (3)[63]HoloLens

Figure 3. Rist et al installed a kiosk in the home of older adults as a direct interface to their health recommender system.

Figure 4. An example of the recommended healthy alternatives by Gutiérrez et al.

Visualization

A total of 7 studies [33,34,37,63,79,88,97] or approximately
one-fourth of the studies with an interface included

visualizations. However, the approach used was different for
all studies, as shown in Table 4. Showing stars to show the
relevance of a recommended item are only used by Casino et
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al [97] and Gutiérrez et al [63]. Wayman and Madhvanath [37]
also used bar charts to visualize the progress toward a health
goal. They visualize the healthy proportions, that is, what the
user should eat. Somewhat more complex visualizations are

used by Ho and Chen [88] who visualized the user’s ECG zones.
Paredes et al [34] presented an emotion graph as an input screen.
Rist et al [33] visualized an example of how to perform the
recommended activity.

Table 4. Distribution of the visualizations used among the different health recommender systems (n=7).

Total studies, n (%)StudyVisualization technique

2 (29)Wayman and Madhvanath [37] and Gutiérrez et al [63]Bar charts

1 (14)Ho and Chen [88]Heatmap

1 (14)Paredes et al [34]Emotion graph

1 (14)Rist et al [33]Visual example of action

1 (14)Avila-Vazquez et al [79]Map

1 (14)Casino et al [97]Star rating

Transparency

In the study by Lage et al [87], participants expressed that:

they would like to have more control over
recommendations received. In that sense, they
suggested more information regarding the reasons
why the recommendations are generated and more
options to assess them.

A total of 7 studies [7,37,41,45,63,66,82] explained the
reasoning behind recommendations to end users at the user
interface. Gutiérrez et al [63] provided recommendations for
healthier food products and mentioned that the items (Figure
4) are based on the users’ profile. Ueta et al [66] explained the
relationship between the recommended dishes and a person’s
health conditions. For example, a person with acne can see the
following text: “15 dishes that contained Pantothenic acid
thought to be effective in acne a lot became a hit” [66]. Li and
Kong [82] showed personalized recommended health actions
in a message center. Color codes are used to differentiate
between reminders, missed warnings, and recommendations.

Rabbi et al [7] showed tailored motivational messages to explain
why activities are recommended. For example, when the activity
walk near East Ave is recommended, the app shows the
additional message:

1082 walks in 240 days, 20 mins of walk everyday.
Each walk nearly 4 min. Let us get 20 mins or more
walk here today [ 7 ]

Wayman and Madhvanath [37] first visualized the user’s
personal nutrition profile and used the lower part of the interface
to explain why the item was recommended. They provided an
illustrative example of spaghetti squash. The explanation shows
that:

This product is high in Dietary_fiber, which you could
consume more of. Try to get 3 servings a week [ 37 ]

Guo et al [41] recommended doctors and showed a horizontal
bar chart to visualize the user’s values compared with the
average values. Finally, Bidargaddi et al [45] visualized how
the recommended app overlaps with the goal set by the users,
as illustrated in Figure 5.
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Figure 5. A screenshot from the health recommender system of Bidargaddi et al. Note the blue tags illustrating how each recommended app matches
the users’ goals.

Discussion

Principal Findings
HRSs cover a multitude of subdomains, recommended items,
implementation techniques, evaluation designs, and means of
communicating the recommended items to the target user. In
this systematic review, we clustered the recommended items
into four groups: lifestyle, nutrition, general health care
information, and specific health conditions. There is a clear
trend toward HRSs that provide well-being recommendations
but do not directly intervene in the user’s medical status. For
example, almost 70% (50/73; lifestyle and nutrition) focused
on no strict medical recommendations. In the lifestyle group,
physical activities (10/24, 42%) and advice on how to potentially
change behavior (7/24, 29%) were recommended most often.
In the nutrition group, these recommendations focused on
nutritional advice (8/26, 31%), diets (7/26, 27%), and recipes
(7/26, 27%). A similar trend was observed in the health care
information group, where HRSs focused on guiding users to
the appropriate environments such as hospitals (5/23, 22%) and
medical professionals (4/23, 17%) or on helping users find
qualitative information (5/23, 22%) on validated sources or
from experiences by similar users and patients on health care
forums (3/23, 13%). Thus, they only provide general information
and do not intervene by recommending, for example, changing
medication. Finally, when HRSs targeted specific health
conditions, they recommended nonintervening actions, such as
meditation sessions [84] or books to read [54].

Although collaborative filtering is commonly the most used
technique in other domains [124], here only 3 included studies
reported the use of a collaborative filtering approach. Moreover,
43% (32/73) of the studies applied a hybrid approach, showing
that HRS data sets might need special attention, which might
also be the reason why all 73 studies used distinct data sets. In
addition, the HRS evaluations varied greatly and were divided
over evaluations where the end user was involved and
evaluations that did not evolve users (offline evaluations). Only
47% (34/73) of the studies reported implementing a user
interface to communicate recommendations to the user, despite
the need to show the rationale of recommendations, as echoed
by many researchers and practitioners [11]. Moreover, only
15% (7/47) included a (basic) visualization.

Unfortunately, this general lack of agreement on how to report
HRSs might introduce researcher bias, as a researcher is
currently completely unconstrained in defining what and how
to measure the added value of an HRS. Therefore, further debate
in the health recommender community is needed on how to
define and measure the impact of HRSs. On the basis of our
review and contribution to this discussion, we put forward a set
of essential information that researchers should report in their
studies.

Considerations for Practice
The previously discussed results have direct implications in
practice and provide suggestions for future research. Figure 6
shows a reference frame of these requirements that can be used
in future studies as a quality assessment tool.
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Figure 6. A reference frame to report health recommender system studies. On the basis of the results of this study, we suggest that it should be clear
what and how items are recommended (A), who the target user is (B), which data are used (C), and which recommender techniques are applied (D).
Finally, the evaluation design should be reported in detail (E).

Define the Target User
As shown in this review, HRSs are used in a plethora of
subdomains and each domain has its own experts. For example,
in nutrition, the expert is most likely a dietician. However, the
user of an HRS is usually a layperson without the knowledge
of these domain experts, who often have different viewing
preferences [125]. Furthermore, each user is unique. All
individuals have idiosyncratic reasons for why they act, think,
behave, and feel in a certain way at a specific stage of their life
[126]. Not everybody is motivated by the same elements.
Therefore, it is important to know the target user of the HRS.
What is their previous knowledge, what are their goals, and
what motivates them to act on a recommended item?

Show What Is Recommended (and How)
Researchers have become aware that accuracy is not sufficient
to increase the effectiveness of a recommender system [127].
In recent years, research on human factors has gained attention.
For example, He et al [11] surveyed 24 existing interactive
recommender systems and compared their transparency,
justification, controllability, and diversity. However, none of
these 24 papers discussed HRSs. This indicates the gap between
HRSs and recommender systems in other fields. Human factors
have gained interest in the recommender community by
“combining interactive visualization techniques with
recommendation techniques to support transparency and
controllability of the recommendation process” [11]. However,
in this study, only 10% (7/73) explained the rationale of
recommendations and only 10% (7/73) included a visualization
to communicate the recommendations to the user. We do not
argue that all HRSs should include a visualization or an
explanation. However, researchers should pay attention to the
delivery of these recommendations. Users need to understand,
believe, and trust the recommended items before they can act
on it.

To compare and assess HRSs, researchers should unambiguously
report what the HRS is recommending. After all, typical
recommender systems act like a black box, that is, they show

suggestions without explaining the provenance of these
recommendations [11]. Although this approach is suitable for
typical e-commerce applications that involve little risk,
transparency is a core requirement in higher risk application
domains such as health [128]. Users need to understand why a
recommendation is made, to assess its value and importance
[12]. Moreover, health information can be cumbersome and not
always easy to understand or situate within a specific health
condition [129]. Users need to know whether the recommended
item or action is based on a trusted source, tailored to their
needs, and actionable [130].

Report the Data Set Used
All 73 studies used a distinct data set. Furthermore, some studies
combine data from multiple databases, making it even more
difficult to judge the quality of the data [35]. Nonetheless, most
studies use self-generated data sets. This makes it difficult to
compare and externally validate HRSs. Therefore, we argued
that researchers should clarify the data used and potentially
share whether these data are publicly available. However, in
health data are often highly privacy sensitive and cannot be
shared among researchers.

Outline the Recommender Techniques
The results show that there is no panacea for which
recommender technique to use. The included studies differ from
logic filters to traditional recommender techniques, such as
collaborative filtering and content-based filtering to hybrid
solutions and self-developed algorithms. However, with 44%
(32/73), there is a strong trend toward the use of hybrid
recommender techniques. The low number of collaborative filter
techniques might be related to the fact that the evaluation sample
sizes were also relatively low. Unfortunately, some studies have
not fully disclosed the techniques used and only reported on the
main algorithm used. It is remarkable that studies published in
high-impact journals, such as studies by Bidargaddi et al [45]
and Cheung et al [83], did not provide information on the
recommender technique used. Nonetheless, disclosing the
recommender technique allows other researchers not only to
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build on empirically tested technologies but also to verify
whether key variables are included [29]. User data and behavior
data can be identified to augment theory-based studies [29].
Researchers should prove that the algorithm is capable of
recommending valid and trustworthy recommendations to the
user based on their available data set.

Elaborate on the Evaluation Protocols
HRSs can be evaluated using different evaluation protocols.
However, the protocol should be outlined mainly by the research
goals of the authors. On the basis of the papers included in this
study, we differentiate between the two approaches. In the first
approach, the authors aim to influence their users’ health, for
example, by providing personalized diabetes guidelines [81] or
prevention exercises for users with low back pain [95].
Therefore, the end user should always be involved in both the
design and evaluation processes. However, only 8% (6/73)
performed an RCT and 14% (10/73) deployed their HRS in the
wild. This lack of user involvement has been noted previously
by researchers and has been identified as a major challenge in
the field [27,28]. Nonetheless, in other domains, such as job
recommenders [131] or agriculture [132], user-centered design
has been proposed as an important methodology in the design
and development of tools used by end users, with the purpose
of gaining trust and promoting technology acceptance, thereby
increasing adoption with end users. Therefore, we recommend
that researchers evaluate their HRSs with actual users. A
potential model for a user-centric approach to recommender
system evaluation is the user-centric framework proposed by
Knijnenburg et al [117].

Research protocols need to be elaborated and approved by an
ethical review board to prevent any impact on users. Authors
should report how they informed their users and how they
safeguarded the privacy of the users. This is in line with the
modern journal and conference guidelines. For example,
editorial policies of the Journal of Medical Internet Research
state that “when reporting experiments on human subjects,
authors should indicate IRB (Institutional Rese[a]rch Board,
also known as REB) approval/exemption and whether the
procedures followed were in accordance with the ethical
standards of the responsible committee on human
experimentation” [133]. However, only 12% (9/73) reported
their approval by an ethical review board. Acquiring review
board approval will help the field mature and transition from
small incremental studies to larger studies with representative
users to make more reliable and valid findings.

In the second approach, the authors aim to design a better
algorithm, where better is again defined by the authors. For
example, the algorithm might perform faster, be more accurate,
and be more efficient in computing power. Although the F1

score, the mean absolute error, and nDCG are well defined and
known within the recommender domain, other parameters are
more ambiguous. For example, the performance or effectiveness
can be assessed using different measurements. However, a health
parameter can be monitored, such as the duration that a user

remains within healthy ranges [81]. Furthermore, it could be a
predictive parameter, such as an improved precision and recall
as a proxy for performance [72]. Unfortunately, this difference
makes it difficult to compare health recommendation algorithms.
Furthermore, this inconsistency in measurement variables makes
it infeasible to report in this systematic review which
recommender techniques to use. Therefore, we argue that HRS
algorithms should always be evaluated for other researchers to
validate the results, if needed.

Limitations
This study has some limitations that affect its contribution.
Although an extensive scope search was conducted in scientific
databases and most relevant health care informatic journals,
some relevant literature in other domains might have been
excluded. The keywords used in the search string could have
impacted the results. First, we did not include domain-specific
constructs of health, such as asthma, pregnancy, and iron
deficiency. Many studies may implicitly report healthy
computer-generated recommendations when they research the
impact of a new intervention. In these studies, however, building
an HRS is often not their goal and, therefore, was excluded from
this study. Second, we searched for papers that reported studying
an HRS; nonincluded studies might have built an HRS but did
not report it as such. Considering our RQs, we deemed it
important that authors explicitly reported their work as a
recommender system. To conclude, in this study, we provide a
large cross-domain overview of health recommender techniques
targeted to laypersons and deliver a set of recommendations
that could help the field of HRS mature.

Conclusions
This study presents a comprehensive report on the use of HRS
across domains. We have discussed the different subdomains
HRS applied in, the different recommender techniques used,
the different manners in which they are evaluated, and finally,
how they present the recommendations to the user. On the basis
of this analysis, we have provided research guidelines toward
a consistent reporting of HRSs. We found that although most
applications are intended to improve users’ well-being, there is
a significant opportunity for HRSs to inform and guide users’
health actions. Although many of the studies present a lack of
a user-centered evaluation approach, some studies performed
full-scale RCT evaluations or elaborated in the wild studies to
validate their HRS, showing the field of HRS is slowly maturing.
On the basis of this study, we argue that it should always be
clear what the HRS is recommending and to whom these
recommendations are for. Graphical assets should be added to
show how recommendations are presented to users. Authors
should also report which data sets and algorithms were used to
calculate the recommendations. Finally, detailed evaluation
protocols should be reported.

We conclude that the results motivate the creation of richer
applications in future design and development of HRSs. The
field is maturing, and interesting opportunities are being created
to inform and guide health actions.
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