Original Paper

A COVID-19 Pandemic Artificial Intelligence–Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study

Cheng-Sheng Yu^{1,2,3,4*}, PhD; Shy-Shin Chang^{1,2*}, MD, PhD; Tzu-Hao Chang^{3,5}, PhD; Jenny L Wu^{1,3}, BSc; Yu-Jiun Lin^{1,2}, MD; Hsiung-Fei Chien⁶, MD, PhD; Ray-Jade Chen^{4,7,8}, MD, MSc

¹Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

²Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan

³Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan

⁴Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

⁸Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan

*these authors contributed equally

Corresponding Author:

Ray-Jade Chen, MD, MSc Department of Surgery School of Medicine, College of Medicine Taipei Medical University No.250, Wuxing St., Taipei, 11031 Taiwan Phone: 886 227372181 ext 3966 Email: rayjchen@tmu.edu.tw

Related Article:

This is a corrected version. See correction statement in: <u>https://www.jmir.org/2021/7/e31085/</u>

Abstract

Background: More than 79.2 million confirmed COVID-19 cases and 1.7 million deaths were caused by SARS-CoV-2; the disease was named COVID-19 by the World Health Organization. Control of the COVID-19 epidemic has become a crucial issue around the globe, but there are limited studies that investigate the global trend of the COVID-19 pandemic together with each country's policy measures.

Objective: We aimed to develop an online artificial intelligence (AI) system to analyze the dynamic trend of the COVID-19 pandemic, facilitate forecasting and predictive modeling, and produce a heat map visualization of policy measures in 171 countries.

Methods: The COVID-19 Pandemic AI System (CPAIS) integrated two data sets: the data set from the Oxford COVID-19 Government Response Tracker from the Blavatnik School of Government, which is maintained by the University of Oxford, and the data set from the COVID-19 Data Repository, which was established by the Johns Hopkins University Center for Systems Science and Engineering. This study utilized four statistical and deep learning techniques for forecasting: autoregressive integrated moving average (ARIMA), feedforward neural network (FNN), multilayer perceptron (MLP) neural network, and long short-term memory (LSTM). With regard to 1-year records (ie, whole time series data), records from the last 14 days served as the validation set to evaluate the performance of the forecast, whereas earlier records served as the training set.

Results: A total of 171 countries that featured in both databases were included in the online system. The CPAIS was developed to explore variations, trends, and forecasts related to the COVID-19 pandemic across several counties. For instance, the number of confirmed monthly cases in the United States reached a local peak in July 2020 and another peak of 6,368,591 in December 2020. A dynamic heat map with policy measures depicts changes in COVID-19 measures for each country. A total of 19 measures

⁵Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan

⁶Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital and School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

⁷Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

were embedded within the three sections presented on the website, and only 4 of the 19 measures were continuous measures related to financial support or investment. Deep learning models were used to enable COVID-19 forecasting; the performances of ARIMA, FNN, and the MLP neural network were not stable because their forecast accuracy was only better than LSTM for a few countries. LSTM demonstrated the best forecast accuracy for Canada, as the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) were 2272.551, 1501.248, and 0.2723075, respectively. ARIMA (RMSE=317.53169; MAPE=0.4641688) and FNN (RMSE=181.29894; MAPE=0.2708482) demonstrated better performance for South Korea.

Conclusions: The CPAIS collects and summarizes information about the COVID-19 pandemic and offers data visualization and deep learning–based prediction. It might be a useful reference for predicting a serious outbreak or epidemic. Moreover, the system undergoes daily updates and includes the latest information on vaccination, which may change the dynamics of the pandemic.

(J Med Internet Res 2021;23(5):e27806) doi: 10.2196/27806

KEYWORDS

COVID-19; artificial intelligence; time series; deep learning; machine learning; statistical analysis; pandemic; data visualization

Introduction

In December 2019, the first cases of a new respiratory disease caused by a novel coronavirus were reported in Wuhan, Hubei province, China [1]. The novel coronavirus was subsequently identified and named SARS-CoV-2, and the disease caused by SARS-CoV-2 was named COVID-19 by the World Health Organization (WHO) [2,3]. Since the time the first cases were reported, many confirmed cases have been reported in various other countries. By March 11, 2020, more than 118,000 confirmed cases and 4291 deaths had been reported across 114 countries. The WHO declared the COVID-19 outbreak a pandemic [4], which continues to worsen. As of December 27, 2020, there were more than 79.2 million confirmed cases and 1.7 million deaths [5]. COVID-19 management has emerged as an urgent global issue. Many studies have investigated the factors that contribute to the spread of COVID-19. Demographic, geographic, and economic factors have influenced the spread of the disease. However, social factors, especially governmental response to the pandemic, have significantly influenced disease severity within certain countries [6-11]. Some countries have shown that implementing rigorous public health care management strategies can successfully control infection spread and maintain normal societal functioning [11].

The rapid development of artificial intelligence (AI) in the health care field offers new opportunities to medical researchers. There are many studies that employ AI techniques in disease predictions, such as Yu et al, who have established an online machine learning health assessment system for metabolic syndrome and chronic kidney diseases [12]. Lin et al utilized multicenter data to develop an end-stage liver disease mortality prediction scoring system [13]. Ayyoubzadeh et al analyzed the rate of COVID-19 incidence in Iran using Google Trends data and deep learning methods [14]. Yeung et al combined several online COVID-19 data to train and evaluate five non-time series machine learning models in predicting confirmed infection growth [15]. These studies have shown that AI is suitable for evaluating disease trends and can provide governments with information that can be used to prevent outspread. There are abundant research findings on COVID-19-related AI prediction

and the utilization of mobile sensor data with cell broadcast to identify and manage potential contacts [14,16-20].

However, most of these studies have been conducted in a specific region or single country. There is public health consensus that vaccination is an effective prevention strategy. However, with regard to its efficiency and medical expenditure, long-term follow-up investigation is needed to evaluate the clinical effects of vaccines that have not undergone the standard approval process and tests of their mid- and long-term side effects on different groups [21]. Moreover, different studies have focused on different time frames in pandemic trend prediction. They have drawn the same conclusion: there is a high possibility that COVID-19 will remain a common illness or become endemic in the future, and we must learn to coexist with it. Many factors influence how the pandemic will progress (eg, herd immunity), and governmental and individual responses vary widely across nations [22,23]. Successful epidemic prevention and control measures remain the most efficient solution for public health problems. However, there is limited literature on the relationship between governmental responses and the severity of the domestic spread of COVID-19 [24,25].

Therefore, we constructed an online AI system that contains worldwide COVID-19–related data, each country's governmental responses to the COVID-19 pandemic, and each country's population data [26]. The COVID-19 Pandemic AI System (CPAIS) can be used to analyze the dynamic trend of the COVID-19 pandemic, facilitate forecasting and predictive modeling, and produce heat map visualization of policy measures in different countries.

Methods

Data Acquisition and System

The CPAIS integrated two data sets: the data set from the Oxford COVID-19 Government Response Tracker (OxCGRT) from the Blavatnik School of Government, which is maintained by the University of Oxford, and the data set from the COVID-19 Data Repository, which was established by Johns Hopkins University Center for Systems Science and Engineering (CSSE). The COVID-19 Data Repository also contains each country's population data, which are obtained from the United Nations

World Population Prospects [27-31]. A total of 171 countries that featured in the databases were included in the system.

The CPAIS was placed on a sever and embedded with time series deep learning models to provide forecasting analyses by the statistical program R, version 3.6.3 (The R Foundation). We used the React.js, version 16.14.0, framework; the styling language Sass (Syntactically Awesome Style Sheets), version 4; and the programming language JavaScript ES6 for front-end implementation. As for back-end implementation, we used Java 8; Spring Boot, version 2.0.2 (VMware, Inc); and R as the programming languages, and we used the MySQL (Structured Query Language), version 5.7.21, database as the storage system. In addition, this AI-based system has been programmed to update itself by auto-retrieving information from all data sets each morning at 9 AM (GMT + 8). The auto-retrieval can be summarized in the following three steps: (1) setting the crawler to fetch the data from the source databases, (2) integrating the updated data into our own MySQL database, and (3) conducting statistical analysis using the database-stored procedure.

The COVID-19 Data Repository established by Johns Hopkins University CSSE contains three categories of data concerning COVID-19 incidence-confirmed cases, recovered cases, and number of deaths-with country geolocation retrieved from 192 affected countries since January 21, 2020. For most of the countries, country-level data concerning the numbers of reported cases are available. Province- and city-level data concerning reported cases are available for some countries. To depict the COVID-19 pandemic comprehensively, we archived country-level data. The number of reported cases was updated daily using data retrieved from multiple online sources. The number of cases was retrieved from the WHO and the regional and local health departments of the affected countries, including their centers for disease control and prevention. All data were shared freely through GitHub.

OxCGRT has been collecting and documenting governmental responses to the COVID-19 pandemic based on several parameters since January 1, 2020. The data set includes 183 countries and 20 items (19 indicators and 1 free response) that characterize governmental responses. There are three types of items: (1) ordinal scale for severity or intensity, (2) numeric scale for specific numbers, and (3) text for other information types. These items can be further classified into four groups: (1) containment and closure policies (8 indicators), (2) economic policies (4 indicators), (3) health system policies (7 indicators), and (4) miscellaneous policies (1 free response). Miscellaneous policies were not included in this system because they were assessed using a free-text response format and limited data were available. OxCGRT data were retrieved from publicly available sources and regularly updated on GitHub.

Statistical Analysis and Deep Learning Techniques

Overview

Four time series models were considered for this study. Each model was applied to all the countries in our system to facilitate forecasting. With regard to 1-year records (ie, whole time series data), records from the last 14 days served as the validation set, whereas earlier records served as the training set. Using records from the last 14 days, forecasting performance was evaluated based on the following five indices: mean error (ME), root mean square error (RMSE), mean absolute error (MAE), mean percentage error (MPE), and mean absolute percentage error (MAPE) [32,33]. RMSE, MAE, and MAPE are always positive values, whereas RMSE, MPE, and MAPE are scaled measures. The hyperparameters for each model can be found in Table S1 in Multimedia Appendix 1, and the diagram of the neural networks can be found in Figure 1. R, version 3.6.3 (The R Foundation), was used to conduct statistical analysis and apply deep learning techniques.

Figure 1. The structure of the COVID-19 Pandemic AI System (CPAIS). ARIMA: autoregressive integrated moving average; CSSE: Center for Systems Science and Engineering; FNN: feedforward neural network; LSTM: long short-term memory; MLP: multilayer perceptron; NN: neural network.

Autoregressive Integrated Moving Average

An autoregressive integrated moving average (ARIMA) model is a statistical regression analysis that utilizes time series data to either understand the data set better or predict future trends. The purpose of ARIMA is to forecast future trends by examining differences between values in the series rather than by using actual values [34,35]. The three main components of ARIMA autoregression, integration, and moving average. are Autoregression refers to a model with a changing variable that regresses on its lag values. Integration represents the differences between data values and their previous values for stationary time series. Moving average incorporates the dependence between an observation and an error term from a moving average model. An ARIMA model can be comprehended by outlining each component, which serves as a parameter with a standard notation. For ARIMA models, there are three standard notations, wherein integer values serve as substitutes for the parameters to indicate the type of ARIMA model used.

The parameters can be defined as follows:

- p: the number of time lags
- d: the degree of differencing
- q: the size of the moving average window.

In this study, we used the *auto.arima* function for R, which returns the best ARIMA model based on either the Akaike information criterion value or Bayesian information criterion value. The function searches for possible models within the order constraints provided in the *forecast* package for R [36,37].

Feedforward Neural Network

A feedforward neural network (FNN) is the simplest type of artificial neural network [38]. The FNN algorithm is biologically inspired. It consists of several simple neuron-like units that are organized in layers. In FNN, information moves in one direction—from the input nodes, through the hidden nodes, and to the output nodes. The mechanism of an FNN is different from that of recurrent neural networks (RNNs) in that connections between the units do not form cycles or loops in FNNs [38,39]. In this study, we used the *nnetar* function for R, which constructs FNNs with a single hidden layer and lagged inputs for the purpose of forecasting univariate time series. Also, in the *forecast* package, the function fits into a single hidden-layer neural network for forecasting, with the *nnet* function included in the *nnet* package for R [40,41].

Multilayer Perceptron Neural Network

Like FNNs, multilayer perceptron (MLP) neural networks are common deep learning feedforward networks. An MLP neural network is also a supervised learning algorithm used for classification. The main difference is that between the input and output layer, there can be multiple nonlinear layers, called hidden layers, which are the true computational engine of the MLP neural network. MLP neural networks use a learning technique called back-propagation for training. Their multiple layers and nonlinear activation distinguish MLP neural networks from a linear perceptron [42-44]. In other words, MLP neural networks are designed to solve nonlinearly separable problems. Specifically, the units of MLP neural networks apply a sigmoid function as an activation function. In the back-propagation technique, the difference between the output values and the *ground truth* answer are calculated using predefined error

```
https://www.jmir.org/2021/5/e27806
```

functions. The error is fed back through the network. Using this information, the algorithm can adjust the weights of each connection to significantly reduce the value of the error function. In this study, the *mlp* function fits MLP neural networks for time series forecasting executed using the *nnfor* package [45-47].

Long Short-term Memory

Long short-term memory (LSTM) networks are a special type of recurrent deep learning neural network that learns order dependence in sequence prediction problems. LSTM was introduced by Hochreiter and Schmidhuber in 1997, and it is now widely used in a variety of studies and projects [48,49]. A typical RNN makes use of sequential information. These networks are described as recurrent because they use their internal state to process the variable length sequences of inputs. It is difficult for a standard RNN to carry forward information from prior time steps to later ones if a sequence is too long, because it may exclude important information from the beginning. Therefore, LSTM has an advantage in that information can be remembered for long periods of time. Unlike traditional FNNs, LSTM has feedback connections, whereby the output from the previous step is supplied as input in the current step [50]. A common LSTM unit includes a cell, an input gate, an output gate, and a forget gate. The cell recalls values over an arbitrary time interval, and the three gates regulate the flow of information in and out of the cell. In this study, we used the keras R package to recall TensorFlow for conducting the LSTM analysis [51]. TensorFlow was developed by the Google Brain team and released in 2015. It is a free open-source software library for machine learning techniques, particularly deep neural networks [52].

Data Visualization of Time Series Data Sets

Heat maps can be generated to depict variations in policy measures for the COVID-19 pandemic across time. Gradient color bars represent changes in measures across different levels and the support received in the form of financial assistance and investments. The time schedule presented along the horizontal axis will be updated daily. Cumulative and monthly records are represented using histograms and line charts, respectively. This system also provides a download option to interested countries and comparable services with dynamic rankings of the total number of confirmed cases and deaths and declining trends for the COVID-19 pandemic. The following simple regression formula is used to examine declining trends with dynamic time intervals:

 $y_i = \alpha + \beta x_i$

where β is the slope that represents an increasing or decreasing trend.

Results

In this study, the CPAIS was developed to explore variations, trends, and forecasts related to the COVID-19 pandemic across several counties. A drop-down list for country selection is available. The framework of the CPAIS—from data acquisition and preprocessing to deep learning model application, forecasting, and data visualization—is presented in Figure 1. It includes a combination of two data sets, construction of

```
https://www.jmir.org/2021/5/e27806
```

databases for deep learning prediction and statistical analysis, four statistical or deep learning models for forecasting, and front-end functions for data visualization.

The numbers of confirmed cases, recovered individuals, and deaths in 15 countries are listed by month in Table 1. The number of confirmed monthly cases in the United States reached a local peak in July 2020 and another peak of 6,368,591 in December 2020. Regarding the United States, the number of recovered cases after December 14, 2020, is not recorded in the COVID-19 Data Repository database. The total population for each of the 15 countries in 2020 is also mentioned in the table. The dynamic heat map with policy measures is shown in Figure 2, which depicts changes in COVID-19 measures for each country, with Australia used as an example. A total of 19 measures were embedded within the three main policy sections (ie, containment and closure policies, economic policies, and health system policies). Economic policies have the least number of measures, and only 4 of the 19 measures are continuous measures related to financial support or investment.

Deep learning and statistical learning models were used to enable COVID-19 forecasting. The function facilitates 14-day forecasting using four powerful algorithms (Figure 3). ARIMA is the statistical learning model with time series regression; the other models are deep learning neural network algorithms with a single hidden layer, multiple hidden layers, or recurrent techniques. The performance of forecasting for each model for the 15 countries listed in Table 1 is shown in Table 2. A small error value indicates a perfect fit for the data, but the comparison between the different countries was not meaningful because they had different baselines based on their populations. For most of the countries, LSTM demonstrated better forecast accuracy with fewer errors than the other models. The performances of ARIMA, FNN, and the MLP neural network were not stable because their forecast accuracy was only competitive with LSTM for some specific countries. For example, LSTM demonstrated the best forecast accuracy for Canada. The RMSE, MAE, and MAPE were 2272.551, 1501.248, 0.2723075, respectively. and ARIMA (RMSE=317.53169; MAPE=0.4641688) and **FNN** (RMSE=181.29894; MAPE=0.2708482) demonstrated better performance for South Korea.

Figure 4 presents descriptive statistics for specific countries. On the website, three countries can be simultaneously compared, and the period can be customized. Users can select the countries that are of interest to them and compare the COVID-19–related data. For each respective country, a line chart showing the number of confirmed cases, recoveries, and deaths per month is generated. In addition, a global comparison is also provided on the website.

Users can rank 171 countries based on five different parameters: (1) the number of confirmed cases, (2) confirmed cases by percentage of population, (3) the number of confirmed deaths, (4) confirmed deaths by percentage of population, and (5) declining trend. Figure 5 shows an example of how the top 20 countries can be ranked using confirmed cases by percentage of population. With regard to customization, the ranking

```
XSL•FO
RenderX
```

Yu et al

Table 1. The numbers of confirmed cases, recovered individuals, and deaths in 15 countries by month in 2020.

					<u> </u>		· · · · · · · · · · · · · · · · · · ·		5				
Country (to population	total n ^a)	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
and cases													
United St	tates (N	=329,	466,2	83)									
Confi	irmed	7	17	192,152	884,047	718,241	834,359	1,922,730	1,464,676	1,201,822	1,914,993	4,466,451	6,368,591
Death	18	0	1	5271	60,699	41,703	20,113	26,306	29,591	23,515	23,928	37,038	77,572
Reco	vered	0	7	7017	146,923	290,811	275,873	717,529	746,665	655,863	771,790	1,533,841	1,151,763 ^b
Canada (N=37,8	55,70	2)										
Confi	irmed	4	16	8507	45,930	38,022	13,618	12,184	12,637	30,189	76,206	144,244	202,852
Death	18	0	0	101	3209	4064	1276	330	193	173	841	1960	3485
Reco	vered	0	0	1586	19,832	27,789	19,907	33,786	13,114	21,161	61,771	105,643	189,043
Mexico (I	N=127,7	792,28	86)										
Confi	irmed	0	4	1211	18,009	71,440	135,425	198,548	174,923	143,656	181,746	181,746	312,551
Death	18	0	0	29	1830	8071	17,839	18,919	17,726	13,232	14,107	14,107	19,867
Reco	vered	0	0	35	11,388	52,349	110,766	152,577	169,107	131,785	151,364	151,364	251,209
Brazil (N	=212,55	59,409))										
Confi	irmed	0	2	5715	81,470	81,470	887,192	1,260,444	1,245,787	902,663	724,670	800,273	1,340,095
Death	18	0	0	201	5805	5805	30,280	32,881	28,906	22,571	15,932	13,236	21,829
Reco	vered	0	0	127	35,808	35,808	581,763	1,220,536	1,259,737	1,006,183	730,387	592,641	1,251,042
Argentin	a (N=45	5,195,	777)										
Confi	irmed	0	0	1054	3374	12,423	47,679	126,772	226,433	333,266	415,923	257,609	200,981
Death	18	0	0	27	191	321	768	2236	5117	8277	14,065	7728	4515
Reco	vered	0	0	240	1016	4080	16,692	61,752	217,415	293,450	379,294	283,288	169,449
Chile (N=	=19,116	,209)											
Confi	irmed	0	2	2842	14,858	105,848	155,843	76,274	56,059	51,265	47,265	41,487	57,230
Death	ns	0	0	12	215	827	4634	3769	1832	1452	1466	1203	1198
Reco	vered	0	0	156	8424	34,147	198,502	87,098	55,552	52,710	50,053	39,962	50,778
United K	ingdom	1 (N=0	67,886	5,004)									
Confi	irmed	2	59	38,754	139,956	78,768	27,677	19,577	33,290	117,763	558,947	618,940	862,498
Death	ıs	0	0	2457	24,297	10,773	2952	795	315	644	4412	11,900	15,077
Reco	vered	0	8	171	680	331	180	69	243	691	466	731	1909
France (N	N=65,27	3,512	2)										
Confi	irmed	5	95	52,727	114,472	21,710	13,054	23,134	93,789	285,045	808,678	864,165	400,792
Death	18	0	2	3530	20,847	4426	1041	422	372	1346	4840	15,993	11,940
Reco	vered	0	12	9501	39,963	18,997	7926	5365	5026	11,842	24,463	44,818	32,229
Greece (N	N=10,42	3,056)										
Confi	irmed	0	4	1310	1277	326	492	1068	5840	8158	20,776	66,020	33,579
Death	18	0	0	49	91	35	17	14	60	125	235	1780	2432
Reco	vered	0	0	52	1322	0	0	0	2430	7882	11,388	0	70,690
Taiwan (I	N=23,81	16,775	5)										
Confi	irmed	9	29	283	107	13	5	20	21	26	41	120	124
Death	ns	0	1	4	1	1	0	0	0	0	0	0	0
Reco	vered	0	9	30	283	101	14	3	22	21	32	50	106

https://www.jmir.org/2021/5/e27806

Country (total	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
population ^a) and cases												
Thailand (N=69,799,978)												
Confirmed	17	23	1609	1303	127	90	139	107	152	215	224	3155
Deaths	0	0	10	44	3	1	0	0	1	0	1	3
Recovered	5	23	314	2342	279	93	69	149	105	213	219	462
South Korea (N	=51,2	69,183	3)									
Confirmed	10	3139	6636	988	729	1347	1486	5846	3707	2746	8017	27,117
Deaths	0	16	146	86	23	11	19	23	91	51	60	391
Recovered	0	27	5381	3664	1350	1191	1620	1965	6468	2691	3528	15,068
India (N=1,380,004,385)												
Confirmed	1	2	1394	33,466	155,746	394,872	1,110,507	1,995,178	2,621,418	1,871,498	1,278,727	803,865
Deaths	0	0	35	1119	4254	11,992	19,111	28,777	33,390	23,433	15,510	11,117
Recovered	0	3	120	8945	82,784	256,060	746,462	1,745,508	2,433,319	2,218,312	1,398,072	970,695
Australia (N=2	5,459,'	700)										
Confirmed	9	16	4534	2207	436	718	9360	8539	1277	499	317	513
Deaths	0	0	18	75	10	1	97	456	231	19	1	1
Recovered	2	9	347	5384	876	422	2943	11,367	3434	552	266	160
Egypt (N=102,334,403)												
Confirmed	0	1	709	4827	4827	43,326	25,767	4861	4259	4357	8356	22,151
Deaths	0	0	46	346	346	1994	1852	616	509	336	384	981
Recovered	0	1	156	1224	1224	12,423	21,178	33,291	23,565	2958	3266	9387

^aTotal population in 2020.

^bThe number of recovered cases after December 14, 2020, were not recorded in the COVID-19 Data Repository database (the record only includes cases from December 1 to 14, 2020); therefore, this value was underreported.

Figure 2. The interface of the dynamic heat map with policy measures on the COVID-19 Pandemic AI System (CPAIS) website.

0~1

\$USD

0

Category

Yu et al

Figure 3. The COVID-19 Pandemic AI System (CPAIS) interface for machine learning prediction models facilitating 14-day COVID-19 forecasting. The plot shows the curve for deep learning modeling of total cumulative confirmed cases.

Table 2. Forecasting performance for each model in the validation set for the 15 countries.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	h h	Poot mean course	h h	h h	Maan absolute persont			
Country (total population ^a) and methods	Mean error ⁰	error ^b	Mean absolute error ⁰	Mean percentage error ^b	age error ^b			
United States (N=329,466,283)								
ARIMA ^c	-183,472.5153	229,501.345	183,888.691	-0.9538265	0.9562102			
FNN ^d	-197,967.69975	251,014.19	201,574.807	-1.027988	1.048648			
MLP ^e	34,016.71589	45,932.609	35,569.561	0.1774821	0.1862749			
LSTM ^f	-17,670.38	41,667.98 ^g	31,092.06	-0.09409045	0.1664009			
Canada (N=37,855,702)								
ARIMA	-3786.81463	4953.7659	3786.8146	-0.6828342	0.6828342			
FNN	-1902.8218773	3146.8161	2133.5721	-0.3503041	0.3898707			
MLP	-6056.7104430	7294.1933	6056.7104	-1.094643	1.094643			
LSTM	306.1702	2272.551	1501.248	0.04896196	0.2723075			
Mexico (N=127,792,286)								
ARIMA	-3776.6237	6281.987	4841.2544	0.3501243	1.2391347			
FNN	-15,894.200241	19,622.066	16,156.1290	-1.145524	1.165534			
MLP	-3551.381635	6534.119	5455.281	-0.2517612	0.3969063			
LSTM	-1137.118	2883.836	2334.178	-0.08386455	0.1716616			
Brazil (N=212,559,409)								
ARIMA	-52,913.8661	69,053.95	54,328.55	-0.7032164	0.7228866			
FNN	-168,251.54394	204,577.061	168,251.544	-2.240681	2.240681			
MLP	-28,723.33938	43,395.965	31,117.856	-0.3797225	0.412664			
LSTM	-2746.457	16,085.02	14,347.73	-0.03768765	0.1931052			
Argentina (N=45,195,777)								
ARIMA	10,240.495912	12,832.6035	10,240.4959	0.6433934	0.6433934			
FNN	22,285.962404	26,555.128	22,285.9624	1.402042	1.402042			
MLP	10,914.143275	13,689.5539	10,929.6874	0.6857769	0.6867919			
LSTM	1253.045	3920.961	3202.607	0.07803485	0.2024643			
Chile (N=19,116,209)								
ARIMA	1823.55216	1992.35	1823.5522	0.3048502	0.3048502			
FNN	8171.7723060	9157.9881	8171.7723	1.363951	1.363951			
MLP	2169.702307	2435.4540	2169.7023	0.3622628	0.3622628			
LSTM	595.9308	790.8397	648.5224	0.1001373	0.1090634			
United Kingdom (N=67,880	5,004)							
ARIMA	40,161.7481	55,436.735	41,580.2155	1.7053944	1.776331			
FNN	-17,129.950943	23,936.144	17,129.951	-0.7304511	0.7304511			
MLP	81,031.84	102,155.3238	81,031.841	3.482155	3.482155			
LSTM	15,560.98	17,735.29	15,560.98	0.6832804	0.6832804			
France (N=65,273,512)								
ARIMA	1807.5070	8181.384	6633.665	0.07287266	0.2565254			
FNN	61,075.99023	67,684.575	61,075.990	2.340844	2.340844			
MLP	9601.594851	11,456.382	10,239.308	0.3726648	0.3969022			
LSTM	6262.693	9254.264	7784.804	0.241549	0.3000627			

https://www.jmir.org/2021/5/e27806

XSL•FO RenderX J Med Internet Res 2021 | vol. 23 | iss. 5 | e27806 | p. 11 (page number not for citation purposes)

Yu	et	al
тu	υı	aı

Country (total population ^a) and methods		Mean error ^b	Root mean square error ^b	Mean absolute error ^b	Mean percentage error ^b	Mean absolute percent- age error ^b
Gr	eece (N=10,423,056)					
	ARIMA	5423.2143	6072.0773	5423.2143	4.003338	4.003338
	FNN	-21.8694361	561.98452	400.61927	-0.01977488	0.2937978
	MLP	-1145.165405	1341.1596	1145.1654	-0.844399	0.844399
	LSTM	-512.1191	565.7909	512.1191	-0.3821559	0.3821559
Tai	iwan (N=23,816,775)					
	ARIMA	-15.97434477	17.288501	15.97434	-2.0379969	2.037997
	FNN	-6.571007146	7.379679	6.571007	-0.84606232	0.8460623
	MLP	-9.485179	12.925238	9.9162023	-1.2005706	1.257011
	LSTM	-2.059649	3.322996	2.978151	-0.3227033	0.3820354
Th	ailand (N=69,799,978)					
	ARIMA	1471.082153	1620.87009	1471.082153	23.7842238	23.784224
	FNN	1463.109910	1611.239573	1463.109910	23.659524	23.659524
	MLP	1517.21984066	1674.585004	1517.219841	24.5165025	24.516502
	LSTM	173.2286	308.695	202.2714	2.950519	3.435209
So	uth Korea (N=51,269,183	3)				
	ARIMA	-260.265311	317.53169	265.29603	-0.4540395	0.4641688
	FNN	-75.7162332	181.29894	154.2065	-0.1226205	0.2708482
	MLP	-1138.0352476	1419.83911	1145.57606	-1.963196	1.978379
	LSTM	323.9709	342.9156	323.9709	0.5978793	0.5978793
India (N=1,380,004,385)						
	ARIMA	19,113.77834	21,947.375	19,113.778	0.1874688	0.1874688
	FNN	-10,156.962689	13,612.018	10,156.963	-0.09945817	0.09948717
	MLP	20,964.3576266	24,556.936	20,964.358	0.2055718	0.20055718
	LSTM	-13,037.64	14,480.91	13,037.64	-0.128178	0.1281378
Au	stralia (N=25,459,700)					
	ARIMA	26.9606020	30.40208	26.96060	0.09542063	0.09542063
	FNN	187.8959192	205.6998	187.89592	0.6634038	0.6637038
	MLP	-15.69085695	76.48186	62.261210	-0.05478576	0.2197826
	LSTM	5.898776	14.39023	11.91991	0.02086999	0.04212132
Eg	ypt (N=102,334,403)					
	ARIMA	2392.285714	3239.04732	2392.28571	1.7844594	1.784459
	FNN	1944.5586880	2641.98168	1944.55869	1.45017	1.45017
	MLP	669.96030638	936.05245	669.96031	0.4988667	0.4988667

Yu et al

Country (total population ^a) and methods	Mean error ^b	Root mean square error ^b	Mean absolute error ^b	Mean percentage error ^b	Mean absolute percent- age error ^b
LSTM	437.0412	500.6487	438.0092	0.3304228	0.3311979

^aTotal population in 2020.

^bFive commonly used measures for evaluation of forecasting include mean error, root mean square error (RMSE), mean absolute error (MAE), mean percentage error, and mean absolute percentage error (MAPE), according to the records of the latest 14 days in 2020. The RMSE, MAE, and MAPE are always positive values.

^cARIMA: autoregressive integrated moving average.

^dFNN: feedforward neural network.

^eMLP: multilayer perceptron.

^fLSTM: long short-term memory.

^gThe values for best performances in each country are italicized.

Figure 4. The interface of descriptive statistics for selected countries with customization on the COVID-19 Pandemic AI System (CPAIS) website. CSV: comma-separated values.

Yu et al

Figure 5. The interface for the ranking of selected countries with customization on the COVID-19 Pandemic AI System (CPAIS) website.

Discussion

Principal Findings

A combination of data on COVID-19 incidence and policy measures can be used to examine the relationship between the progression of the COVID-19 pandemic and governmental epidemic prevention efforts. The CPAIS can help users determine whether policy measures are successful in preventing COVID-19 transmission. According to a report published by the Lowy Institute for International Policy [53], a ranked comparison of the performance of countries in managing the COVID-19 pandemic shows that New Zealand, Vietnam, and Taiwan are the top three countries with the highest average scores on their six indicators. Besides, New Zealand and Taiwan successfully controlled the COVID-19 outbreak without international financial support (Figures S1-S3 in Multimedia Appendix 1). Specifically, New Zealand had immediately implemented infection control and closure policies with a flexible adaptation on measures; in addition, Taiwan had enforced strict guidelines regarding international travel that not only contributed to infection control but also rendered the strict measures described in the containment and closure policies unnecessary. Furthermore, both countries had taken great efforts to maximize the implementation of testing and contact tracing policies during 2020. In this regard, both countries are outstanding examples. The vivid heat maps in the CPAIS illustrate time-dependent fluctuations in the measures and help users monitor variations in, and the effects of, policy measures in each country.

Several time series AI learning techniques have been used for forecasting purposes. Both statistical learning and deep learning models demonstrated efficacious performance for different countries. Although the values are not absolute, they are comparable between countries with different total populations. When compared to the results of a past study [19], performance for the same model and country was better in this study because more extensive time series data were included in our system. In addition, 14-day COVID-19 trend forecasting can serve a useful alert that will help governments and experts reduce the incidence of COVID-19. Furthermore, different AI learning techniques have unique advantages.

According to the Wold decomposition theorem [34,54,55], the autoregressive moving average model is theoretically sufficient to describe a regular stationary time series. It is possible to change a nonstationary time series into a stationary one, such as by using differencing. As noted earlier, ARIMA models have three components: autoregression, integration, and moving average. They are applied to data with evidence of nonstationarity in the mean, whereby an initial differencing step can be applied one or more times to eliminate the nonstationarity of the mean function in the trend. We used the auto.arima function for R to choose the best model according to either the Akaike information criterion, corrected Akaike information criterion, or Bayesian information criterion value; the auto.arima function also conducts the model search within the order constraints provided. FNN is similar to ARIMA because the fitted model is analogous to an autoregression(p) model, where p is the order but with nonlinear functions for nonseasonal data in this study. Therefore, it is denoted as a neural network autoregression(p,k) model called NNAR, where k represents the

number of hidden nodes. That is why, for some countries, ARIMA and FNN yielded similar outcomes for forecast accuracy. Differences between the two models still exist; the error can be reduced only for FNN by increasing the number of iterations, but the iteration time will be increased as a result.

The capabilities of neural networks are attributable to the hierarchical or multilayered structure of the networks. The data structure can include features at different scales or resolutions and combine them into higher-order features. After repeating the learning process for a sufficient number of training cycles, the network will transition to some state where the error term is small enough. Generalization and tolerance are the two main characteristics. First, neural networks permit generalization because they can classify both unknown and known patterns with the same distinguishing features. Second, neural networks are highly fault tolerant. Because of their distributed nature, they will continue to function even if a significant fraction of neurons and interconnections fail. In general, increasing the number of hidden nodes may enhance the performance of prediction, and increasing the number of networks to train may result in an ensemble forecast.

The core idea of LSTM lies in the cell state—the horizontal line that runs down the chain with information flowing alongside (Figure 6). In addition, LSTMs have the ability to remove or add information to the cell state, controlled by the gates, which are a pathway through which information can be allowed to pass. They consist of a sigmoid neural net layer and a pointwise multiplication operation. LSTM networks are powerful in promptly forecasting series data since there can be lags of unknown duration between events in time series. Hence, when compared to other traditional RNNs in this study, LSTM networks do not have the vanishing gradient problem. Thus, LSTM has the advantages of being relatively insensitive to time intervals and of making fewer errors in prediction when compared to other methods.

In the CPAIS, long-term cumulative records of confirmed cases, recoveries, and deaths are included. In addition, daily figures for these metrics are provided for each month. Thus, short-term trends can be examined using this system. Users can compare three or more countries and visualize the relative incidence of COVID-19 within a specific time duration. Short-term and long-term trends can be simultaneously viewed. In previous studies [14,19,20], only a limited number of countries were included for forecasting. Our system contains 171 countries and provides information about policy measures. Further, data visualization, statistical and deep learning for incidence forecasting, and customized ranking are possible. Based on their objectives, users can select country names and time periods. Similar cultural backgrounds, neighboring geographical characteristics, and high-frequency trading may also serve as attractive features. In particular, a declined ranking is calculated by our system to explore the effectiveness of COVID-19 management strategies implemented in 2020. Thus, the CPAIS is a comprehensive AI-based service that is available on the internet. It relies on big data and offers data visualization, deep learning-based prediction, and customized comparison. This system can be used to investigate COVID-19 progression trends.

Figure 6. Diagram of the long short-term memory neural network with three functional gates.

Limitations

To the best of our knowledge, this is the first web-based machine learning system that can explore variations, trends, and forecasts related to the COVID-19 pandemic across 171 countries. This pilot system still has several limitations. First, this database relies heavily on the source databases and shares similar limitations with the source databases. For example, the source databases did not consider the number of COVID-19 patients that were traveling internationally, and this may result in inaccurate analysis for a small number of countries. However, we think that the number of COVID-19 patients who were traveling internationally is small, as most countries imposed COVID-19–negative tests or proof of vaccination before

```
https://www.jmir.org/2021/5/e27806
```

allowing the traveler into the country. Second, the CPAIS cannot be updated daily if the source databases are not updated. For example, at present, the number of recoveries in the United States was last updated on December 14, 2020. So the number of recoveries in the United States may not be accurate. Finally, since the main purpose of this platform is to consolidate raw data retrieved from various databases and associated measures of pandemic policy implementation, we remind the reader to use text mining, local reports, and information retrieved from the medical system of a given country for further assessment.

Conclusions

In general, the CPAIS collects and summarizes information about the COVID-19 pandemic and offers data visualization

and deep learning-based prediction. It may be a useful and consequential reference resource for any serious outbreak or epidemic that may occur in the future. In addition, information about the vaccine is also stored in our system. It may be used to evaluate the efficacy of the vaccine in different countries in the future. Moreover, the 2-week machine learning forecasts may serve as warning signs and highlight current trends in the epidemic that have been made apparent by AI techniques. To conclude, the CPAIS can be used to summarize several factors that can influence the effectiveness of epidemic prevention and predict the next serious outbreak.

Acknowledgments

This study is supported by the Ministry of Science and Technology Grant (MOST 110-2314-B-038-025) and Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan (DP2-110-21121-01-A-09). No funding bodies had any role in study design, data collection and analysis, decision to publish, or preparation of the article.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Hyperparameters, packages, and function code for each model as well as the dynamic heat maps with policy measures for New Zealand, Vietnam, and Taiwan.

[PDF File (Adobe PDF File), 2076 KB-Multimedia Appendix 1]

References

- 1. Archived: WHO Timeline COVID-19. World Health Organization. 2020 Apr 27. URL: <u>https://www.who.int/news/item/</u> 27-04-2020-who-timeline---covid-19 [accessed 2021-02-01]
- 2. Origin of SARS-CoV-2. Geneva, Switzerland: World Health Organization; 2020 Mar 26. URL: <u>https://apps.who.int/iris/</u> <u>bitstream/handle/10665/332197/WHO-2019-nCoV-FAQ-Virus_origin-2020.1-eng.pdf</u> [accessed 2021-01-12]
- 3. Naming the coronavirus disease (COVID-19) and the virus that causes it. World Health Organization. URL: <u>https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/</u>
- naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it [accessed 2021-02-16]
 4. WHO Director-General's opening remarks at the media briefing on COVID-19 11 March 2020. World Health Organization. 2020 Mar 11. URL: <u>https://www.who.int/director-general/speeches/detail/</u>
- <u>who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020</u> [accessed 2021-01-05]
 5. Weekly epidemiological update 29 December 2020. World Health Organization. 2020 Dec 29. URL: <u>https://www.who.int/</u>
- 5. weekly epidemiological update 29 December 2020. world realth Organization. 2020 Dec 29. UKL: <u>https://www.who.int/</u> <u>publications/m/item/weekly-epidemiological-update---29-december-2020</u> [accessed 2021-02-14]
- Imtyaz A, Haleem A, Javaid M. Analysing governmental response to the COVID-19 pandemic. J Oral Biol Craniofac Res 2020;10(4):504-513 [FREE Full text] [doi: 10.1016/j.jobcr.2020.08.005] [Medline: 32834983]
- Kadi N, Khelfaoui M. Population density, a factor in the spread of COVID-19 in Algeria: Statistic study. Bull Natl Res Cent 2020;44(1):138 [FREE Full text] [doi: 10.1186/s42269-020-00393-x] [Medline: 32843835]
- Abedi V, Olulana O, Avula V, Chaudhary D, Khan A, Shahjouei S, et al. Racial, economic, and health inequality and COVID-19 infection in the United States. J Racial Ethn Health Disparities 2021 Jun;8(3):732-742 [FREE Full text] [doi: 10.1007/s40615-020-00833-4] [Medline: <u>32875535</u>]
- Prata DN, Rodrigues W, Bermejo PH. Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil. Sci Total Environ 2020 Aug 10;729:138862 [FREE Full text] [doi: <u>10.1016/j.scitotenv.2020.138862</u>] [Medline: <u>32361443</u>]
- Khalatbari-Soltani S, Cumming RG, Delpierre C, Kelly-Irving M. Importance of collecting data on socioeconomic determinants from the early stage of the COVID-19 outbreak onwards. J Epidemiol Community Health 2020 Aug;74(8):620-623 [FREE Full text] [doi: 10.1136/jech-2020-214297] [Medline: 32385126]
- 11. Alwan NA, Burgess RA, Ashworth S, Beale R, Bhadelia N, Bogaert D, et al. Scientific consensus on the COVID-19 pandemic: We need to act now. Lancet 2020 Oct;396(10260):e71-e72. [doi: <u>10.1016/s0140-6736(20)32153-x</u>]
- Yu CS, Lin YJ, Lin CH, Lin SY, Wu JL, Chang SS. Development of an online health care assessment for preventive medicine: A machine learning approach. J Med Internet Res 2020 Jun 05;22(6):e18585 [FREE Full text] [doi: <u>10.2196/18585</u>] [Medline: <u>32501272</u>]
- Lin YJ, Lin CH, Wang ST, Lin SY, Chang SS. Noninvasive and convenient screening of metabolic syndrome using the controlled attenuation parameter technology: An evaluation based on self-paid health examination participants. J Clin Med 2019 Oct 24;8(11):1775 [FREE Full text] [doi: <u>10.3390/jcm8111775</u>] [Medline: <u>31653028</u>]
- Ayyoubzadeh SM, Ayyoubzadeh SM, Zahedi H, Ahmadi M, Niakan Kalhori SR. Predicting COVID-19 incidence through analysis of Google Trends data in Iran: Data mining and deep learning pilot study. JMIR Public Health Surveill 2020 Apr 14;6(2):e18828 [FREE Full text] [doi: 10.2196/18828] [Medline: 32234709]

- Yu et al
- 15. Yeung AYS, Roewer-Despres F, Rosella L, Rudzicz F. Machine learning-based prediction of growth in confirmed COVID-19 infection cases in 114 countries using metrics of nonpharmaceutical interventions and cultural dimensions: Model development and validation. J Med Internet Res 2021 Apr 23;23(4):e26628 [FREE Full text] [doi: 10.2196/26628] [Medline: 33844636]
- Yang Z, Zeng Z, Wang K, Wong S, Liang W, Zanin M, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis 2020 Mar;12(3):165-174 [FREE Full text] [doi: 10.21037/jtd.2020.02.64] [Medline: 32274081]
- 17. Chassagnon G, Vakalopoulou M, Battistella E, Christodoulidis S, Hoang-Thi T, Dangeard S, et al. AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia. Med Image Anal 2021 Jan;67:101860 [FREE Full text] [doi: 10.1016/j.media.2020.101860] [Medline: 33171345]
- Chen CM, Jyan HW, Chien SC, Jen HH, Hsu CY, Lee PC, et al. Containing COVID-19 among 627,386 persons in contact with the Diamond Princess cruise ship passengers who disembarked in Taiwan: Big data analytics. J Med Internet Res 2020 May 05;22(5):e19540 [FREE Full text] [doi: 10.2196/19540] [Medline: 32353827]
- 19. Shahid F, Zameer A, Muneeb M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020 Nov;140:110212 [FREE Full text] [doi: 10.1016/j.chaos.2020.110212] [Medline: 32839642]
- Shastri S, Singh K, Kumar S, Kour P, Mansotra V. Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study. Chaos Solitons Fractals 2020 Nov;140:110227 [FREE Full text] [doi: 10.1016/j.chaos.2020.110227] [Medline: 32843824]
- Kostoff RN, Briggs MB, Porter AL, Spandidos DA, Tsatsakis A. [Comment] COVID-19 vaccine safety. Int J Mol Med 2020 Nov;46(5):1599-1602 [FREE Full text] [doi: 10.3892/ijmm.2020.4733] [Medline: 33000193]
- 22. Phillips N. The coronavirus is here to stay Here's what that means. Nature 2021 Feb;590(7846):382-384 [FREE Full text] [doi: 10.1038/d41586-021-00396-2] [Medline: 33594289]
- 23. Scudellari M. How the pandemic might play out in 2021 and beyond. Nature 2020 Aug;584(7819):22-25 [FREE Full text] [doi: 10.1038/d41586-020-02278-5] [Medline: 32760050]
- 24. Baker MG, Wilson N, Anglemyer A. Successful elimination of Covid-19 transmission in New Zealand. N Engl J Med 2020 Aug 20;383(8):e56. [doi: <u>10.1056/nejmc2025203</u>]
- 25. Kim S, Castro MC. Spatiotemporal pattern of COVID-19 and government response in South Korea (as of May 31, 2020). Int J Infect Dis 2020 Sep;98:328-333 [FREE Full text] [doi: 10.1016/j.ijid.2020.07.004] [Medline: 32634584]
- 26. CPAIS: COVID-19 Pandemic AI System. URL: <u>https://covid19.mldoctor.com.tw</u> [accessed 2021-05-03]
- Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav 2021 Apr;5(4):529-538. [doi: <u>10.1038/s41562-021-01079-8</u>] [Medline: <u>33686204</u>]
- Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020 May;20(5):533-534 [FREE Full text] [doi: 10.1016/s1473-3099(20)30120-1]
- Johns Hopkins University Center for Systems Science and Engineering. CSSEGISandData/COVID-19: Novel Coronavirus (COVID-19) Cases, provided by JHU CSSE. GitHub. URL: <u>https://github.com/CSSEGISandData/COVID-19</u> [accessed 2020-05-01]
- 30. Blavatnik School of Government. OxCGRT/covid-policy-tracker: Systematic dataset of Covid-19 policy, from Oxford University. GitHub. URL: <u>https://github.com/OxCGRT/covid-policy-tracker</u> [accessed 2020-06-15]
- World Population Prospects 2019, Online Edition. Rev 1. New York, NY: United Nations, Department of Economic and Social Affairs, Population Division; 2019. URL: <u>https://population.un.org/wpp/Download/Standard/Population/</u> [accessed 2021-04-06]
- 32. Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. Int J Forecast 2006 Oct;22(4):679-688. [doi: 10.1016/j.ijforecast.2006.03.001]
- 33. Hyndman RJ, Athanasopoulos G. Forecasting: Principles and Practice. 2nd edition. Melbourne, Australia: OTexts; 2018.
- 34. Hamilton JD. Time Series Analysis. Princeton, NJ: Princeton University Press; 1994.
- 35. Brockwell PJ, Davis RA. Introduction to Time Series and Forecasting. New York, NY: Springer; 2002.
- 36. Hyndman RJ, Khandakar Y. Automatic time series forecasting: The forecast package for R. J Stat Softw 2008 Jul;27(3):1-22 [FREE Full text] [doi: 10.18637/jss.v027.i03]
- 37. Wang X, Smith K, Hyndman R. Characteristic-based clustering for time series data. Data Min Knowl Discov 2006 May 16;13(3):335-364. [doi: 10.1007/s10618-005-0039-x]
- 38. Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw 2015 Jan;61:85-117. [doi: 10.1016/j.neunet.2014.09.003] [Medline: 25462637]
- 39. Zell A. Simulation Neuronaler Netze. Boston, MA: Addison-Wesley Bonn; 1994.
- 40. Ripley BD. Pattern Recognition and Neural Networks. Cambridge, UK: Cambridge University Press; 1996.
- 41. Venables WN, Ripley BD. Modern Applied Statistics with S. 4th edition. New York, NY: Springer; 2002.
- 42. Trevor H, Robert T, Jerome F. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, NY: Springer; 2009.
- 43. Rosenblatt F. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Washington, DC: Spartan Books; 1961.

- 44. Haykin S. Neural Networks: A Comprehensive Foundation. 2nd edition. Upper Saddle River, NJ: Prentice Hall; 1998.
- 45. Ord K, Fildes R, Kourentzes N. Principles of Business Forecasting. 2nd edition. New York, NY: Wessex Press Publishing Co; 2017.
- 46. Kourentzes N, Barrow DK, Crone SF. Neural network ensemble operators for time series forecasting. Expert Syst Appl 2014 Jul 12;41(9):4235-4244. [doi: <u>10.1016/j.eswa.2013.12.011</u>]
- 47. Crone S, Kourentzes N. Feature selection for time series prediction A combined filter and wrapper approach for neural networks. Neurocomputing 2010 Jun;73(10-12):1923-1936. [doi: <u>10.1016/j.neucom.2010.01.017</u>]
- 48. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997 Nov 15;9(8):1735-1780. [doi: <u>10.1162/neco.1997.9.8.1735</u>] [Medline: <u>9377276</u>]
- 49. Graves A. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Germany: Springer-Verlag; 2012.
- 50. Gal Y, Ghahramani Z. A theoretically grounded application of dropout in recurrent neural networks. In: Proceedings of the 30th Conference on Neural Information Processing Systems. 2016 Presented at: 30th Conference on Neural Information Processing Systems; December 5-10, 2016; Barcelona, Spain URL: <u>https://papers.nips.cc/paper/2016/file/ 076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf</u>
- 51. Ramasubramanian K, Singh A. Deep learning using Keras and TensorFlow. In: Machine Learning Using R: With Time Series and Industry-Based Use Cases in R. New York, NY: Apress; 2019:667-688.
- 52. TensorFlow. URL: https://www.tensorflow.org/ [accessed 2021-01-04]
- 53. Covid Performance Index. The Lowy Institute. URL: <u>https://interactives.lowyinstitute.org/features/covid-performance/</u> [accessed 2021-02-15]
- 54. Papoulis A, Pillai SU. Probability, Random Variables and Stochastic Processes. 4th edition. New York, NY: McGraw-Hill; 2002.
- 55. Triacca U. The Wold decomposition theorem. International Doctoral Program in Economics, Scuola Superiore Sant'Anna. URL: <u>http://www.phdeconomics.sssup.it/documents/Lesson11.pdf</u> [accessed 2021-02-19]

Abbreviations

AI: artificial intelligence **ARIMA:** autoregressive integrated moving average CPAIS: COVID-19 Pandemic AI System **CSSE:** Center for Systems Science and Engineering FNN: feedforward neural network **LSTM:** long short-term memory MAE: mean absolute error MAPE: mean absolute percentage error ME: mean error MLP: multilayer perceptron MPE: mean percentage error NNAR: neural network autoregression model **OxCGRT:** Oxford COVID-19 Government Response Tracker **RMSE:** root mean square error **RNN:** recurrent neural network Sass: Syntactically Awesome Style Sheets **SQL:** Structured Query Language WHO: World Health Organization

Edited by G Eysenbach; submitted 19.03.21; peer-reviewed by MT Lee, YL Chan, JA Benítez-Andrades; comments to author 04.04.21; revised version received 12.04.21; accepted 23.04.21; published 20.05.21

<u>Please cite as:</u>

Yu CS, Chang SS, Chang TH, Wu JL, Lin YJ, Chien HF, Chen RJ A COVID-19 Pandemic Artificial Intelligence–Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study J Med Internet Res 2021;23(5):e27806 URL: <u>https://www.jmir.org/2021/5/e27806</u> doi: <u>10.2196/27806</u> PMID: <u>33900932</u>

©Cheng-Sheng Yu, Shy-Shin Chang, Tzu-Hao Chang, Jenny L Wu, Yu-Jiun Lin, Hsiung-Fei Chien, Ray-Jade Chen. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 20.05.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.