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Abstract

Background: Unfractionated heparin is widely used in the intensive care unit as an anticoagulant. However, weight-based
heparin dosing has been shown to be suboptimal and may place patients at unnecessary risk during their intensive care unit stay.

Objective: In this study, we intended to develop and validate a machine learning–based model to predict heparin treatment
outcomes and to provide dosage recommendations to clinicians.

Methods: A shallow neural network model was adopted in a retrospective cohort of patients from the Multiparameter Intelligent
Monitoring in Intensive Care III (MIMIC III) database and patients admitted to the Peking Union Medical College Hospital
(PUMCH). We modeled the subtherapeutic, normal, and supratherapeutic activated partial thromboplastin time (aPTT) as the
outcomes of heparin treatment and used a group of clinical features for modeling. Our model classifies patients into 3 different
therapeutic states. We tested the prediction ability of our model and evaluated its performance by using accuracy, the kappa
coefficient, precision, recall, and the F1 score. Furthermore, a dosage recommendation module was designed and evaluated for
clinical decision support.

Results: A total of 3607 patients selected from MIMIC III and 1549 patients admitted to the PUMCH who met our criteria were
included in this study. The shallow neural network model showed results of F1 scores 0.887 (MIMIC III) and 0.925 (PUMCH).
When compared with the actual dosage prescribed, our model recommended increasing the dosage for 72.2% (MIMIC III,
1240/1718) and 64.7% (PUMCH, 281/434) of the subtherapeutic patients and decreasing the dosage for 80.9% (MIMIC III,
504/623) and 76.7% (PUMCH, 277/361) of the supratherapeutic patients, suggesting that the recommendations can contribute
to clinical improvements and that they may effectively reduce the time to optimal dosage in the clinical setting.

Conclusions: The evaluation of our model for predicting heparin treatment outcomes demonstrated that the developed model
is potentially applicable for reducing the misdosage of heparin and for providing appropriate decision recommendations to
clinicians.
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Introduction

Existing rule-based protocols guide clinicians to initiate,
modulate, or terminate a certain treatment procedure according
to evidence-based clinical guidelines or best practices [1].
However, in real clinical scenarios, dynamic changes occur
continuously in individual patients with complex diseases and
physiological situations, which frequently exceed the scope of
the typical model described in the guidelines [2]. In particular,
in critical care settings, there is a decision-making dilemma
between evidence-based medicine and individualized medicine
due to the lack of high-quality evidence and the urgency for the
accuracy and effectiveness of the treatment [3]. Fortunately, in
the era of big data and artificial intelligence and based on
progress in data acquisition, integration, and application in
critical care medicine, machine learning techniques sometimes
can help with diagnosis, treatment, and prediction in intensive
care units (ICUs) [4-6].

Heparin (or unfractionated heparin, UFH) infusion is one
example of a medication for which retrospective data have been
proven to provide valuable support in clinical settings, especially
in critical settings in which patients are vulnerable to
thromboembolism or hemorrhage or to severe complications
caused by these conditions [7]. For decades, UFH dosing has
been based solely on a patient’s weight: a weight-based heparin
dosing nomogram is the standard practice for the application
of UFH. The heparin nomogram mainly consists of an empirical
initial loading dose followed by a step-by-step modulation
according to a series of blood clotting parameters that are
monitored every 4-6 hours [8,9]. The actual optimal UFH dosage
varies widely among patients with different physiological
situations, and for these patients, the time to optimal dosage
may be prolonged. Besides, adverse events associated with
supratherapeutic or subtherapeutic anticoagulation, such as
hemorrhagic tendency or thrombophilia, may occur due to the
intravenous heparin’s narrow therapeutic window [7]. Therefore,
retrospective analysis starts by extracting sequential dose
response data as well as the concurrent laboratory and other
clinical data, which may greatly contribute to the improvement
on the feedback delay of UFH dosage optimization [10]. In our
recent study [11], based on the public Multiparameter Intelligent
Monitoring in Intensive Care III (MIMIC III) and electronic
ICU databases [12,13], we compared several common models
for predicting the effects of heparin treatment and showed that
machine learning–based models, which outperformed the
standard practices, can be used to optimize and personalize
heparin dosing to improve patient safety.

Although our UFH model has been evaluated and validated
using public databases [10,14], it has not been validated in our

local clinical setting, especially for step-by-step modulation. In
this study, we extend the validation and application of the
previously optimized UFH model to a local clinical database
in the Department of Critical Care Medicine of Peking Union
Medical College Hospital (PUMCH), which is a complementary
ICU in a tertiary hospital in China. Furthermore, UFH dosage
recommendation based on the machine learning model was also
performed for both the MIMIC and PUMCH databases, with
the goal of effectively reducing the time to optimal dosage in
the clinical setting. Finally, to further promote understanding
of the data model and algorithm, we performed a featured
importance analysis in both databases.

Methods

Data Sets
To evaluate the adaptability of the predictive model and to
implement external validation, we employed patient data,
including heparin treatments from 2 databases: the MIMIC III
database and the PUMCH ICU database. The MIMIC III
database is a free and open intensive care medical data set
published by the Computational Physiology Laboratory of the
Massachusetts Institute of Technology, the Beth Israel
Deaconess Medical Center, and Philips Healthcare. It contains
real medical data from more than 50,000 adult patients in the
ICU at the Beth Israel Deaconess Medical Center between 2001
and 2012 [8]. The PUMCH ICU database comprises the
complete clinical data of patients admitted to the PUMCH ICU
with a retrospective cohort of more than 20,000 ICU patients
between 2013 and 2019.

Definition of Heparin Treatment Outcomes
We classified patients as subtherapeutic, normal therapeutic,
and supratherapeutic according to their therapeutic activated
partial thromboplastin time (aPTT) values after heparin
treatment. We used the average aPTT value from 8 h to 24 h
after the initial heparin infusion as the therapeutic aPTT value.
Figure 1 shows the distributions of the aPTT values in the 2
data sets. Due to differences in the regions, patient
characteristics, and treatment plans such as the step-by-step
treatment pattern of PUMCH, the observed therapeutic aPTT
distributions are quite different. Based on a previous study [14]
and suggestions from clinicians, we adopted different definition
ranges for the 2 data sets (Table 1). We then labelled each
patient record with 1 of the 3 labels (subtherapeutic, normal
therapeutic, and supratherapeutic), thereby converting the
clinical outcome prediction task into a ternary classification
task.
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Figure 1. The therapeutic activated partial thromboplastin time distributions in the 2 data sets. aPTT: activated partial thromboplastin time; MIMIC
III: Multiparameter Intelligent Monitoring in Intensive Care III; PUMCH: Peking Union Medical College Hospital.

Table 1. Ranges of the therapeutic activated partial thromboplastin time classification of the 2 data sets.

Peking Union Medical College Hospital data setMultiparameter Intelligent Monitoring in
Intensive Care III data set

Activated partial thromboplastin time (time in seconds)

0-350-60Subtherapeutic activated partial thromboplastin time (s)

35-4560-100Normal therapeutic activated partial thromboplastin time
(s)

>45>100Supratherapeutic activated partial thromboplastin time
(s)

Feature Selection
According to evidence from related studies and experience from
clinical practice, various clinical features affect heparin
treatment outcomes [14], that is, the therapeutic aPTT. For
example, creatinine in the blood is almost entirely filtered into
the urine via glomerular filtration and its concentration is stable
under normal circumstances. Therefore, creatinine concentration
in the blood can be used as an indicator of renal function because
it reflects the filtration function of glomeruli. Measurements of
renal, hepatic, cardiac, and coagulation functions were included
as features of interest. Aspartate aminotransferase (AST) and
alanine aminotransferase (ALT) concentrations in the blood are
sensitive to hepatocellular damage, and their ratio is an
important indicator of liver function. Sequential organ failure

assessment (SOFA) scores were included. Furthermore, the
total heparin dosage, defined as the sum of the heparin doses
administered within 8 h of the initial heparin infusion, is also
considered as the affected factor of heparin treatment outcomes.
Therefore, to optimize the model predictions, we selected
clinical features of interest from the 2 data sets, including sex,
ethnicity, admission type, age, weight, initial aPTT, creatinine,
AST/ALT ratio (we used the ALT value instead for PUMCH
since AST values were not routinely tested every time in
PUMCH), several SOFA scores, and total heparin dosage, as
shown in Table 2. We used the last aPTT measurement before
heparin treatment as the initial aPTT value, and the laboratory
tests and SOFA scores were those closest to the initial heparin
injection time.

J Med Internet Res 2021 | vol. 23 | iss. 5 | e27118 | p. 3https://www.jmir.org/2021/5/e27118
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Clinical features of interest chosen from the 2 data sets.

Peking Union Medical College Hospital data setMultiparameter Intelligent Monitoring in Intensive Care III data
set

Features

Demographic data

GenderGender

—aEthnicity

—Admission type

AgeAge

WeightWeight

Laboratory tests

Initial aPTT valueInitial aPTTb value

Creatinine valueCreatinine value

Alanine aminotransferase valueAST/ALTc ratio

SOFAd scores

Coagulation SOFA scoreCoagulation SOFA score

Liver SOFA scoreLiver SOFA score

Cardiovascular SOFA scoreCardiovascular SOFA score

Renal SOFA scoreRenal SOFA score

Total heparin dosageTotal heparin dosageMedication

aNot available.
baPTT: activated partial thromboplastin time.
cAST/ALT: aspartate aminotransferase/alanine aminotransferase.
dSOFA: sequential organ failure assessment.

Patient Inclusion Criteria
The enrollment criteria were as follows: (1) patient’s age ≥18
years, (2) patient underwent heparin treatment, and (3) the aPTT
value was measured before and after heparin treatment. Based
on the above criteria, we initially collected 6919 patient records
from the MIMIC III database and 2152 patient records from the
PUMCH database. For the MIMIC III database, we first
removed some patient records whose aPTT data were
unavailable. We then removed records with missing values for
weight or the ratio of AST/ALT. Next, we removed patient
records with values of continuous features outside the normal
ranges, including weight, initial aPTT value, creatinine value,

AST/ALT ratio, and total heparin dosage. According to the
statistical definition of outliers [15], we calculated the mean
value μ and standard deviation σ of these features; the normal
range includes values from max(0, μ-3σ) to μ+3σ. We therefore
removed the individual records outside of this range. The normal
ranges and number of outliers for each feature are listed in
Multimedia Appendix 1. After this process, 3607 patient records
remained. For the PUMCH database, after a similar data
selection process (according to different recording methods
such as the replacement of the AST/ALT ratio by the ALT value
in the PUMCH database), we collected 1549 patient records as
the study population of PUMCH. The details of the selection
process are shown in Figure 2.
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Figure 2. Study cohort selection workflow based on the inclusion and exclusion criteria. ALT: alanine aminotransferase; aPTT: activated partial
thromboplastin time; AST: aspartate aminotransferase; MIMIC III: Multiparameter Intelligent Monitoring in Intensive Care III; PUMCH: Peking Union
Medical College Hospital.

Data Preprocessing
SOFA scores were missing in both data sets, and the 3 nearest
neighbors algorithms were used to substitute the missing value
with the mean of the 3 neighbors that was closest in terms of
the Euclidean distance. The missing data imputation results are
listed in Multimedia Appendix 2. We applied a one-hot encoder
for the gender, ethnicity, and admission type features since these
are categorical features. To avoid the occurrence of feature
values that are too large for model training, we applied min-max
normalization to all the continuous numerical features using the
following formula:

where x denotes the values of all records for a fixed feature.

Model Training
As validated in a previous study [11], a shallow neural network
model works best from among several machine learning models
for the heparin outcome prediction task. In this study, we used
a fully connected shallow neural network model [16,17] to
predict the therapeutic effect (subtherapeutic, normal
therapeutic, or supratherapeutic) of patients after 8 hours of
heparin treatment. This is a ternary classification task. Our
artificial neural network consists of an input layer, an output
layer, and 3 hidden layers. It is fully connected, which means
that each neuron receives input from all the neurons in the
previous layer and passes on the results to all the neurons in the
next layer. The rectified linear unit function [18] was used as
the activation function in order to increase the nonlinearity and
improve the model efficiency. The number of neurons in the
hidden layers was set at 32/64/24. The models for MIMIC III
and PUMCH data sets are basically the same, except for slight
differences in the input. We trained the model for 5000 epochs
with a learning rate of 0.015. The fully connected neural network

was built using TensorFlow (version 1.12.0). Each data set was
divided into training (80%) and test (20%) sets, with the
proportion of subtherapeutic records, normal therapeutic records,
and supratherapeutic records being maintained. To validate the
predictive performance of our model, 5-fold cross-validation
was used on each data set.

Heparin Dosage Recommendation
By using the neural network model described above, we can
calculate the probability that a record belongs to each of the 3
categories (subtherapeutic, normal therapeutic, and
supratherapeutic) with the softmax function [19]. For a
subtherapeutic or supratherapeutic patient record x and a
possible dosage α, we change the actual total heparin dosage
of x to α and defined M(x,α) to be the normal therapeutic
probability after this changing. Then, we calculated M(x,α) by
the softmax function shown below:

where r, s, and t are the outputs (a larger number means a higher
probability of belonging to this category) of the neural network
model for supratherapeutic, normal therapeutic, and
supratherapeutic, respectively, after this changing.

For this subtherapeutic or supratherapeutic patient record x, we
provided a recommended total heparin dosage σ(x) for x, which
maximized the normal therapeutic probability. More specifically,
we computed the recommended dosage using the following
formula:

where O denotes the set of all possible dosages. We believe that
our recommended dosage is reasonable and that our model may
improve the clinician’s judgement.
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Model Evaluation

Model Performance Evaluation
The following measures, that is, precision, recall, F1 score,
accuracy, and the kappa coefficient, were used to evaluate the
capability of our ternary classification model [20,21]. Because

the microaveraged precision, recall, and F1 score are all equal
to accuracy, we only computed the accuracy, kappa coefficient,
macroaveraged precision, recall, and F1 score to gauge the
classification performance. For details, see the confusion matrix
in Table 3 and the formulas below.

Table 3. The confusion matrix of our prediction.a

Prediction labelActual label

SupratherapeuticNormal therapeuticSubtherapeutic

CBASubtherapeutic

FEDNormal therapeutic

IHGSupratherapeutic

aThis table was used to gauge the classification performance, as shown in the formulas.

Feature Importance Evaluation
To evaluate the importance of each feature in our shallow neural
network model, we removed 1 feature at a time and then
calculated the decline in the model accuracy. More specifically,
the importance Ei of the i-th feature Fi can be calculated by the
formula Ei = A – Ai, where is the model accuracy when all
features are used and Ai is the model accuracy after removing
feature Fi. The features with higher Ei values are more important
to the model. We also used 5-fold cross-validation on each data
set to improve the stability of the calculation.

Recommendation Result Evaluation
The recommendation dosage result was compared with the
actual decision made by the clinicians in the retrospective
database, and the corresponding dosage response in the clinical
scenario was also evaluated to validate whether the actual dosage
setting was optimal. When the actual dosage setting was
subtherapeutic and our recommended dosage was higher or it
was supratherapeutic and our recommended dosage was lower,
then we believe our recommended dosage was reasonable. For
example, for a patient with predicted subtherapeutic aPTT
outcomes after 10,000 IUs of heparin treatment, if a model
recommended that dosage is greater than 10,000 IUs, we
considered the recommended dosage to be reasonable; if the
model recommended dosage is less than 10,000 IUs, we
considered the recommended dosage to be unreasonable.

Results

Patient Characteristics
Patient characteristics according to the therapeutic outcome
after heparin injection in MIMIC III and PUMCH are shown
in Table 4. Among the 3607 MIMIC III patients, 1718 (47.6%)
showed aPPT values within the subtherapeutic range, 1266
(35.1%) had values within the normal therapeutic range, and
623 (17.3%) patients had values within the supratherapeutic
range. Among the 1549 PUMCH patients, 434 (28.1%) had
measured aPPT values within the subtherapeutic range, 754
(48.7%) had values within the normal therapeutic range, and
361 (23.3%) had values within the supratherapeutic range. For
numeric features, the feature density distribution was generated
to clarify whether the values were scattered or centered
(Multimedia Appendix 3).
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Table 4. Patient characteristics and selected features according to the therapeutic outcome after heparin injection.

Therapeutic range categoryData set, patient characteristics

SupratherapeuticNormal therapeuticSubtherapeutic

62312661718Multiparameter Intelligent Monitoring in Intensive
Care III database (n=3607)

70.6 (13.9)67.8 (15.0)65.4 (14.2)Age (years), mean (SD)

80.5 (21.8)81.3 (21.3)84.5 (21.8)Weight (kg), mean (SD)

Gender, n (%)

320 (51.4)750 (59.2)1068 (62.2)Male

303 (48.6)516 (40.8)650 (37.8)Female

Ethnicity, n (%)

441 (70.8)928 (73.3)1223 (71.2)White

71 (11.4)111 (8.8)98 (5.7)Black

16 (2.6)21 (1.7)42 (2.4)Latin

25 (4.0)25 (2.0)24 (1.4)Asian

70 (11.2)181 (14.3)331 (19.3)Others

Admission type, n (%)

22 (3.5)69 (5.5)189 (11.0)Elective

591 (94.9)1152 (91.0)1474 (85.8)Emergency

10 (1.6)45 (3.6)55 (3.2)Urgent

40.4 (21.2)45.5 (26.8)39.5 (22.0)Initial aPTTa value (s), mean (SD)

1.7 (1.2)1.5 (1.1)1.4 (1.0)Creatinine value (mg/dL), mean (SD)

1.6 (1.0)1.7 (1.2)1.6 (1.1)AST/ALTb ratio, mean (SD)

0.4 (0.7)0.4 (0.7)0.5 (0.8)Coagulation SOFAc score, mean (SD)

0.4 (0.8)0.4 (0.7)0.4 (0.8)Liver SOFA score, mean (SD)

1.7 (1.3)1.5 (1.3)1.5 (1.2)Cardiovascular SOFA score, mean (SD)

1.3 (1.2)1.1 (1.2)0.8 (1.1)Renal SOFA score, mean (SD)

12667.3 (6932.3)11299.9 (7550.8)8449.7 (6773.0)Total heparin dosage (IUs), mean (SD)

361754434Peking Union Medical College Hospital (n=1549)

60.9 (14.9)57.8 (15.5)55.1 (15.9)Age (years), mean (SD)

66.5 (12.4)67.3 (12.2)68.1 (12.6)Weight (kg), mean (SD)

Gender, n (%)

223 (61.8)453 (60.1)256 (59.0)Male

138 (38.2)301 (39.9)178 (41.0)Female

39.4 (9.2)34.6 (5.8)29.5 (5.5)Initial aPTT value (s), mean (SD)

128.0 (86.3)117.2 (78.7)107.4 (73.7)Creatinine value (μmol/L), mean (SD)

55.7 (141.9)47.1 (104.5)45.1 (91.7)Alanine aminotransferase value (unit/L), mean (SD)

1.1 (1.0)1.0 (1.0)0.9 (0.9)Coagulation SOFA score, mean (SD)

0.8 (1.0)0.7 (0.9)0.6 (0.8)Liver SOFA score, mean (SD)

3.1 (1.5)3.0 (1.5)2.9 (1.6)Cardiovascular SOFA score, mean (SD)

0.8 (1.0)0.6 (1.0)0.5 (0.9)Renal SOFA score, mean (SD)

9.6 (5.6)7.8 (4.4)7.5 (4.3)Total heparin dosage (IU/kg), mean (SD)

aaPTT: activated partial thromboplastin time.
bAST/ALT: aspartate aminotransferase/alanine aminotransferase.
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cSOFA: sequential organ failure assessment.

Model Performance
We divided each data set into a training (80%) set and test (20%)
set. The proportions of each therapeutic level after dividing the
data sets are listed in Multimedia Appendix 4. The shallow
neural network model was trained and tested on a retrospective
cohort of MIMIC III and PUMCH. The model performance

results are listed in Table 5. For both data sets, our model
achieved an accuracy of over 0.89, a kappa coefficient of over
0.82, and a macroaveraged F1 score of over 0.88. The results
reflect the stable performance of the fully connected shallow
neural network model and suggest that our model has
generalizability for different databases.

Table 5. Model performance on the 2 data sets.

Peking Union Medical College Hospital data
set

Multiparameter Intelligent Monitoring in Intensive Care III data
set

Parameters

0.9260.891Accuracy

0.8820.823Kappa coefficient

0.9310.890Macroaveraged precision

0.9200.884Macroaveraged recall

0.9250.887Macroaveraged F1 score

Feature Importance
Figure 3 illustrates the importance of each feature in the
development of our predictive model. The features are colored
group-wise according to the categories listed in Table 2. A
higher value indicates greater significance of the feature in the
model. From the feature importance evaluation results, we
conclude that the key features are basically the same in the 2
data sets but that their rankings differ slightly. For the MIMIC

III data set, the total heparin dosage is the most influential model
factor; weight, initial aPTT value, creatinine value, and age are
key features and contributed substantially to the model. For the
PUMCH data set, the highest impact feature is the initial aPTT
value; total heparin dosage, age, weight, and creatinine are also
important features for construction of the model. Ethnicity,
SOFA scores, and gender have relatively small effects on the
model in both data sets. Overall, the feature contribution analysis
results are relatively consistent with clinical experience.
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Figure 3. Feature importance. ALT: alanine aminotransferase; aPTT: activated partial thromboplastin time; AST: aspartate aminotransferase; MIMIC
III: Multiparameter Intelligent Monitoring in Intensive Care III; PUMCH: Peking Union Medical College Hospital; SOFA: sequential organ failure
assessment.

Evaluation Results of Recommended Heparin Dosage
We compared our recommended dosage with the actual dosage
for subtherapeutic samples (MIMIC III: n=1718; PUMCH:
n=434) and supratherapeutic samples (MIMIC III: n=623;
PUMCH: n=361). For 72.2 % (1240/1718) of the subtherapeutic
samples in MIMIC III and 64.7% (281/434) of the
subtherapeutic samples in PUMCH, our model recommended

a higher heparin dosage than the clinicians did. Moreover, for
80.9% (504/623) of the supratherapeutic samples in MIMIC III
and 76.7% (277/361) of the supratherapeutic samples in
PUMCH, our model recommended a lower heparin dosage than
the clinicians did. In Figure 4, the solid yellow, green, and red
in the inner circles represent the subtherapeutic, normal, and
supratherapeutic samples, respectively. The same shaded colors
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in the outer ring indicate that the recommended therapeutic state
matches the inner circle, whereas fine green bars in the outer
ring indicate the recommendation to increase the heparin dosage
in subtherapeutic samples and to decrease the heparin dosage

in supratherapeutic samples. The model recommendations may
improve heparin treatment outcomes and may effectively reduce
the time to optimal dosage in the clinical setting.

Figure 4. Recommend heparin dosage results in the MIMIC III (A) and PUMCH (B) data sets. MIMIC III: Multiparameter Intelligent Monitoring in
Intensive Care III; PUMCH: Peking Union Medical College Hospital.

Discussion

Principal Results
In this study, we used a validated shallow neural network model
for the clinical scenario of UFH infusion, which is commonly
applied in the treatment and prevention of venous
thromboembolism. To our knowledge, our study is the first
practical validation of a machine learning–based model in the
area of medication dosing optimization. We demonstrated the
feasibility and efficiency of the proposed model in MIMIC III
and in a local critical care database in a Chinese tertiary teaching
hospital. Based on the calculated probabilities of individual
circumstances, we proposed a UFH dosage recommendation
for each record, and the comparison results show that the
predicted recommended dosage can satisfactorily match the
clinical practice.

Comparison With Prior Work
As described in a previous study by Ghassemi using the MIMIC
II database [14], a large variation appears in the initial dosing
and the corresponding aPTT response, which suggests an
underlying discrepancy in both the interprovider practice and
patient factors. In the clinical scenario, to avoid this deviation
and subsequent fluctuations and treatment-related risks, in our
local practice, instead of empirically setting an initial dosage,
a step-by-step pattern was adopted. The applicable dosing level
was determined according to a series of continuously monitored
aPTT results. Therefore, in this study, we used the steady state

aPTT value after 8 h of heparin treatment instead of a single
value. The results show that the machine learning–based model
can effectively predict the aPTT response after the initial dosing
and in a step-by-step pattern, which can contribute to decreasing
the duration of the therapeutic regime and avoiding
treatment-related risks. In our previous work, we demonstrated
that the shallow neural network algorithm performed best
compared to algorithms such as extreme gradient boosting,
adaptive boosting, and support vector machine [11]. Based on
our local clinical database and modified treatment pattern, we
validated our previously developed model and demonstrated
the applicability of this machine learning–based algorithm for
UFH treatment. Despite having trained the machine learning
models in our previous study on 2 public data sets, which mainly
come from the well-known MIMIC and electronic ICU
databases, they may not be generalizable to other institutions
and populations. Nevertheless, our experience has shown that
in a specific clinical scenario, the models can be smoothly
migrated to a new data set after retraining, which reflects the
flexibility and simplicity of machine learning algorithms. It is
worth noting that validation on different data sets demonstrates
the generalizability of the model, but the model will not
necessarily have the same set of coefficients for each data set.

The interpretability problem remains an issue in the application
of machine learning algorithms to the clinical setting.
Interpretability can contribute to a physician making decisions
based on numerous clinical variables rather than simply
providing a prediction or description [22]. In this study, we
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calculated the importance of each feature in the shallow neural
network model. As shown in Figure 3, the total heparin dosage,
weight, initial aPTT value, creatinine value, and age are the 5
most important features for both data sets, although their specific
ordering differs between data sets. In addition, as shown in
Table 4, the average total heparin dosage increased successively
from the subtherapeutic patients to the normal therapeutic
patients and then to the supratherapeutic patients. It is reasonable
that older age, lesser weight, and higher creatinine level tend
to lead to supratherapeutic dosing. Conversely, younger age,
higher weight, and lower creatinine level tend to lead to
subtherapeutic dosing. This is consistent with clinical experience
and can provide some practical support for clinicians. The
feature importance analysis not only describes how the model
works to a certain extent but can also prompt clinicians to pay
more attention to important clinical variables. Although artificial
neural network models are often regarded as black box models,
we believe that the analysis and interpretation of these models
will help understanding the model.

For each subtherapeutic or supratherapeutic patient, we
recommended a total heparin dosage through the model. It is
unreasonable to evaluate the recommended dosage with the
model itself; therefore, we evaluated the rationality of the
recommended dosage by comparing with the actual dosage
given by the clinicians. It is noteworthy that in the MIMIC III
data set, since the total heparin dosage is the most important
feature, it contributed most to reasonable heparin dosage
recommendation. In contrast, for the PUMCH data set, since
the initial aPTT value is the most important feature and the total
heparin dosage is relatively less important, the evaluation results
of reasonable recommended heparin dosage are slightly low,
as shown in Figure 4. Furthermore, the recommendation dosage
results were initially evaluated in this study. For example,
recommending increased dosage to subtherapeutic patients is
evaluated as improved outcome; however, the recommended
dosage may not definitely lead to a normal heparin treatment
outcome—it may also lead to a supratherapeutic condition. We
will further improve the evaluation method in our future studies.

Limitations
This study has several limitations. First, our study was limited
by its retrospective nature and the sources of the data. The
performance of this machine learning–based model should be
validated in clinical practice in order to provide valuable
suggestions for treatment. Therefore, in addition to model

optimization and cross-validation using more clinical databases,
a well-designed, prospective, crossover clinical study should
be performed. Second, our results were limited by the size of
the populations in the clinical databases; a larger cohort might
contribute to more accurate predictions and more precise
recommendations for the steady dosing level. Considering the
similarity of the data and logical structure, other clinical
scenarios such as therapeutic drug monitoring, homeostasis
balancing, and blood transfusion control could be appropriate
applications of this model. Third, as described above,
considering the different time span, treatment pattern, and
patient characteristics of the MIMIC III and PUMCH clinical
databases, such as 2 feature sets are not completely consistent,
the optimal dosing level and the corresponding aPTT results
differ in the 2 data sets. Nevertheless, these disparities did not
cause the dose-effect relationship to differ in either the clinical
practice or the machine learning algorithm, as demonstrated by
the model performance and feature importance results. Although
input features need to be adjusted or preprocessed when applied
to the other data set, we still regarded that the prediction model
and recommendation method provide a machine learning
solution when applied to heparin outcome prediction and
decision-making clinical scenarios. Furthermore, from the
perspective of model development, our fully connected shallow
neural network model is currently a static model that does not
make use of dynamic time series data. In addition, we have not
incorporated other available relevant features into the model,
such as medical history, comorbidities, surgery history, and
intake of medications other than heparin. In the future, with the
goal of achieving better predictions of the outcome of heparin
treatment and recommending more reasonable heparin dosages,
we will build a dynamic model such as a recurrent neural
network or a long short-term memory model and incorporate
more features.

Conclusions
Based on the machine learning model trained and validated in
our previous work, this study aimed to further validate the model
and its shallow neural network in a local clinical setting. We
found that the data-driven machine learning method could be
used effectively in the clinical scenario of UFH treatment with
a step-by-step dosage pattern. The results provide support for
predicting UFH treatment outcomes and recommending optimal
UFH dosing to clinicians. We also evaluated the importance of
each model feature to aid in the interpretation and understanding
of the machine learning model.
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