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Abstract

Background: Health authorities can minimize the impact of an emergent infectious disease outbreak through effective and
timely risk communication, which can build trust and adherence to subsequent behavioral messaging. Monitoring the psychological
impacts of an outbreak, as well as public adherence to such messaging, is also important for minimizing long-term effects of an
outbreak.

Objective: We used social media data from Twitter to identify human behaviors relevant to COVID-19 transmission, as well
as the perceived impacts of COVID-19 on individuals, as a first step toward real-time monitoring of public perceptions to inform
public health communications.

Methods: We developed a coding schema for 6 categories and 11 subcategories, which included both a wide number of behaviors
as well codes focused on the impacts of the pandemic (eg, economic and mental health impacts). We used this to develop training
data and develop supervised learning classifiers for classes with sufficient labels. Classifiers that performed adequately were
applied to our remaining corpus, and temporal and geospatial trends were assessed. We compared the classified patterns to ground
truth mobility data and actual COVID-19 confirmed cases to assess the signal achieved here.

Results: We applied our labeling schema to approximately 7200 tweets. The worst-performing classifiers had F1 scores of only
0.18 to 0.28 when trying to identify tweets about monitoring symptoms and testing. Classifiers about social distancing, however,
were much stronger, with F1 scores of 0.64 to 0.66. We applied the social distancing classifiers to over 228 million tweets. We
showed temporal patterns consistent with real-world events, and we showed correlations of up to –0.5 between social distancing
signals on Twitter and ground truth mobility throughout the United States.

Conclusions: Behaviors discussed on Twitter are exceptionally varied. Twitter can provide useful information for parameterizing
models that incorporate human behavior, as well as for informing public health communication strategies by describing awareness
of and compliance with suggested behaviors.
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Introduction

Health authorities can minimize the impact of an emergent
infectious disease through effective and timely risk
communication, vaccines and antiviral therapies, and the
promotion of health behaviors, such as social distancing and
personal hygiene practices [1-4]. Of these, official
communication is the earliest available strategy, and its
effectiveness will build trust and adherence to the remaining
measures [1]. During the H1N1 influenza pandemic in 2009,
most countries focused on the promotion of health behaviors
[2] such as mask-wearing, avoidance of crowds, and increased
disinfection after observing that such protocols contributed
substantially to reduced transmission and ultimate control of
disease during the SARS outbreak in 2003 [5]. Health authorities
have paid less attention to the psychological factors associated
with a pandemic [3,4], though such factors play a vital role in
subsequent adherence to health behaviors and vaccine uptake
[1]. During the emergence of the Zika virus in 2016, public
health guidelines focused on preventing sexual transmission by
using condoms, avoiding travel to locations with active Zika
transmission, and mosquito control [6], with varying levels of
compliance [7,8].

Research into the use of social media and internet data for health
surveillance is a growing field. Individuals discuss a wide
variety of health concerns and health behaviors online, from
symptom searching [9] and personal experiences with infectious
diseases [2] to dieting [10] and electronic cigarette use [11].
These data have been used to identify prominent points of
discussion in relation to health topics [12-14], which can point
toward more effective health policies and interventions. In
addition, social media and internet data reflect temporal and
spatial patterns in health behavior [9-12,15]. The association
between internet data and health behavior, topics, and attitudes
relevant to the public provides insight into the manner in which
individuals receive health information and how that information
may translate into behavioral change. Specifically for disease
outbreaks, internet and social media data provide opportunities
for public health officials to monitor prevalent attitudes and
behaviors at a given time to target further interventions and
policies.

In this work, we used social media data to better understand
human behaviors relevant to COVID-19 transmission and the
perceived impacts of COVID-19 on individuals. We developed
a coding schema for 6 categories and 11 subcategories, which
included both a wide number of behaviors as well as codes
focused on the impacts of the pandemic (eg, economic and
mental health impacts). We applied this schema to
approximately 7200 tweets and developed supervised learning
classifiers for classes with sufficient labels. We then applied
these classifiers to an extensive Twitter data set and showed
patterns in human behaviors temporally and spatially across the
United States.

We specifically focused on the following research questions:

1. Research Question 1: What behaviors related to COVID-19
are discussed on social media websites, specifically Twitter?
Using content analysis techniques similar to other social
media studies (eg, Ramanadhan et al [16] and Carrotte et
al [17]), we identified behaviors discussed on Twitter that
could be relevant to disease transmission or the downstream
impacts of COVID-19. At the outset, we were particularly
interested in social distancing, hygiene, and personal
protective equipment practices, but we were also interested
in identifying the breadth of behaviors that might be
discussed.

2. Research Question 2: How do patterns in behaviors change
geospatially and temporally in the United States? Using
labeled data from Research Question 1, we built
classification models to identify behaviors in the larger
Twitter corpus. We were interested in temporal and
geospatial trends in these classified data with the goal of
observing regional patterns and temporal changes that
occurred in conjunction with real-world events. Prior work
has used similar methods to observe patterns during Zika
emergence in 2016 [15].

3. Research Question 3: How do these trends compare to other
data streams, like mobility data sets? Prior work has shown
that social media data are biased in multiple ways [18,19].
One way to validate our findings is to compare results using
social media data to other data sources that have been useful
to measure human behavior during the COVID-19
pandemic. In particular, several studies have shown that
mobility data sets that rely on mobile devices (eg,
smartphones) have been useful at accurately gauging
reduced mobility [20,21].

Methods

Data
For this work, we used a data set of tweets provided by Chen
et al [22]. Data collection started on January 28, 2020, and used
Twitter’s search application programming interface (API) to
get historical tweets as early as January 21, 2020. They started
with 14 keywords related to the novel coronavirus, and later
expanded both keywords and individual accounts tracked over
time. The data relied on Twitter’s streaming API, and are thus
a 1% sample of tweets that include the keywords. The original
repository contained about 270 million tweets as of mid-July
2020 [22]. Of these, we were able to collect 84%
(N=228,030,309).

Schema Development
The coding schema was developed by three of the authors (AD,
DG, and CS) through iterative analysis of random samples of
tweets from our corpus. We started initially with categories of
interest (eg, social distancing and personal protective equipment)
and added both categories and subcategories as they were
identified in tweets, similar to prior work [16,17]. The final
schema is hierarchical, where annotators can label categories
and, if applicable, subcategories within the category of interest
(Figure 1).
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Figure 1. Decision tree for labeling.

Personal and impersonal viewpoints were labeled separately
from the tweet category. Here, a personal viewpoint is a tweet
that describes a direct observation of the behavior, meaning the
individual tweeting talks about their own behavior, or a person
or event that the user can directly observe. For example, the
tweet “I am wearing a mask when I go out” is a personal
mention of personal protective equipment, specifically
mask-wearing. An impersonal viewpoint, in contrast, includes
actions like sharing articles, retweeting, or expressing an opinion
without providing evidence that the user themself engages in
the behavior (eg, “Ugh, I wish more people wore masks”). This
definition is the same as prior work [15]. Of note, tweets were
only labeled as personal or impersonal if they were already
labeled with a category. Tweets that were outside the labels of
interest were not labeled for viewpoint.

Training Data

Training Annotators and Annotation
To create our training data set, 7278 tweets were selected at
random from the English tweets we collected between January
and May 2020, as labeling commenced in May. Using the above
schema, we then trained three additional annotators. Annotators
were trained using the following steps. First, a member of the
team (AD) met with each individual prospective annotator and
thoroughly described the schema. The prospective annotator
and AD first labeled 16 example tweets together using tweets
already labeled during schema development. The annotator then
individually coded 160 additional tweets previously labeled by
the authors. If agreement was sufficiently high (>0.6), the
annotator was then given their own section of training data to
code. Each tweet in our training data set was coded by two such
annotators. All annotators met weekly to discuss questions about
labels. All tweets with disagreements were resolved by a third
annotator or via group discussion. The workflow to label tweets
is given in Figure 1. Tweets can be labeled with more than one
label, as applicable.

Annotator Agreement
Annotator agreement varied. Personal and impersonal labels
had agreements of 0.41, 0.44, and 0.41 between the three pairs
of annotators. Category-level labels had agreements of 0.77,
0.82, and 0.82, and subcategory-level labels had agreements of
0.61, 0.65, and 0.66. Distinguishing between personal and
impersonal tweets was the hardest classification task because
it is inherently difficult to correctly identify voice in the span
of 280 characters, especially without additional context. Prior
work has relied on the use of personal pronouns (eg, “I,” “we,”
and “our”) to identify personal tweets [15], but it is clear that
this method has a high false negative rate because of linguistic
patterns like pronoun-drop (eg, the tweet “Went to the store
today and nobody was wearing masks” drops the pronoun “I”
and leaves it implied) [23]. Thus, despite the difficulty in
labeling these tweets, we believe it is preferable to automated
methods.

Classification Algorithms

Tweet Preprocessing
Tweet URLs and usernames (@-mentions) were replaced with
the tokens “URL” and “USERNAME,” respectively.
Consecutive characters were truncated (eg, “greaaaaaat” was
truncated to “great”) and punctuation was removed. Of the
training data, 15% were reserved as the test set. Tweets were
split using stratified sampling based on the category labels to
preserve label proportions. Because of the small number of
labels in several categories (Table 1), we only attempted to
make classifiers for the following: personal or impersonal, social
distancing (category), shelter-in-place (subcategory), monitoring
(category), hygiene (category), and personal protective
equipment (category).

Because personal and impersonal labels were only assigned to
tweets if they fell into a category, the training data for this
classifier were only those tweets with an initial label. In contrast,
all other classifiers used binary classification and included all
tweets that did not include the label of interest, including tweets
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with no labels. As such, all classification models were built
using extremely disproportionate label distributions.

Logistic Regression
Logistic regression models were implemented in Python, version
3.7.7 (Python Software Foundation), using scikit-learn [24] and
the elastic net penalty. Features included all unigrams, bigrams,
and trigrams of tweet text. To optimize models, grid search was
used with all possible combinations of the following parameters:
the elastic net penalty varied the L1 ratio from 0 (equivalent to
only “L2” penalty) to 1 (equivalent to only “L1” penalty),
regularization strength varied in order of magnitude from 0.001
to 1000, and chi-square feature selection was varied from 10%
to 100% of the features (ie, no feature selection), in steps of
10%, to explore the impact of feature reduction on model
performance.

Random Forest
Random forest models were implemented using scikit-learn’s
random forest classifier [24]. As in logistic regression, features
included all unigrams, bigrams, and trigrams of tweet text.
Again, grid search was used to optimize models. The minimum
number of samples per leaf node was varied from 2 to 11 (in
steps of 3), the minimum number of samples required to split
an internal node ranged from 2 to 52 (in steps of 10), and the
number of trees per forest was either 50 or 100. Last, we
additionally varied the number of features. Because of the larger
number of parameters tested here, we tried feature selections
of 25%, 50%, 75%, or 100% of features (ie, no feature
selection).

Classification and Bias Adjustments
Both types of models performed poorly for classifying
monitoring, personal protective equipment, and hygiene. As
such, we did not use these models for downstream analysis.
Rather, we focus on the personal or impersonal model, the social
distancing classifier, and the shelter-in-place classifier.

Though random forest models sometimes produced slightly
higher F1 scores, we used the logistic regression models for
overall classification and downstream analysis because of the
slightly higher precision values. Said another way, in this
context, we preferred fewer false positives to slightly more false
negatives because we were trying to identify a particular
behavior and wanted as few erroneous predictions included in
the classifier as possible.

To combat the bias inherent in our classifiers, as it is clear that
misclassification will occur, we used the method suggested by
Daughton and Paul [25] to create confidence intervals that
account for classifier error. The basic principle is to use
bootstrapping to generate many samples and to subsequently
weight individual classifications by the positive predictive value
or negative predictive value of the classifier. The bootstrapped
samples are then used to generate a 95% confidence interval
around the point estimate (see Daughton and Paul [25] for full
details). This method has been successfully applied in similar
work focused on identifying travel change behaviors in response
to Zika [15]. For this work, we used 100 bootstrapped samples
to generate daily confidence intervals.

Geospatial Analysis and Comparison to Mobility and
COVID-19 Data
We compared the results of our classifiers to mobility data from
Descartes Labs—available at Descartes Labs [26] and described
in Warren and Skillman [27]—to provide a ground truth
measurement of social distancing, and to the number of
confirmed COVID-19 cases in each state, as tracked by The
New York Times [28]. The mobility data used geolocation
services from mobile devices (eg, smartphones) to generate
aggregate estimates about mobility within specific geographic
areas. Descartes Labs provides data at admin level 1 (state)
mobility and admin level 2 (county) mobility [26]. For this work,
we only consider state mobility. Descartes Labs uses a
normalized value of the median maximum distance traveled
each day: the m50 index. Here, data are normalized using the
median mobility per state between February 27 and March 7
(ie, a pre–COVID-19 window). For this work, we looked at the
percent change in mobility (m50 index – 100) [27], which can
be interpreted as the percent change in mobility relative to the
baseline period.

We used these data as a ground truth data set to validate social
media tweets about social distancing and sheltering-in-place.
For these comparisons, we restricted our data to those with
geolocation services enabled (ie, those that used the tweet
“place” to determine location), which we then aggregated by
state. Here, data were aggregated to weekly data, and any weeks
with fewer than 50 tweets were removed. States with fewer than
10 data points were excluded from visualization.

Results

Content Analysis and Labels
In total, 7278 tweets were read and labeled. Of these, 2202
tweets fell into the categories shown in Table 1. For each
category and subcategory, the definition and an example
anonymized tweet is shown. The most prevalent category by
far was tweets about social distancing. Of these tweets, the vast
majority were about sheltering-in-place, writ broadly, including
tweets about adjusting to life at home (eg, work or school from
home); tweets about entertainment, including hobbies and
recipes; tweets about plans that were canceled (parties,
weddings, etc); and a few tweets about a supposed
“coronaboomer” phenomenon, where some suggested that the
additional time spent at home would lead to an increase in babies
born in 2021. In addition, we identified 53 tweets related to the
mental health impacts of social distancing, including tweets
about tactics to maintain positive mental health, as well as tweets
describing the mental health difficulties associated with social
distancing.

In other categories, we again saw a wide variety of health topics
discussed. This included tweets about monitoring, of which
roughly a third were about access to or experiences with
COVID-19 testing; hygiene, including handwashing and
cleaning protocols; and a few tweets (n=49) weighing in on
COVID-19 vaccine development. Last, we also saw instances
of tweets about the economic impacts of COVID-19, including
on the supply chain and in terms of unemployment.
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Table 1. Tweet content and relative proportion.

Tweets
(N=7278), n (%)

Example tweet (anonymized)DefinitionCategory and subcate-
gories

Social distancing

1494 (20.5)“COVID-19 SUCKS! I can’t see my
family and I really miss them.”

Discusses social distancing in either a positive or a negative
way (eg, not physically seeing friends and family, not going to
work, or discussing reasons why lockdowns are unnecessary)

All subcategories

1117 (15.3)“State going into lockdown tomor-
row. I can work from home but I’m
also going to catch up on my back-
log Steam library!”

Discusses any aspects of shelter-in-place or stay-at-home poli-
cies; includes school or daycare (or homeschool), remote work,
things to do to keep busy while staying home (eg, hobbies and
recipes), canceled plans, delivery services (to avoid going out
in public), and the supposed phenomenon that birth rates would
increase after the pandemic (“coronaboomers”)

Shelter-in-place

53 (0.7)“I’m so stressed I’m going to cry. I
don’t want to be where I am now, I
just want to be alone for quaran-
tine.”

Discussions about mental health; includes suggestions of activ-
ities to maintain mental health while sheltering-in-place and
documents about the mental health difficulties associated with
COVID-19 and social distancing

Mental health

12 (0.2)“Record high cases in the past few
days. It’s been two weeks since the
election.”

Decisions around voting by mail (eg, for COVID-19–related
safety reasons or the opposite opinion)

Voting

31 (0.4)“Got a bunch of masks and gloves
in case the coronavirus becomes a
big deal here.”

Storing things like food, medicines, and disaster suppliesHoarding

53 (0.7)“Airport security was super fast --
no lines at bag check.”

Descriptions of going to public places and choosing to not so-
cially distance

Public events

Monitoring

315 (4.3)“I keep coming across people with
sore throats and cold symptoms to-
day. Hope it’s not COVID!”

Behavior monitoring for illness; includes monitoring friends or
family that have the disease

All subcategories

116 (1.6)“The complete failure in testing
ramp up is really disappointing.”

Ability or inability to get tested for COVID-19 infection; in-
cludes tweets expressing desires for improvements and increases
in testing and novel testing strategies (eg, drive-through testing
centers), or in combination with other tactics like contact tracing

Testing

84 (1.2)“Anti Neo Plastons is the natural
cure for Coronavirus and your body
makes them naturally!”

Unproven treatments, advice, and/or ways to “prevent” or “cure”
the disease using natural methods (eg, vitamin D)

Remedies

94 (1.3)“Just saw a kid about to use the wa-
ter fountain. Their parent grabbed
them and said ‘NOOOOOOOO…
there could be COVID!’”

Trying to prevent sickness by using good hygiene, including
handwashing, cleaning and sanitation, and other cleanliness-
related behaviors

Hygiene: all subcategories

164 (2.3)“1.) Wear your mask 2.) Social dis-
tance 3.) Wash your hands! We can
do this!”

Using personal protective equipment to prevent illness; includes
masks and gloves

Personal protective equip-
ment: all subcategories

Vaccine

31 (0.4)“The work on the COVID vaccine
is amazing. I can’t wait to get it!”

Tweets that are positive and supportive of vaccine effortsProvaccine

18 (0.2)“I hope you’re not in favor of the
Gates vaccine. I’m not going to be
tracked by a microchip!”

Tweets that use vaccine-averse rhetoric to describe why a vac-
cine will be unsafe or ill-advised

Antivaccine

Economic

33 (0.5)“Can we trust the food supply
chain? Should we start growing our
own fruits and vegetables?”

Information or commentary about supply chain–related issues;
includes information about “price gouging”

Supply chain

53 (0.7)“I’m a driver for Uber, but I was put
on medical leave after COVID-19
exposure & haven’t made any mon-
ey since.”

Includes descriptions of applying for unemployment benefits
or commentary on the process; includes stimulus checks or
commentary about unemployment or underemployment due to
COVID-19

Unemployment
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A breakdown of categories by personal and impersonal labels
is shown in Figure 2 (a), and subcategories are shown in Figure
2 (b). Overall, a small fraction of tweets were personal mentions;
the majority of tweets were impersonal mentions related to each
category (eg, mentions of articles or general opinions and

suggestions that do not describe a personal behavior). This is
consistent with prior work, which has found that personal
mentions of health-related behavior on social media are rare
[19].

Figure 2. Category distribution. Tweets are broken down by frequency of personal and impersonal labels (a) and by subcategory grouped by category
(b). Categories without subcategories are not shown in (b). Only categories with at least 80 labels, and subcategories with at least 50 labels, are shown.
PPE: personal protective equipment.

Because there were so few tweets in most categories, it was not
feasible to build robust classifiers for most categories or
subcategories. For this work, we selected for classification only
the personal and impersonal classification task; the categories
of social distancing, monitoring, hygiene, and personal
protective equipment; and the subcategory shelter-in-place. In
general, we found similar performances between random forest
and logistic regression (Table 2). The exception to this trend

was in the personal protective category, where the logistic
regression model substantially outperformed the random forest.

For subsequent analysis, we focused on categories that achieved
an F1 of at least 0.6: personal or impersonal, social distancing,
and the shelter-in-place classifiers. We then applied the logistic
regression models to the remaining data in our corpus of over
228 million tweets through July 2020.
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Table 2. Tweet classification results.

Random forestLogistic regressionClassifier

F1 scoreRecallPrecisionF1 scoreRecallPrecision

0.640.570.720.600.500.76Personal or impersonal

Social distancing classifiers

0.660.610.710.660.590.73Social distancing (category)

0.650.650.650.640.600.69Shelter-in-place (subcategory)

0.180.130.320.280.170.72Monitoring classifiers

0.260.210.330.360.290.50Hygiene classifiers

0.300.240.400.550.520.59Personal protective equipment (eg, masks and gloves) classifiers

Temporal Patterns
Using the full classified corpus, we compared temporal patterns
in social distancing tweets, shelter-in-place tweets, and the
subsets of those groupings which were also classified as personal
mentions, to important real-world events that occurred during
the outbreak (Figure 3). Importantly, the proportion of tweets
classified as social distancing and shelter-in-place tweets
followed a predictable pattern with respect to real-world events
occurring during the outbreak. Social distancing tweets occurred
soon after the initial US COVID-19 case as people started to
discuss initial reactions to the new disease. As states began to
institute shelter-in-place orders—with California leading in late

March 2020 [29]—the number of tweets about social distancing
and sheltering-in-place doubled. Tweets in this category stayed
high throughout the summer, as a large number of Americans
were under shelter-in-place orders [29]. In early April 2020,
estimates of the number of Americans told to stay at home were
around 95%, despite widespread variation in how stay-at-home
orders were implemented [30]. As expected, the number of
personal tweets was a small fraction of the social distancing
and shelter-in-place tweets more broadly. There was little
variation in the temporal patterns of personal tweets; all signals
came from the broader set of both personal and impersonal
tweets.

Figure 3. Temporal patterns in social distancing and shelter-in-place tweets. The proportion of tweets classified as general social distancing,
shelter-in-place, personal shelter-in-place, and personal social distancing are shown by date. Relevant events in the outbreak are shown as vertical lines.
As states increased shelter-in-place and lockdown orders, the number of tweets about social distancing and sheltering-in-place dramatically increased.
Shading shows the 95% CI calculated using classifier-adjusted bootstrapped sampling while the median is a solid line. CIs are extremely small at several
time points. CA: California; SIP: shelter-in-place.
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State Patterns: Comparisons to Mobility Data
To evaluate temporal patterns more closely, we considered
patterns in individual states and compared them to mobility data
derived from mobile phone devices (Figures 4-6) and the actual
number of confirmed COVID-19 cases (Figure 6). At a high
level, it is clear that there is an inverse relationship between the
proportion of tweets about social distancing and the actual
movement of individuals (Figure 4), indicating that social
distancing conversations on Twitter may actually be reflective
of real-world behavior. However, we can also see interesting
regional patterns among states. For example, some of the
earliest-hit states (eg, California, Washington, and New York)
showed peaks in the number of tweets about social distancing
in late March 2020 compared to states that saw comparatively
few cases early on (eg, Florida and Georgia, which had peaks
in the number of social distancing tweets in late April 2020).

Most states observed the lowest mobility in April 2020, as seen
in Figure 5 (a). The day with the highest fraction of social
distancing tweets was most often in March 2020, though many
states observed this in April as well, as seen in Figure 5 (b). In

general, most states observed these dates within ±20 days of
each other, with the majority of states observing the day of
minimum mobility before the day with the most tweets about
social distancing, as seen in Figure 5 (c). Further, there is a
strong negative correlation between the mobility data and the
classified Twitter data (Figure 6). Though patterns vary by state,
the average correlation is –0.42. Some states show a notably
weaker signal (eg, Arkansas, New Mexico, and Rhode Island),
which could be caused in part by the relative lack of data in
these states. Taken together, these suggest a reasonably strong
relationship between our classified Twitter data set and the
ground truth mobility data. These patterns are not as clearly
reflected in the relationship to confirmed COVID-19 cases. The
average correlation between the proportion of tweets about
social distancing and the number of confirmed COVID-19 cases
is –0.08, though the strongest, which comes from Alabama, is
–0.53. This suggests that, while social distancing discussions
on social media are reflective of actual social distancing
practices as measured by mobility data, the link to COVID-19
transmission is likely more complicated.

Figure 4. US state patterns in mobility compared to social distancing tweets from January to July 2020. Descartes Lab data showing a rolling 7-day
average of percent change in mobility (divided by 5, to improve visualization) is plotted alongside the proportion of social distancing tweets per week.
Both temporal and regional patterns are clear. Further, as the proportion of social distancing tweets increased, mobility measured by Descartes Labs
decreased. States without sufficient Twitter data were removed from the grid. 2-letter abbreviations are used for each state.
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Figure 5. Comparison of peak social distancing tweet proportions and minimum mobility. To validate our social media findings, we compared them
to mobility data provided by Descartes Labs. Dates of minimum mobility are aggregated by month (a), while dates of highest proportion of tweets about
social distancing, aggregated by month, are shown in (b). The difference, in days, between the date of minimum mobility and the date of highest
proportion of social distancing tweets (c) show that most states observed both peaks within 20 days of one another.

Figure 6. Correlation between confirmed COVID-19 cases or mobility and proportion of tweets about social distancing by US state. Most states have
a moderate negative correlation between the proportion of tweets about social distancing and mobility data (yellow), indicating good agreement in the
two signals. Some states have notably weaker negative correlations (eg, AR, NM, and RI), which could be the result of less Twitter data. Correlations
between the number of confirmed COVID-19 cases and the proportion of tweets about social distancing are weak (blue), with a few notable exceptions
(eg, AL). 2-letter abbreviations are used for each state.

Discussion

Principal Findings
The ongoing COVID-19 outbreak clearly illustrates the need
for real-time information gathering to assess evolving beliefs
and behaviors that directly impact disease spread. Historically,
such information would be gathered using survey methods
[5,7,31], which are time-consuming, expensive, and typically
lack the ability to measure temporal and spatial variation [32].
One proposed partial solution is to use internet data (eg, search
query patterns and social media data), which have been shown
to correspond to disease incidence in emergent infectious disease
outbreaks [23,33-35], individual risk perception [1,36,37], and
risk communication [38], and have been used to identify specific
health behaviors [15]. During the early stages of the current
COVID-19 pandemic, social media data have been used to
monitor the top concerns of individuals [39,40], characterize
COVID-19 awareness [41], compare social connectedness and
COVID-19 hot spots [42], monitor misinformation [40,43-45],
and rapidly disseminate information [46]. Last, social media
has been used as an information gathering platform during
periods of uncertain information. Disease emergence is a context
wherein disease risks, transmission, and treatment may be
largely unclear [46]. With this context in mind, we address our
findings with respect to each research question below.

What behaviors related to COVID-19 are discussed on social
media websites, like Twitter? We find that there are a wide
variety of behaviors discussed on social media, including
mask-wearing, hygiene (eg, handwashing), testing availability
and experiences, and social distancing practices. Prior work has
found evidence that mask-wearing and limited mobility were
behaviors adopted to reduce disease spread during SARS [5]
and that handwashing would be commonly implemented by
individuals during a hypothetical pandemic influenza [47]. This
prior work, however, has relied on surveys to obtain data about
the behaviors that individuals implement. The use of social
media to complement such work would improve both the
richness and the temporal and geographic scope of the data
available.

Some of the identified tweets show evidence of sensitive topics.
For example, we found 53 tweets related to individuals’ mental
health. Prior research has found that social media can be used
to identify individuals with a variety of mental health concerns,
including depression [48] and suicide [14]. As there is
considerable work emerging about the substantial mental health
impacts of COVID-19 (eg, increases in domestic violence [49]
as well as depression and anxiety [50]), this could prove to be
an important avenue for future work in this field.

Last, we found a small number of tweets (n=49) about
vaccination related to COVID-19, of which roughly a third
(n=18) showed a negative attitude. Importantly, this study was
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conducted prior to the authorization of any vaccines in the
United States. All of the tweets considered here discuss either
vaccine development or a hypothetical COVID-19 vaccine.
Prior research has found similarly negative tweets during the
emergence of Zika [51] and the H1N1 influenza pandemic [52].
Future work analyzing these data could provide additional
insight into specific reasons that populations may be hesitant
to receive the COVID-19 vaccine and could inform targeted
public health messaging.

How do patterns in behaviors change geospatially and
temporally in the United States? As expected, the patterns in
tweets classified as social distancing and shelter-in-place
followed extremely similar trends. These patterns corresponded
to important real-world events during the outbreak, suggesting
that individuals were responding to actual events and some were
describing their own personal behavior. We found, however,
that tweets classified as personal mentions represented a very
small subset of social distancing and shelter-in-place tweets.
This is not unexpected, given that prior work has shown that
personal mentions of health may be extremely uncommon [20].

How do these trends compare to other data streams, like
mobility data sets, that have also shown promise in COVID-19
modeling efforts? Despite the lack of a temporal signal in tweets
labeled as personal and social distancing, there was a stronger
signal when comparing classified data to Descartes Labs’
mobility data. We observed meaningful regional differences
between states and saw that, in general, the peak number of
tweets about social distancing happened within a few weeks of
the actual measured minimum in mobility. This suggests that
social media data may be used as a proxy for sensor data in
appropriately data-rich contexts. Recent work using geotagged
Twitter data to create social networks and analyze social
distancing in the context of policy decisions found similar
relationships and supports this finding [53].

Limitations
There are a number of limitations to consider in this work. The
first is that, as mentioned above, it is known that social media
data are biased in a number of ways, including demographically,
and that bias differs by geographic areas [18]. Further, personal
mentions of health-related information on Twitter are rare [19].
These are known limitations of using internet data and could
potentially explain the variations in correlation we observed
between social distancing posts and actual mobility data.
Importantly, however, it is difficult to assess this without
extensive prospective surveys conducted at the same time as
tweet collection.

Our observed wide range in correlations between the proportion
of social distancing tweets and actual COVID-19 cases in
individual states is an example of the ecological fallacy.
State-level COVID-19 cases represent an aggregate measure of
a state’s behavior, while tweets represent individual actions and
observations. The available data do not allow us to probe the
reasons for the variation, but a number of possible factors could
be at play. Individuals’ social distancing thoughts at a specific

moment in time will be influenced by contextual information
about other aspects of their lives. For example, people that tweet
in support of social distancing may have in-person jobs or be
in high-risk groups, which could motivate them to use social
media platforms to voice support for public health measures.
The stronger correlation with mobility outcomes is expected by
this same argument because mobility is more directly
representative of individual actions.

Additionally, tweeting norms could be systematically different
across the country (eg, people in different states might be more
or less likely to talk about social distancing based on the policies
in place and the perceived threat of COVID-19). It is also
possible that there are differences in which individuals use
Twitter and have geolocation services enabled in different states.
In an operational context, it is hugely important to combine
internet data with traditional data streams in order to provide a
more complete picture of an evolving scenario. Future work
should focus on targeted studies to better understand potential
bias.

An additional known source of bias comes from imperfect
classification. Our classifiers performed similarly to other
classifiers used to identify health behaviors [15], but were
clearly not perfect. To account for known classifier bias, we
used an adjusted bootstrapping method from Daughton and Paul
[25], which generates accurate confidence intervals despite
classifier error.

We validated our work using mobility data from Descartes Labs.
However, there are a number of mobility data sources available
[54]. Prior work indicates that these data have similar patterns
[54], but it is possible that using a different source would
produce slightly different validation results.

Conclusions
Behavior changes and policy decisions that occur early within
an outbreak have the largest effects on disease dynamics [55,56].
Real-time conversations about health behaviors, in addition to
other behavioral data sources such as mobility metrics or media
consumption (eg, home television viewing [55]), could help
improve overall knowledge and policy decisions in the early
stages of an epidemic and could better capture dynamic changes
caused by uncoordinated behavioral change. Using such data
has the unique capability to inform public health decisions as
an outbreak emerges, especially with respect to public health
communication. The World Health Organization suggests a
communication checklist to prepare for and minimize morbidity
and mortality in the event of a pandemic [57,58]. The checklist
emphasizes building public trust through early communication,
even with incomplete information, and evaluating the impact
of communication programs to assess whether recommendations
are being followed. The use of social media streams as a
simultaneous real-time measure of public sentiment toward
messaging and a dynamic evaluation tool of communication
effectiveness could be invaluable in minimizing effects from a
future disease outbreak.
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