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Abstract

Background: Early detection and intervention are the key factors for improving outcomes in patients with COVID-19.

Objective: The objective of this observational longitudinal study was to identify nonoverlapping severity subgroups (ie, clusters)
among patients with COVID-19, based exclusively on clinical data and standard laboratory tests obtained during patient assessment
in the emergency department.

Methods: We applied unsupervised machine learning to a data set of 853 patients with COVID-19 from the HM group of
hospitals (HM Hospitales) in Madrid, Spain. Age and sex were not considered while building the clusters, as these variables could
introduce biases in machine learning algorithms and raise ethical implications or enable discrimination in triage protocols.

Results: From 850 clinical and laboratory variables, four tests—the serum levels of aspartate transaminase (AST), lactate
dehydrogenase (LDH), C-reactive protein (CRP), and the number of neutrophils—were enough to segregate the entire patient
pool into three separate clusters. Further, the percentage of monocytes and lymphocytes and the levels of alanine transaminase
(ALT) distinguished cluster 3 patients from the other two clusters. The highest proportion of deceased patients; the highest levels
of AST, ALT, LDH, and CRP; the highest number of neutrophils; and the lowest percentages of monocytes and lymphocytes
characterized cluster 1. Cluster 2 included a lower proportion of deceased patients and intermediate levels of the previous laboratory
tests. The lowest proportion of deceased patients; the lowest levels of AST, ALT, LDH, and CRP; the lowest number of neutrophils;
and the highest percentages of monocytes and lymphocytes characterized cluster 3.

Conclusions: A few standard laboratory tests, deemed available in all emergency departments, have shown good discriminative
power for the characterization of severity subgroups among patients with COVID-19.

(J Med Internet Res 2021;23(5):e25988) doi: 10.2196/25988
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Introduction

The COVID-19 pandemic has brought to light the scarcity of
health care resources worldwide [1]. One of the main challenges
faced by health care systems while tackling this pandemic is
the lack of affordable, accurate, and simple information that
can allow clinicians to predict the evolution of the patients’
disease sooner, upon admission to the hospital. This information
might help clinicians to make early decisions regarding
arrangement and organization of medical resources, as well as
early interventions to improve the health outcomes of these
patients.

The exhaustive and inefficiently structured amount of health
data available does not permit parametric modeling in an easy
way. To overcome this issue, machine learning techniques have
recently been identified as promising tools in data analysis for
individual class prediction, allowing us to deal with a great
number of variables simultaneously and observe inherent
disease-related patterns in the data [2].

Machine learning for health care is a key discipline aimed to
translate large health data sets into operative knowledge in
different medical fields [3-7]. The methods of this artificial
intelligence paradigm can be classified as supervised or
unsupervised, based on the underlying strategy used [8]. In
inductive or supervised machine learning, the method builds a
general class description of the target categories from a set of
previously categorized examples [8]. In general, supervised
learning methods are used to design classifiers from labeled
samples that predict the class of an unseen new sample [8]. In
the field of medicine, these methods have been applied to find
prognostic and predictive biomarkers [9]. On the other hand,
in unsupervised machine learning, the goal is to find the class
or classes that cover the sample [8]. These methods permit the
discovery of the underlying structure and relationships among
unlabeled samples [8]. Unsupervised clustering techniques can
obtain groups of samples so that the intrasimilarity within each
group is maximized, while intersimilarity between groups is
minimized [8]. They are usually applied in medicine to identify
homogeneous groups of patients based on their medical records
and relationships between clinical manifestations and therapeutic
responses, or to detect sets of coexpressed genes, among other
applications [10,11].

There are several research reports using COVID-19 data sets,
which focus on predicting the patients’ mortality or severity by
mainly using regression modeling from labeled clinical records
[12-17]. Further, in a multicenter study, using supervised
machine learning, a personalized COVID-19 mortality risk score
for hospitalized patients upon admission has been proposed
[18]; however, in that study [18], the reason for choosing only
a subset of the recorded clinical variables to build their model
was not explained. Therefore, the algorithm might have been
biased, even by the expert’s knowledge. In all of these studies
[12-18] and in a study based on cluster analysis [19],
demographics, such as age and sex, were considered as key
variables in their prediction models. By contrast, these variables
were deliberately excluded from the training data set in this

study, in which we used an unsupervised machine learning
method for data handling.

Health agencies recommend that clinical decisions should be
made based on an individual’s biological age rather than
chronological age [20,21]. There are multiple physiological and
molecular markers for estimation of biological aging that can
predict life span [22]. Besides these markers, the heterogeneity
of eating habits, physical and mental conditions, and therapeutics
have an influence on the overall health state, making biological
aging a heterogeneous process too.

Frailty and multi-morbidities, as measures of biological aging,
have been found to be risk factors for mortality independent of
chronological age in patients with COVID-19 [23]. New
procedures for the therapeutic management of COVID-19 are
required regardless chronological age [24].

Furthermore, reports about case-fatality rates for COVID-19
categorized by age groups could sentence elderly people not
only to social exclusion but also to health care indifference.
Considering the elderly population as a highly vulnerable group
is a simple and negative stereotype that may even influence
decision making in clinical resource management [25].

The prevalence and severity of COVID-19 also varies based on
sex, whereby men experience higher mortality than women
[26]. The severity of the disease implies that the person may
need hospitalization, intensive care support, and mechanical
ventilation. However, the medical treatments scheduled during
hospitalization or a stay in intensive care are the same for every
patient with a severe case of COVID-19, regardless age or sex
[27].

Since chronological age as well as sex cannot be considered as
pivotal aspects to determine an individual’s health status and
resilience [28], these should not be key determinants for health
care or resource allocation among people suffering from
COVID-19. Therefore, predictive models based on intelligent
data processing that take into account a patient’s age as a major
determinant in health care access may be inappropriate and
unethical [25].

Demographic variables (ie, age and sex) were not used in the
previously published studies for building models on effective
treatments based upon sex or age groups or for understanding
sex or age differences [12-19]. These predictive models of
severity and mortality risk for COVID-19 could be
discriminating [29]. For example, consideration of the age of
people in the emergency department might discriminate against
older people (ie, ageism) regarding access to care, since the
decision would be based purely upon the age of the patients
rather than their health care needs [30].

The objective of this observational longitudinal study was to
identify nonoverlapping severity subgroups (ie, clusters) among
patients with COVID-19, using exclusive laboratory tests and
clinical data obtained during the first medical contact in the
emergency department, by means of unsupervised machine
learning techniques. Age and sex were not taken into account
to build the subgroups due to the ethical implications. For this
purpose, we used the data set collected by the HM group of
hospitals (HM Hospitales) in Madrid, Spain [31].
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Methods

Data Set
This study is a longitudinal analysis of the data set collected by
the HM group of hospitals in Madrid, Spain, in the context of
the project Covid Data Save Lives [31]. The information from
this data set comes from the electronic health records data
system of the seven HM hospitals, located in the Community
of Madrid in Spain [31]. This data set contains the anonymized
records of 2310 patients, admitted to any of the seven HM
hospitals, with a diagnosis of COVID-19 from March 1 to April
24, 2020. The data set includes different interactions within
COVID-19 treatment processes, including detailed information
on diagnoses, treatments, intensive care unit (ICU) admission,
and discharge or death, among many other variables. The data
set also includes diagnostic imaging and laboratory tests or
records of previous medical care, if any. It also includes the
drugs administered to each patient during admission (more than
60,000 records) with the dates corresponding to the first and
last administration of each drug, which was identified by its
brand name and classification in the Anatomical Therapeutic
Chemical codes (ATC5/ATC7). Moreover, laboratory data are
also included (398,884 records). Finally, the data set contains
the records of the diagnostic and procedural information—coded
according to the ICD-10 (International Statistical Classification
of Diseases and Related Health Problems, 10th Revision)
classification in its latest distributed version—for the patients
referred, both for episodes of hospital admission (more than
1600) and for the emergencies (more than 1900) prior to those
episodes, if any.

Data Preprocessing
We collected the information for each patient identifier and
compiled it into one record. This included age, sex, vital signs
in the emergency department, and the need or lack of need of
the ICU. COVID-19 symptoms, ICD-10 codes of previous and
current conditions, as well as different laboratory tests performed
in the emergency department were also recorded. We also
calculated, for each patient, the duration in days of the hospital
stay, including ICU admission and the days from hospitalization

to ICU admission. We also considered the first laboratory tests
obtained from the emergency department and grouped all of the
ICD-10 codes under the first three characters (ie, first letter and
two subsequent numbers) of the code to reduce the number of
variables and provide generalization. We codified each ICD-10
feature for inclusion in one of the following groups: present in
emergency department admission, not present in emergency
department admission, or developed during hospital stay.

Only patients with a discharge reason of death or recovered
were included in the analyses. The patients with a discharge
reason of transferred to another hospital or transferred back
to the nursing home (about 3.6% of the total data set) were
excluded, since no additional information was available after
they left the hospital. We only selected the records (ie, patients)
with no missing values on clinical data and laboratory tests,
which left a final sample of 853 (37.2% women) patients to be
included in our analyses. The mean age of the sample was 67.2
(SD 15.7) years (range 21-106). Each patient had 850 variables
in his or her record, including eight variables about
demographics, hospitalization stay, and outcome measures; one
variable about COVID-19 symptoms; 10 variables about vital
signs (eg, temperature, heart rate, oxygen saturation, and systolic
and diastolic blood pressure) in the emergency department; 29
laboratory tests from the emergency department (Table 1); 168
ICD-10 codes from the emergency department; and 634 ICD-10
codes during their hospital stay.

The final sample of 853 patients was similar to the excluded
sample (n=1457) in terms of age (mean 67.2, SD 15.7 years, vs
mean 67.1, SD 17.0 years; F1,2308=1.508; P=.22); discharge
reason (selected deceased: 15.6% vs excluded deceased: 18.2%;
F1,2308=2.474; P=.12); ICU admission (6.8% vs 7.3%;
F1,2308=0.003; P=.96); or admission date (March 27, 2020, ±
8.3 days, vs March 28, 2020, ± 11.6 days). However, there were
significant differences in terms of sex (37.2% women vs 42.2%
women; F1,2308=5.768; P=.02) and days in hospital (mean 9,
SD 6, vs mean 8, SD 7; F1,2308=4.786; P=.03). Notwithstanding,

the effect size was small for both differences (η2=0.003 and

η2=0.002, respectively).

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25988 | p. 3https://www.jmir.org/2021/5/e25988
(page number not for citation purposes)

Benito-León et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Laboratory tests used to characterize the patients.

UnitDescriptionCode

%Red cell distribution widthRDW

×103/µLBasophilsBAS

%Percentage of basophilsBAS%

g/dLMean corpuscular hemoglobin concentrationMCHC

mg/dLCreatinineCREA

×103/µLEosinophilsEOS

%Percentage of eosinophilsEOS%

mg/dLGlucoseGLU

U/LAspartate transaminaseAST

U/LAlanine transaminaseALT

pgMean corpuscular hemoglobinMCH

%HematocritHCT

×106/µLRed blood cellsRBC

g/dLHemoglobinHB

mmol/LPotassiumK

U/LLactate dehydrogenaseLDH

×103/µLLeucocytesLEUC

×103/µLLymphocytesLYM

%Percentage of lymphocytesLYM%

×103/µLMonocytesMONO

%Percentage of monocytesMONO%

mmol/LSodiumNA

×103/µLNeutrophilsNEU

%Percentage of neutrophilsNEU%

mg/LC-reactive proteinCRP

×103/µLPlatelet countPLAT

mg/dLBlood urea nitrogenBUN

fLMean cell volumeMCV

fLMean platelet volumeMPV

Clustering
Unsupervised automatic x-means clustering [32]—the
implementation in RapidMiner Studio 9.7, Community Edition
(RapidMiner, Inc)—was applied to the preprocessed data set
that was previously described (see Data Preprocessing section).
The algorithm determines the optimum number of clusters so
that the intracluster distance of patients is at a minimum, and
the intercluster distance of patients is at a maximum. The
x-means algorithm was used instead of the more common
k-means algorithm to overcome the three major shortcomings
of the latter [32]: poor computational scaling, manual selection
of the number of clusters, and tendency to local minima.
X-means clustering determines the optimal number of clusters
by the Bayesian information criterion (BIC), also known as the

Schwarz criterion, which is used to maximize the explained
variance by the clusters and minimize the number of parameters
(k) [32]. X-means clustering is also an improvement over
k-means clustering since it tends to create clusters formed by
only one sample to minimize inertia [32]. Moreover, the later
use of the Davies Bouldin index to evaluate the cluster
distributions is also intended to overcome this issue since it
considers a mix of both inertia and distortion to quantitatively
asses the cluster models (see below). In addition, the automatic
selection of the number of clusters by x-means clustering avoids
the possible bias in the manual selection of k [32]. This bias is
also present in hierarchical agglomerative clustering, where a
threshold must be set to obtain the ultimate clusters after the
hierarchy is built. Despite the fact that x-means clustering is
not completely deterministic, it is certainly very stable with
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minimum variations between different runs [32] and is
significantly more stable than k-means clustering. However,
x-means clustering introduces a bias. Since it uses the BIC to
evaluate the cluster models in each iteration, this criterion
purposely favors the models with a lower number of clusters.
This means that an alternative cluster model with a better Davies
Boulding index and a higher number of clusters may have been
discarded. However, a higher number of clusters with a better
Davies Boulding index usually implies clusters with small
numbers of samples—notice that the best index would be
obtained by a model of one cluster per sample—which is not
desirable at all for the clinical stratification purpose aimed for
in this study.

Patients were considered here as vectors with several dimensions
equal to the number of variables. In this case, the number of
variables taken to apply the clustering algorithm was 842. None
of the eight variables about demographics, hospital stay, and
outcome measures were included. They were removed from the
clustering formation because of the potential ethical
controversies and biases (ie, demographics) or prospective
information (ie, hospitalization stay and outcome measures).
The algorithm was applied using several similarity or distance
metrics between patients [33]: the Euclidean distance, the
Canberra distance, the Chebyshev distance, the correlation
similarity, the cosine similarity, the Dice similarity, the inner
product similarity, the Jaccard similarity, the kernel Euclidean
distance, the Manhattan distance, the max product similarity,
the overlap similarity, the generalized divergence, the
Itakura-Saito distance, the Kullback-Leibler divergence, the
logarithmic loss, the logistic loss, the Mahalanobis distance,
the squared Euclidean distance, and the squared loss. In spite
of the fact that we could have had good similarity measure
candidates a priori, based on data set characteristics such as
dimensionality, the best practice was the selection based on
empirical evaluation [34]. To avoid any a priori biases, we
empirically tested all measures available in the software and
kept the one yielding the best results.

To assess the fitness of the cluster distributions from the
algorithm executions with the above metrics, the Davies Bouldin
index was calculated for each one of them [35]. The Davies

Bouldin index is a common measure that evaluates cluster
models [35]. It quantifies the average maximum ratio of the
within-cluster scatter to the between-cluster separation for every
pair of clusters in a cluster model [35]. In other words, it
provides a trade-off between intercluster similarity and
intracluster distance [35]. With this definition, the lower the
Davies Bouldin index the lower the within-cluster scatter and
the higher the between-cluster separation, which is the most
desirable property of a cluster model [35]. The Davies Bouldin
index allowed us to quantitatively select the best cluster model
among those created, one for each similarity measure
considered.

Cluster Validation
From the 1457 patients excluded due to missing values (ie, not
used to obtain the clusters), we performed a validation analysis
with the patients who presented no missing values in the
variables that statistically differed between the three clusters
obtained. Subsequently, these patients were assigned to one of
the clusters previously obtained by using the best distance metric
determined in the clustering process described above.

Statistical Analysis
The difference in the 850 variables between all the clusters
obtained was tested using a one-way multivariate analysis of
variance. Pairwise post hoc comparisons between clusters were
analyzed by the Bonferroni test. Significance was accepted at
the 5% level (α=.05). The observed power and effect size, as

partial η2, were reported for statistically significant differences.

Results

Table 2 shows the number of clusters and the corresponding
David Bouldin index of the cluster distribution of patients
obtained by the x-means clustering algorithm for each of the
similarity measures tested. Note that the lower the David
Bouldin index, the better the cluster distribution (ie, higher
intercluster distance and lower intracluster distance). The best
cluster distribution (ie, lowest David Bouldin index) was
obtained by using the Manhattan distance, which grouped the
patients into three clusters.
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Table 2. Number of clusters and the corresponding David Bouldin index.

Number of clustersDavid Bouldin indexSimilarity measure

30.948Euclidean distance

1N/AaCanberra distance

30.966Chebyshev distance

31.400Correlation similarity

31.629Cosine similarity

1N/ADice similarity

1N/AInner product similarity

31.387Jaccard similarity

31.440Kernel Euclidean distance

30.701Manhattan distance

1N/AMax product similarity

45.099Overlap similarity

33.445Generalized divergence

45.919Itakura-Saito distance

45.677Kullback-Leibler divergence

44.595Logarithmic loss

33.445Logistic loss

44.595Mahalanobis distance

33.445Squared Euclidean distance

33.659Squared loss

aN/A: not applicable; the David Bouldin index could not be calculated for these measures because they only had one cluster each.

Demographic and clinical characteristics of the patients in the
three clusters are shown in Table 3. Notice that this table also
shows the values of the eight variables (ie, demographics,
hospital stay, and outcome measures) that were not used in the
construction of the clusters (marked with a footnote in Table
3). Cluster 1 had a significantly higher proportion of deceased
patients (46.6%) than cluster 2 (18.0%) and cluster 3 (10.5%).
No significant difference in the percentage of ICU admissions
was found between clusters. However, the patients who were
admitted to the ICU in cluster 1 stayed a significantly shorter
time than patients in cluster 3. No significant difference in sex
was found between clusters. Patients in cluster 3 were
significantly younger than those in cluster 1. In addition, patients
in clusters 1 and 2 presented with a significantly higher heart
rate in the emergency department than those in cluster 3. The
average oxygen saturation for patients in the emergency
department was significantly different between all clusters,
whereby patients in cluster 1 had the lowest oxygen saturation
and those in cluster 3 had the highest. With respect to previous
diseases and surgical procedures, cluster 1 patients presented
with a significantly higher percentage of epilepsy and
emphysema than those in clusters 2 and 3. In addition, cluster
2 patients presented with a higher percentage of previous
surgical procedures, as well as previous thoracic, thoracolumbar,
and lumbosacral intervertebral disc disorders, than patients in
cluster 3. Cluster 2 patients also presented with a significantly

lower percentage of disorders of purine and pyrimidine
metabolism than those in clusters 1 and 3. Finally, the
percentage of patients who underwent surgical operations during
their hospitalization was significantly higher in cluster 1 than
in clusters 2 and 3.

Regarding laboratory tests, patients in cluster 1 showed
significantly higher levels of serum creatinine, potassium, and
blood urea nitrogen than those in clusters 2 and 3; cluster 1
patients also had a significantly higher value of red cell
distribution width than did cluster 2 patients. In addition, patients
in cluster 2 presented with significantly higher values of
lymphocytes and serum levels of sodium, and significantly
lower platelet counts than patients in cluster 3. In addition,
cluster 3 patients showed lower values of mean corpuscular
hemoglobin concentration and leucocytes, serum levels of
alanine transaminase (ALT), and percentage of neutrophils than
did patients in clusters 1 and 2. Cluster 3 patients had
significantly higher values and percentages of eosinophils and
percentages of lymphocytes than did patients in clusters 1 and
2. Finally, the laboratory tests that showed significant
differences between all clusters were found for the serum levels
of aspartate transaminase (AST) (cluster 1 > cluster 2 > cluster
3), lactate dehydrogenase (LDH) (cluster 1 > cluster 2 > cluster
3), C-reactive protein (CRP) (cluster 1 > cluster 2 > cluster 3),
and the number of neutrophils (cluster 1 > cluster 2 > cluster
3).
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Table 3. Demographic and clinical characteristics of patients (N=853) in the three clusters.

1–βbη2aP valueF test (df=2, 850)Cluster 3
(n=495)

Cluster 2 (n=300)Cluster 1 (n=58)Characteristics

Demographics

0.6480.009.033.45765.1 (16.2)e67.0 (15.1)d,e71.1 (13.7)dAge (years)c, mean (SD)

0.230.003.361.027313 (63.3)d181 (60.3)d41 (70.7)dSex (men)c, n (%)

Hospital stay and outcome measures

0.1090.001.700.3638.3 (5.1)d8.6 (6.4)d8.5 (4.9)dInpatient hospital daysc, mean
(SD)

10.062<.00126.054Discharge reasonc, n (%)

443 (89.5)e246 (82.0)e31 (53.4)dRecovered

52 (10.5)e54 (18.0)e27 (46.6)dDeceased

0.2480.003.331.12Intensive care unit admissionc, n (%)

458 (92.5)d277 (92.3)d52 (89.7)dNo

37 (7.5)d23 (7.7)d6 (10.3)dYes

0.2890.042.261.3932.3 (4.3)d3.4 (6.3)d0.2 (0.4)dDays until intensive care unit

admissionc, mean (SD)

0.6650.106.033.7477.6 (6.9)e4.8 (6.5)d,e0.2 (0.4)dDays in intensive care unitc,
mean (SD)

0.075<0.001.850.163277 (56.0)d177 (59.0)d35 (60.3)dMechanical ventilation needc, n
(%)

Vital signs and laboratory tests, mean (SD)

0.9650.021<.0018.4593.5 (24.4)e100.1 (26.2)d98.4 (25.0)d,eFirst heart ratio measurement in
the emergency department

10.171<.00181.73294.2 (3.6)f90.1 (7.6)e84.2 (12.3)dFirst oxygen saturation measure-
ment in the emergency depart-
ment

0.9580.02<.0018.10493.6 (24.7)e100.1 (26.0)d99.0 (25.1)d,eLast heart ratio measurement in
the emergency department

10.172<.00182.55494.2 (3.6)f90.0 (7.52)e84.2 (12.2)dLast oxygen saturation measure-
ment in the emergency depart-
ment

0.6230.008.043.2813.0 (1.9)d,e12.9 (1.84)e13.6 (1.9)dRed cell distribution width (%)

0.8540.014.0045.5450.02 (0.0)e0.02 (0.02)d,e0.03 (0.03)dBasophils (×103/µL)

0.9680.021<.0018.60233.6 (1.2)e34.0 (1.17)d33.9 (1.5)dMean corpuscular hemoglobin
concentration (g/dL)

0.9810.024<.0019.5911.0 (0.5)e1.0 (0.47)e1.3 (1.4)dCreatinine (mg/dL)

0.9080.016.0026.5180.04 (0.1)e0.02 (0.04)d0.02 (0.04)dEosinophils (×103/µL)

0.9850.025<.00110.0000.6 (1.2)e0.3 (0.60)d0.20 (0.5)dEosinophils (%)

10.216<.001109.19332.8 (18.7)f55.8 (33.4)e80.3 (48.0)dAspartate transaminase

(U/L)

10.076<.00132.68629.5 (23.8)e50.7 (48.1)d57.2 (69.1)dAlanine transaminase

(U/L)

10.041<.00116.9574.2 (0.5)e4.2 (0.6)e4.6 (0.8)dPotassium (mmol/L)

10.808<.0011666.635447.7 (91.5)f742.5 (122.0)e1339.72

(240.56)d
Lactate dehydrogenase (U/L)
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1–βbη2aP valueF test (df=2, 850)Cluster 3
(n=495)

Cluster 2 (n=300)Cluster 1 (n=58)Characteristics

0.9970.032<.00113.0556.9 (5.2)e8.5 (4.2)d9.9 (4.8)dLeucocytes (×103/µL)

0.6790.009.033.6921.3 (2.1)e1.0 (0.6)d1.0 (0.5)d,eLymphocytes (×103/µL)

10.106<.00146.96220.0 (9.8)e14.0 (7.7)d12.6 (7.8)dLymphocytes (%)

10.069<.00129.3218.7 (4.8)e6.6 (3.9)d5.1 (2.9)dMonocytes (%)

0.7180.01.024.016137.2 (4.6)e136.2 (4.4)d136.2 (7.1)d,eSodium (mmol/L)

10.103<.00145.5844.9 (2.7)f6.9 (4.0)e8.4 (4.7)dNeutrophils (×103/µL)

10.135<.00162.07070.4 (11.9)e78.8 (9.9)d81.8 (10.2)dNeutrophils (%)

10.223<.00112.93064.2 (63.7)f152.1 (110.0)e206.1 (131.7)dC-reactive protein

(mg/L)

0.9440.019.0017.541210.3 (87.2)e236.3 (96.6)d229.0 (92.2)d,ePlatelet count (×103/µL)

0.9450.019.0017.57940.5 (29.7)e41.8 (29.0)e58.9 (56.6)dBlood urea nitrogen (mg/dL)

Diseases and surgical procedures, n (%)

0.7360.01.024.17925 (5.1)d4 (1.3)e4 (6.9)dPrevious history of disorders of
purine and pyrimidine
metabolism

0.8620.014.0045.6602 (0.4)e4 (1.3)e3 (5.2)dPrevious history of epilepsy and
recurrent seizures

0.9140.017.0016.6632 (0.4)e2 (0.7)e3 (5.2)dPrevious history of emphysema

0.7580.011.014.3853 (0.6)e9 (3.0)d0 (0)d,ePrevious history of thoracic, tho-
racolumbar, and lumbosacral in-
tervertebral disc disorders

0.6860.009.023.7530 (0)e4 (1.3)d0 (0)d,ePrevious history of surgical pro-
cedures

0.8040.012.0084.8804 (0.8)e2 (0.7)e3 (5.2)dSurgical operations during the
current hospitalization

aEffect size.
bObserved power.
cThese variables were not used for the cluster construction.
d-fValues in the same row, but in different columns, that do not share footnote letters were significantly different after Bonferroni post hoc correction;
values in the same row, but in different columns, that share footnote letters were not significantly different.

For a clearer characterization of the clusters, Figure 1 shows a
radar chart with the variables (ie, hospital stay, outcome
measures, and laboratory tests) that showed statistically
significant differences among the clusters and a medium or high

effect size (η2>0.06) [36].

A web-based cluster assignment tool, based on the results
reported here, can be found online [37].

To test the robustness of the identified clusters, we performed
a validation analysis using the initially excluded patients who
did not have missing values in the variables that statistically
differed among the three clusters (Table 3). Specifically, it was
based on six variables (ie, first and last oxygen saturation

measurement in the emergency department, AST, LDH,
neutrophils, and CRP). For this purpose, we selected 349
patients who were initially excluded and who were assigned to
one of the three previously identified clusters by the minimum
Manhattan distance to the average values of the six mentioned
variables of those clusters. Table 4 shows the differences in
demographics, hospital stay, and outcome measures in the three
clusters. Indeed, the clusters initially obtained were consistent
with the clusters assigned in the validation analysis in terms of
age, sex, hospital stay, and outcome measures. Specifically,
cluster 1 was the one with the oldest and with the highest
proportion of deceased patients. By contrast, cluster 3 was the
one with the youngest and with the lowest proportion of
deceased patients.
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Figure 1. Hospital stay, outcome measures, and laboratory tests that showed statistically significant differences among clusters with a medium or high

effect size (η2>0.06). Note that some variables are scaled (transformation between brackets) for the sake of graph legibility. ALT: alanine transaminase;
AST: aspartate transaminase; CRP: C-reactive protein; ICU: intensive care unit; LDH: lactate dehydrogenase.
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Table 4. Demographics as well as hospital stay and prognosis of the patients (n=349) selected for the validation analysis in the three clusters.

1–βbη2aP valueF test (df)Cluster 3
(n=219)

Cluster 2
(n=112)

Cluster 1
(n=18)

Characteristics

Demographics

0.9790.052<.0019.414 (2, 346)64.2 (15.8)d71.3 (14.3)c72.8 (14.2)c,dAge (years), mean (SD)

0.3640.01.181.738 (2, 346)123 (56.2)c68 (60.7)c14 (77.8)cSex (men), n (%)

Hospital stay and outcome measures

0.4690.013.102.320 (2, 346)8.0 (5.3)c9.3 (5.9)c9.1 (6.4)cInpatient hospital days, mean
(SD)

10.113<.00122.025 (2, 346)Discharge reason, n (%)

200 (91.3)e80 (71.4)d8 (44.4)cRecovered

19 (8.7)e32 (28.6)d10 (55.6)cDeceased

0.7430.024.024.268 (2, 346)Intensive care unit admission, n (%)

213 (97.3)d101 (90.2)c16 (88.9)c,dNo

6 (2.7)d11 (9.8)c2 (11.1)c,dYes

0.0720.021.840.170 (2,16)6.3 (13.7)c4.1 (3.9)c6.5 (7.8)cDays until intensive care unit
admission, mean (SD)

0.060.01.920.082 (2,16)3.2 (4.6)c3.8 (4.5)c4.5 (0.7)cDays in intensive care unit,
mean (SD)

0.3850.011.161.854 (2, 346)96 (43.8)c54 (48.2)c12 (66.7)cMechanical ventilation need, n
(%)

aEffect size.
bObserved power.
c-eValues in the same row, but in different columns, that do not share footnote letters were significantly different after Bonferroni post hoc correction;
values in the same row, but in different columns, that share footnote letters were not significantly different.

Discussion

With the application of an unsupervised machine learning
approach, we could identify and segregate patients with
COVID-19 into subgroups depending on the severity of disease,
simply by using standard laboratory tests performed during the
first medical assessment in the emergency department. We found
that inflammatory (ie, CRP), hematologic (ie, number of
neutrophils and percentage of monocytes and lymphocytes),
and serum biochemical abnormalities (ie, AST, ALT, and LDH),
mainly indicating liver dysfunction, detected upon admission
to the hospital could predict the severity of the disease. From a
sum of 850 variables collected in the emergency department,
only four standard laboratory tests (ie, serum levels of AST,
LDH, CRP, and the number of neutrophils) were enough to
segregate these patients into three separate clusters. Of these,
the levels of LDH had the biggest effect size, practically
allowing us to differentiate the three clusters linearly. Further,
the percentage of monocytes and lymphocytes as well as ALT
distinguished cluster 3 patients (ie, less severe) from patients
in the other two clusters. Cluster 1 was characterized by the
highest proportion of deceased patients; the highest levels of
AST, ALT, LDH and CRP; the highest number of neutrophils;
and the lowest percentages of monocytes and lymphocytes
(Figure 1). Cluster 2 included a lower proportion of deceased
patients and intermediate values of the previous laboratory tests
(Figure 1). Finally, the lowest proportion of deceased patients;

the lowest levels of AST, ALT, LDH and CRP; the lowest
number of neutrophils; and the highest percentages of monocytes
and lymphocytes characterized cluster 3 (Figure 1).

Our results have several clinical implications. First, age and sex
were not considered while building the clusters. Therefore, our
unsupervised machine learning approach, based exclusively on
the performance of simple laboratory tests at a primordial stage,
would permit the establishment of a strategy for rationing of
health care resources and to establish a triage protocol, which
would support medical decisions in a transparent and ethical
way. Second, since the analyzed data are from standard
laboratory tests, this method would be especially valuable for
underdeveloped and developing regions that lack medical
resources and have affordability issues. Finally, we could tailor
treatment to each severity group accordingly at a primordial
stage (ie, in the emergency department). For example, more
aggressive therapies could be considered in patients classified
in cluster 1 (ie, the most severe) and not in those in cluster 3
(ie, the least severe).

Initially, SARS-CoV-2 was primarily considered a respiratory
pathogen. However, with time, it has behaved like a virus with
the potential to cause multisystem involvement [38,39].
Specifically, hepatic injury related to COVID-19 is only
beginning to unravel. Elevated liver injury indicators,
particularly AST, are strongly associated with a higher mortality
risk in patients with COVID-19 [40]. Of note, high serum levels

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25988 | p. 10https://www.jmir.org/2021/5/e25988
(page number not for citation purposes)

Benito-León et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of LDH predict higher in-hospital mortality in patients with
severe and critical condition of COVID-19 [41]. Significant
increased CRP levels in the early stages of COVID-19 are
correlated with the severity of disease and the degree of internal
tissue pathologies [42]. Further, a significant increase in the
number of neutrophils with a decrease in the number of
lymphocytes, monocytes, and eosinophils may indicate clinical
worsening and increased risk of a poor outcome among patients
with COVID-19 [43]. Taken together, the presence of elevated
biomarkers of inflammation and that of liver injury in serum,
as well as the number of neutrophils at admission, are indicative
of multiple organ failure in patients with COVID-19 that could
lead to death. Our laboratory findings are in agreement with
other previous studies worldwide [44-46].

Although one previous multicenter study, based on the analyses
of demographics, comorbidities, vital signs, and laboratory test
results upon admission, that evaluated the prediction of disease
course in patients with COVID-19 has been undertaken [18],
there remains much to learn about applying machine learning
techniques regarding this novel infectious disease. Comparison
with that study is difficult, as they had used different variables
and techniques. The accuracy of the model could be influenced
by several factors, including the methods. Feature extraction
methods, feature selection or classification tools, number of
subjects, and demographics are also important considerations.
Besides, most COVID-19 diagnostics and prognostic models
that have evolved to date have a high risk of generating bias
leading to inequality [47], mainly due to the high influence of
demographic variables, especially age and sex, in those models
and to the nonblinded nature of the supervised machine learning
approach between predictors and outcome measures. In fact,
our results confirmed that age and sex had a similar and low

discriminant value to separate the three clusters (Table 3).
Nevertheless, the results obtained in our study are in line with
most previous work based on supervised machine learning
techniques in COVID-19 [18,47].

The study should be interpreted within the context of several
limitations. First, the patients in this study may represent a
selected group of patients with COVID-19 (ie, patients with a
more severe disease, since all of them were admitted to the
hospital); hence, it is questionable as to what extent our results
could be generalized to the entire population of patients with
COVID-19. The reason for this was that the extreme
circumstances in our hospitals at the peak of this pandemic
permitted the hospitalization of only the most severe cases.
Notwithstanding, our aim was to detect severity subgroups
among patients with COVID-19 upon admission to the hospital.
Second, we only kept the records (ie, patients), laboratory tests,
and clinical variables from 853 patients from the data set due
to the high number of missing values in the remaining 1457
patients. Despite this, the results have been robust.

In closing, to the authors’ knowledge, the work presented in
this paper is the first attempt to use unsupervised machine
learning to identify severity subgroups among patients with
COVID-19 upon admission. A few affordable, simple, and
standard laboratory tests, which are expected to be available in
any emergency department, have shown promising
discriminative power for characterization of severity subgroups
among patients with COVID-19. We have also provided an
online severity cluster assignment tool for patients with
COVID-19 who are admitted to the emergency department [37].
This could permit the classification of patients according to
severity subgroups and, hence, initiate earlier interventions.
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CRP: C-reactive protein
ICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th Revision
ICU: intensive care unit
LDH: lactate dehydrogenase
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