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Abstract

Background: The COVID-19 pandemic has highlighted the urgency of addressing an epidemic of obesity and associated
inflammatory illnesses. Previous studies have demonstrated that interactions between single-nucleotide polymorphisms (SNPs)
and lifestyle interventions such as food and exercise may vary metabolic outcomes, contributing to obesity. However, there is a
paucity of research relating outcomes from digital therapeutics to the inclusion of genetic data in care interventions.

Objective: This study aims to describe and model the weight loss of participants enrolled in a precision digital weight loss
program informed by the machine learning analysis of their data, including genomic data. It was hypothesized that weight loss
models would exhibit a better fit when incorporating genomic data versus demographic and engagement variables alone.

Methods: A cohort of 393 participants enrolled in Digbi Health’s personalized digital care program for 120 days was analyzed
retrospectively. The care protocol used participant data to inform precision coaching by mobile app and personal coach. Linear
regression models were fit of weight loss (pounds lost and percentage lost) as a function of demographic and behavioral engagement
variables. Genomic-enhanced models were built by adding 197 SNPs from participant genomic data as predictors and refitted
using Lasso regression on SNPs for variable selection. Success or failure logistic regression models were also fit with and without
genomic data.

Results: Overall, 72.0% (n=283) of the 393 participants in this cohort lost weight, whereas 17.3% (n=68) maintained stable
weight. A total of 142 participants lost 5% bodyweight within 120 days. Models described the impact of demographic and clinical
factors, behavioral engagement, and genomic risk on weight loss. Incorporating genomic predictors improved the mean squared
error of weight loss models (pounds lost and percent) from 70 to 60 and 16 to 13, respectively. The logistic model improved the

pseudo R2 value from 0.193 to 0.285. Gender, engagement, and specific SNPs were significantly associated with weight loss.
SNPs within genes involved in metabolic pathways processing food and regulating fat storage were associated with weight loss
in this cohort: rs17300539_G (insulin resistance and monounsaturated fat metabolism), rs2016520_C (BMI, waist circumference,
and cholesterol metabolism), and rs4074995_A (calcium-potassium transport and serum calcium levels). The models described
greater average weight loss for participants with more risk alleles. Notably, coaching for dietary modification was personalized
to these genetic risks.

Conclusions: Including genomic information when modeling outcomes of a digital precision weight loss program greatly
enhanced the model accuracy. Interpretable weight loss models indicated the efficacy of coaching informed by participants’
genomic risk, accompanied by active engagement of participants in their own success. Although large-scale validation is needed,
our study preliminarily supports precision dietary interventions for weight loss using genetic risk, with digitally delivered
recommendations alongside health coaching to improve intervention efficacy.
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Introduction

Background
The global death toll of COVID-19 has eclipsed 1 million cases
[1]. Obesity, following age, has emerged as the most critical
risk factor for morbidity, hospitalizations, and complications
[2]. The prevalence of obesity in the United States and in other
Western countries has increased sharply in the last 2 decades.
Since the early 1960s, when more than 10% of Americans were
obese, that proportion has grown to 42.4% of adults [3].
Moreover, the prevalence of obesity is higher in minority
communities: 49.6% of non-Hispanic Black individuals and
44.8% of Hispanic Americans are obese, compared with 42.2%
of non-Hispanic White individuals. These same minority
communities are experiencing disproportionate
COVID-19–driven mortality, likely linked, at least in part, to
the heightened prevalence of obesity [4]. Although the precise
cause of obesity is yet to be discovered, several factors have
been linked to its development [5]. In particular, biology
interacts with behavior and demographics (such as
socioeconomic status or ethnic and cultural cuisine) to influence
obesity risk [6]. Obesity-associated biological factors include,
but are far from limited to, genetics and epigenetics, microbiome
composition, age, circadian rhythm disruption, pharmaceutical
interactions, and comorbidities and their management [6,7].

The rapid increase in obesity prevalence has coincided with
sociological factors, such as generally reduced physical activity
alongside a rise in the consumption of highly processed,
high-calorie, but nutrient-poor foodstuffs. However, these
obesogenic conditions did not affect the population uniformly.
Instead, a notable proportion of the population is still able to
remain at a healthy weight, indicating that the heterogeneous
response to obesogenic conditions may result, in part, from
individual innate protection from these conditions, possibly
conferred by the genetic makeup [8].

Most current clinical interventions for obesity management
focus on lifestyle and dietary adaptation with varying levels of
professional guidance and involvement, short- or long-term
pharmaceutical therapies, and bariatric surgery [9]. Individual
responses to these therapeutic interventions are confoundingly
(for clinicians and participants alike) heterogeneous for
multifactorial reasons [10], making the need for personalized,
precision medicine courses of treatment imperative. Most
Americans (63%) have made serious efforts toward weight loss
over the course of their lives, and almost one-third are trying
to lose weight [11]. In 2014, commercial weight loss services
were a US $2.5 billion market consisting primarily of the
following market shares—Weight Watchers (45%), NutriSystem
(14%), and Jenny Craig (13%)—but the long-term effectiveness
of various commercial calorie restriction–based weight loss
programs is unclear [12-14] (Table 1).

Table 1. Commercial weight loss services

Cost per month, US $InterventionMarket share (%)Program

>450Low-calorie meal replacements with one-on-one counseling13Jenny Craig

300-350Low-calorie meal replacements with one-on-one counseling14Nutrisystem

43 (plus food)Self-monitoring with web-based coaching and points tracking45Weight Watchers

Personalizing Weight Loss Interventions
Recent research has elucidated the mechanisms of food-derived
biomarkers, allowing for stratification based on a participant’s
unique metabolism of given food products. This permits the
targeting of personalized nutrition to groups that are better
characterized [8,15,16]. For example, given that low-grade
inflammation has been implicated in insulin resistance,
mediating inflammation via targeted dietary approaches is a
precision nutrition intervention [17,18].

Advances have already been made in the early intervention and
risk assessment of participants who are obese by designing
therapies based on unique genetic predisposition and risk.
Environmental interventions such as diet and exercise can trigger
epigenetic changes, altering gene expression in metabolic
pathways. Recent research indicates that physical activity and
high-fat diets may alter DNA methylation patterns in skeletal
muscle and adipose tissue [19-21], influencing weight
management [8]. Eventually, researchers hope to elucidate the
genetic patterns that influence individual obesity and

concomitant illness susceptibility, risk of progression, and
response to therapy, to provide participants with optimal
treatment [22].

Epigenetics and Their Role in Obesity
Even as science illuminates many genetic risk factors of complex
metabolic diseases such as obesity and type 2 diabetes [23-27],
these genetic variants account for only a fraction of BMI
variation [25]. The missing heritability of obesity might be at
least partially explained by interactions between genetics and
environmental factors [28]. In particular, specific gene variants
may influence sensitivity to certain environmental factors so
that exposure to these factors in susceptible individuals can
contribute to disease. As individuals who are obese are
characterized by considerable heterogeneity within the spectrum
of clinical obesity, supporting gene-diet interaction and precision
nutrition in different subtypes of obesity is imperative [29-33].

Bariatric surgery is a weight loss option for participants with
severe and complex obesity, for whom dietary interventions or
digital therapeutics have been less than successful [34-36].
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Genetics may be a significant predictor of weight loss following
Roux-en-Y gastric bypass surgery [37], but few genetic variants
have been characterized to date [38,39].

The Role of Diet in Obesity
Although obesity can, in some cases, be linked to excessive
appetite and food consumption, these behaviors may have a
genetic component, and even food preferences themselves may
have a genetic basis [40,41]. For example, the
alpha-ketoglutarate-dependent dioxygenase (FTO) locus
rs9939609 has been associated with reduced satiety [42],
increased caloric and fat intake [43,44], and a propensity to
consume calorie-dense foods [43,45]. The TAS2R38 genotype
differentiates potential super-, medium-, and nontasters of
bitter-tasting thiourea compounds. These different bitter-tasting
profiles appear to be predictive of differential dietary
preferences, and in particular, nontasters were observed to have
higher BMIs [46]. Considered together and alongside other
evidence, this research implies that body weight and BMI may
be affected by genetic variations in food preferences, tendencies,
and eating behaviors. Elucidating how food intake and body
metrics are mediated by genetics is challenging because of the
difficulty of reproducing results across varying populations and
the complexity of identifying causal interactions [47-49].
Research using randomized controlled trials (RCTs) and large
sample–sized biobanks with electronic health records will better
characterize how diet and genetics interact to mediate health
outcomes [50,51].

The Role of Physical Activity in Obesity
Exercise that can prevent weight gain and promote weight
maintenance has been well established through research [52-55].
Evidence suggests that body weight, waist-to-hip ratio, and BMI
are significantly associated with adherence to an aerobic exercise
intervention [56]. Interestingly, the propensity for exercise
appears to be heritable, at least in part, with studies estimating
heritability ranging from 9% to almost 80% [57]. MC4R genes
appear to be associated with physical inactivity [58]; however,
other genes may be associated with adherence and tolerance to
physical activity regimens [56].

Gut Microbiome and Its Role in Obesity
The human gastrointestinal tract hosts millions of commensal
micro-organisms comprising the gut microbiome, which acts
as a virtual endocrine organ regulating nutrient production and
metabolism, satiety, and even energy homeostasis [8,59]. These
microbes are intrinsically linked to host health, as they are
implicated in nutrient processing and metabolism, pathogen
displacement, vitamin synthesis, and body weight regulation
[60]. Researchers and clinicians have been studying alterations
of the gut microbiome in individuals, as perturbations in the gut
microbiome appear to underlie the pathophysiology of obesity
and associated comorbidities, such as type 2 diabetes and
metabolic syndrome [61,62]. Microbiome profiling for
nutritional intervention is gaining prominence as a key feature
of precision nutrition.

Research on the impact of specific dietary factors on microbiome
diversity can guide interventions focused on optimizing gut
microbial composition [63]. For example, variation in the lactase

(LCT) gene region, associated with response to dairy intake,
appears to be associated with the abundance of the gut
microbiome Bifidobacterium [64]. In particular, variations in
LCT were found to be predictive of the obesity-based
modulation of dairy lactose and milk intake [65], indicating that
shifts in gut microbiota across LCT genotypes could be tied to
the caloric extraction of ingested food [65]. Similar to specific
genes, specific bacterial species have also been directly
implicated in the etiology of obesity. Methanobrevibacter
smithii, for example, can itself metabolize dietary substrates or
metabolic byproducts of other bacteria, thereby promoting
weight gain [66].

Further evidence ties both an individual’s genetics and diet to
microbiome composition because lower microbial diversity
appears to be associated with excess weight gain [67]. Even in
early childhood, disruptions in the gut microbiome can have a
long-lasting influence on adult body weight [68]. Moreover,
nutritional interventions such as administering prebiotics and
probiotics to manipulate gut microbiota that promote or are
refractory to weight loss show potential as obesity interventions
but require further study [69]. Weight loss, whether mediated
by diet or via bariatric surgery, can alter the gut microbiome in
ways that affect the efficacy of various weight loss strategies
[70,71]. An interesting feature of bariatric surgery is that it
appears to induce obesity-associated gut microbiota to shift
toward lean microbiome phenotypes [72].

Behavioral and Digital Interventions in Obesity
As the obesity epidemic continues to proliferate, new digital
programs available on websites or as smartphone apps are being
leveraged to promote weight loss [73]. Digital programs are
agile in that they can easily be modified to reflect the latest
research and best practices in a rapidly changing field; they are
more cost-effective than traditional in-person programs and are
also more easily scalable, increasing their reach [74,75].
Resources can include activity trackers, videos, logs,
device-to-device communication, and third-party app
compatibility [76]. In addition, research indicates that remotely
administered programs can result in significant weight loss
[76-79].

Digital programs have the ability to provide personalization to
address the plethora of needs presented by participants [76].
Individuals partaking in such programs are still able to leverage
interpersonal relationships. Digital health coaching, for example,
allows participants to discuss their weight loss journey via any
number of communication platforms [75]. According to
research, both in-person and telehealth coaching relationships
are effective in motivating overweight individuals to work
toward weight loss [80]. In a recent study of more than 600
participants in a smartphone-based weight loss program with a
coaching component, participants lost, on average, more than
7% of their body weight, successfully passing the 5% weight
loss marker that many in-person programs set [75].

The multifactorial nature of obesity is reflected in the myriad
heritable, behavioral, and environmental factors that can lead
to obesity risk [47]. The most successful interventions are likely
to be those that leverage current findings across the full spectrum
of obesity-related risk factors: dietary interventions accounting
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for both genetic markers of food sensitivity, metabolic
predispositions, and behavioral risk as well as those geared
toward optimizing gut microbial diversity and composition;
physical activity measures taken in consideration of genetic risk
profiles; and behavioral modifications undertaken via digital
care [59]. The precision nutrition therapy offered by Digbi
Health aims to account for these various factors in delivering a
personalized course of obesity intervention [59]. In this study,
we describe the weight loss of a cohort of participants enrolled
in the Digbi Health program, modeling and analyzing genomic,
lifestyle and engagement factors that were found to be influential
in this cohort. It was hypothesized that weight loss models would
exhibit a better fit when incorporating genomic data than when
using demographic and engagement variables alone.

Methods

Recruitment
For this study, we identified all Digbi Health participants who
were enrolled between June 2019 and June 2020, had been in
the program for at least 120 days, and had been genotyped by
Digbi Health. Sample collection kits were shipped to 443
participants, of which 393 mailed back their samples for
processing, thereby yielding a cohort size of 393. Among these
participants, 315 individuals self-identified as female, 77
individuals self-identified as male, and one individual declined
to state. All participants self-enrolled for the Digbi Health
therapy via a large California-based insurance payor wellness
program. The qualifying criteria to join the program were BMI

>25 kg/m2 with a comorbidity (eg, prediabetes, diabetes,

cardiovascular disease, or hypertension) or BMI >30 kg/m2,
regardless of comorbidities. Participants were advised to remain
under the care and supervision of their existing physicians and
were further advised to notify physicians and other health care
providers of their participation in the Digbi Health program.
The data set included data from each participant’s first 120 days
in the program. This Digbi Health anonymized, retrospective
research study was exempted from full review by the Ethical
and Independent Review Services West Coast Board, Corte
Madera, California, reference 20149-01. All participants agreed
to the Digbi Health terms and conditions and privacy policy
when enrolling in the therapy.

Intervention
Digbi Health is a next-generation, prescription-grade, digital
therapeutic platform that uses artificial intelligence to analyze
genetics, gut bacteria, lifestyle habits, and socioeconomic and
behavioral risk patterns to create evidence-based personalized
nutrition, fitness, sleep, and stress management programs to
reduce weight and reverse weight-related inflammatory gut,
musculoskeletal, cardiovascular, and insulin-related diseases.
Digital precision care interventions are delivered via web-based
or mobile apps to expand the accessibility, safety, and
effectiveness of health care. Digbi Health’s individualized
program is geared primarily toward individuals who are
overweight or obese, with or without a comorbidity, and
functions as a weight loss management tool. The therapy is
currently covered by a large California-based health insurance

payor for their qualifying members through its obesity
management wellness platform.

On enrolling in the Digbi Health program, participants were
provided with web-based log-in credentials and were mailed a
Bluetooth-compatible digital weighing scale and saliva and
stool biosampling kits. App usage consisted of daily tracking
of weight (via the Bluetooth scale), tracking of dietary intake
(uploading photographs of all food items consumed), and
tracking wellness-associated metrics (sleep quality and quantity,
exercise type and duration, stress and meditation, energy levels,
cravings, and recommended foods consumed or avoided).

Sample Collection
The individual’s DNA was self-collected using a buccal swab
(Mawi Technologies iSwab DNA collection kit, model no.
ISWAB-DNA-1200). Saliva DNA extraction, purification, and
genotyping using Affymetrix Direct to Consumer Array version
2.0 on the Affymetrix GeneTitan was all performed by the
AKESOgen laboratory. The results presented in the genetics
section of the report were determined by the number of markers
and risk genotypes present in the genomic raw data, the Digbi
Health reports were loaded into the app, and coaching was
individualized based on participants’ genomic risk factors.
Individuals’ gut microbiomes were self-collected via a fecal
swab (Mawi Technologies iSWAB Microbiome collection kit,
model no. ISWAB-MBF-1200). Sample processing and
16SrRNA-targeted next-generation sequencing were performed
at the AKESOgen laboratory. Although the app and coaching
are personalized based on participants’ microbiome data, these
data were not analyzed in this study and are the subject of a
forthcoming research article. The personalized Digbi Health
plan was systematically reviewed with the participants in
individualized sessions with the health coach over a 4-month
period at regular, predetermined, weekly, and biweekly intervals.

Genetic Report
The Digbi Health genetic report consisted of two sections: gene
nutrition and gene fitness. The gene nutrition report analyzed
participants’ genotypes that have been shown to influence
nutritional traits, such as diet and weight management,
micronutrient requirements, food intolerance and sensitivity,
and several other attributes relevant to nutritional well-being.
For each of these traits, participants were assigned a high-,
medium-, or low-risk score based on the number of risk alleles
detected, and health coaches guided interventions based on these
potential risks (eg, suggesting someone with high risk for gluten
intolerance eliminates dietary gluten or someone with medium
risk reduces consumption). The degree of risk associated with
any specific single-nucleotide polymorphism (SNP) was
determined by the presence of 0, 1, or 2 risk alleles. Several
individual SNPs may have contributed to a single trait or
function, and some of these SNPs might have increased the risk
for a trait, whereas others may have decreased it. In Digbi Health
gene reports, as many SNPs as possible were considered when
determining the risk of a particular trait. Although Digbi Health
coaching is individualized based on several different traits, a
number of notable traits and associated SNPs and how risk
factors for these traits inform individualized health coaching
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have been highlighted in the Results and Discussion sections
of this paper.

The gene fitness report analyzed SNPs studied in conjunction
with fitness regimes, exercise motivation, and the ability to
develop various types of muscle fibers. This section of the report
also analyzed the potential inflammatory response to exercise,
including endurance, strength, and flexibility training. As in the
gene nutrition section, each trait was assigned a high-, medium-,
or low-risk score based on SNP data, and health coaches guided
participants through recommendations for healthy exercise.

Gut Microbiome Report
In addition to using genetic risk profiles to guide the course of
participants’ precision care, the Digbi Health program also
analyzed gut microbiome profiles (collected from stool swab
sampling) to guide the course of care. However, in this study,
we aimed to analyze only the effect of demographics and
lifestyle and genomic factors on weight loss; the incorporation
of the related microbiome data and how they inform
individualized health coaching is the subject of forthcoming
analyses from our group, currently in preparation.

Lifestyle
The Digbi Health therapy is a 120-day program that uses body
metrics, gut microbiome and genetic profiles, and personalized
health coaching to manage weight loss. Participants use the
Digbi Health app to track 10 key lifestyle and wellness markers
(weight, sleep, hunger, cravings, stress, meditation, superfoods,
morning energy, foods to avoid, and exercise) on a daily basis
and take photos of the food they consume. Each participant is
assigned a health coach who works personally with the
participant through 12 guided sessions at various intervals to
interpret the personalized wellness reports generated from

sampling participants’ DNA and gut microbiota. The reports
also provide a breakdown of obesity risk based on individuals’
genetic and gut microbiome profiles. The program is geared
toward participants losing at least 5% of their baseline body
weight by day 90 of the 120-day program. To achieve this goal,
the program seeks to nudge participants toward making
incremental lifestyle changes focused on reducing sugar
consumption, timing meals to optimize insulin sensitivity,
reducing systemic inflammation by identifying possible
inflammatory and anti-inflammatory nutrients via genetic
testing, and establishing a base level of physical activity. The
personalized incremental behavioral modifications suggested
by the program are designed to reduce inflammation, optimize
gut health based on microbiome testing, and most importantly
are supported by health coaching and the app to integrate into
the participant's lifestyle so as to be sustainable long term. The
genetic profile of Digbi Health users identifies several nutrient
and food risk factors that have associations with obesity,
comorbidity, or inflammatory risk (eg, gluten sensitivity, lactose
tolerance, caffeine sensitivity, fatty acid metabolism, blood
pressure response to salt or riboflavin intake, or reduced insulin
resistance with exercise), and health coaching guidance is
tailored specifically to incorporate participants’ risk profiles.

Statistical Analysis
The data from our cohort of 393 participants over their first 120
days in the Digbi Health personalized digital weight loss
program were analyzed retrospectively. Interpretable regression
models (linear and logistic) were built, and visualizations
generated using R software (R Core Team). Modeling of
demographic and behavioral engagement was conducted by
fitting 2 linear regression models of weight loss (pounds lost
and percentage lost) in this cohort as a function of the variables
listed in Table 2.

Table 2. Mean demographic and engagement variables overall and by gender.

Female, mean (SD)Males, mean (SD)Values, mean (SD)Variables

35.01 (6.92)33.75 (5.36)34.77 (6.66)Starting BMI

44.63 (12.1)46.82 (11.58)45.06 (12.02)Age (years)

147.31 (138.16)142.62 (110.18)146.39 (133.01)Number of weight entries

116.81 (144.65)108.64 (115.59)115.2 (139.33)Number of food photos posted

4.9 (3)5.17 (2.98)4.95 (2.99)Number of coaching sessions completed

Genomic-enhanced models were built by incorporating 197
SNPs from participant genomic data as predictors, using Lasso
regression on SNPs for variable selection, and then fitting a
model to the data set after adding the selected SNPs to the
previous engagement variables. The 197 genomic variables
were from Digbi-curated panels of SNPs associated with obesity,
fitness, nutrient metabolism, and inflammatory markers (Table
S1 in Multimedia Appendix 1 [81-88]). Each SNP value was
encoded for each participant as their number of risk alleles (0,
1, or 2). One participant did not identify gender, therefore was
excluded from all models, resulting in 392 observations included
in each of the 4 linear regression models.

Success or failure logistic regression models were also fit, with
and without genomic data. Genomic variables were similarly

selected from the full panel of 197 SNPs using Lasso logistic
regression. Success was defined as ≥5% weight loss, failure as
weight gain or negligible change of <2 lb (0.9 kg). Removed
from this model were observations of participants who were
only partially successful, having lost weight but without reaching
the milestone of 5% weight loss. This resulted in the inclusion
of 251 cohort participants in the logistic models, both
genomic-enhanced and demographic and engagement only.

Insignificant variables were removed from each model, resulting
in 6 final interpretable models, half containing demographic
and behavioral engagement variables only, whereas the
remaining 3 were genomic enhanced.
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Demographic variables included gender, age, and baseline BMI.
Behavioral engagement variables included the number of
coaching sessions completed, number of weight entries, and
number of food posts (Table 2). As the number of food posts
and number of weight entries were highly correlated (Pearson
correlation 0.98), each regression model could include one but
not both. To incorporate both variables in modeling, the number
of food posts was retained as a predictor for the linear models,
whereas the number of weight entries was kept as a predictor
for the logistic models.

For genomic-enhanced models, SNP variables were imputed to
the most frequent value (mode). SNPs with >10% missing
information, high (≥0.8) Pearson correlation with another
variable, or zero variance were removed, resulting in 124 SNPs
remaining for linear and 122 SNPs remaining for logistic model
variable selection by Lasso regression. The SNPs with nonzero
coefficients after Lasso regularization for that particular outcome
variable (pounds lost, percentage weight loss, and successful
weight loss) then served as predictors, along with the three
demographic variables and two engagement variables (number
of coaching sessions completed along with either number of
weight entries or number of food posts).

Results

Weight Loss
A total of 393 participants were included in this study to describe
and model the weight loss of participants enrolled in the Digbi
Health program for 120 days. Of these, 80.4% (315/392) were
female and 19,6% (77/392) were male, and one participant
declined to state. Tables S1 and S2 in Multimedia Appendix 1
provide a full distribution of the baseline variables. A total of
72% (283/393) participants lost weight compared with 10.7%

(42/393) who gained weight, whereas for 17.3% (68/393)
participants, the weight remained within normal fluctuations
(Table S3, Multimedia Appendix 1). A total of 142 participants
lost ≥5% of their baseline body weight within the first 120 days.
Improvement in both BMI measures and BMI class over 120
days of treatment is evident in Figure S1, with 25.0% of
participants having lost enough weight to move to a lower BMI
class (Table S4 in Multimedia Appendix 1). BMI class was
defined as presented in Table S5 of Multimedia Appendix 1.
The distribution of engagement variables, overall and by gender,
is presented in Table 2. In our cohort, no significant difference
was found in these variables between males and females (Welch
two-sided two-sample t tests; results not shown). End points by
the obesity class are presented in Table S4 of Multimedia
Appendix 1.

As hypothesized, the addition of genomic predictors
substantially improved the fit of weight loss models. For linear
regression weight loss models (pounds lost and percent), the
addition of genomic data improved the mean squared error from
70 to 60 and 16 to 13, respectively, whereas the logistic success

or fail model improved pseudo R2 from 0.193 to 0.285.

Figure 1 depicts the distribution by gender of percent weight
loss. The difference in percent weight loss for males and females
was found to be statistically significant (Welch two-sided
two-sample t test, P=.02). At an average of 4.8 (SD 4.2) percent
of body weight lost, the difference in weight loss between males
and females was 1.3 (SD 0.5) percent of body weight. Gender
was significant to all linear regression models (Tables S6-S9
in Multimedia Appendix 1) but not to the logistic success or
fail models (Tables S10 and S11 in Multimedia Appendix 1),
as both women and men succeeded in 5% weight loss within
120 days.

Figure 1. Weight loss (%) distribution by gender.
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Significant Variables
Unsurprisingly, baseline BMI was significant to both pounds
lost linear models (Tables S6 and S7 in Multimedia Appendix
1) but not for any other model. The participant’s age was not
significant in any of the models. Increased completion of
coaching sessions was significantly associated with increased
weight loss in all regression models (Tables S6 to S11 in
Multimedia Appendix 1). The two highly correlated engagement
variables, number of weight entries and number of food posts,
were significant to all models in which they were considered
(as described earlier, weight entries were in logistic models,
whereas food posts were in linear models; Tables S6 to S11 in
Multimedia Appendix 1).

Significant SNPs
In addition to the demographic and engagement variables
described earlier, the genomic-enhanced models identified 10
SNPs that were significant to the linear pounds lost model (Table
S7 in Multimedia Appendix 1), 11 SNPs to the linear weight
loss percentage model (Table S9 in Multimedia Appendix 1),
and 6 SNPs to the logistic model (Table S11 in Multimedia
Appendix 1). Of the SNPs found significant to the linear models,
8 SNPs were common in both genomic-enhanced linear models

(Tables S7 and S9 in Multimedia Appendix 1). In total, 3 notable
SNPs that were found to be strongly associated with changes
in body weight for this cohort, rs17300539_G, rs2016520_C,
and rs4074995_A, were further explored. The literature suggests
explanatory metabolomic factors and findings from recent
studies that provide context and explanation for these
associations in our descriptive study.

Rs17300539 is located in the promoter region of the ADIPOZ
gene, which encodes adiponectin [89]. The high-risk allele has
been associated with insulin resistance, whereas the low-risk
allele may be associated with protection from weight regain
postweight loss intervention [90]. Moreover, the high-risk allele
has been associated with higher weight, BMI, and waist and
hip circumferences. However, genotype-related differences in
BMI became undetectable in the interaction with a diet that is
low, below the median (ie, <13% of energy intake) in
monounsaturated fats (MUFAs) [91]. This led researchers to
propose the possibility of moderating high risk with dietary
interventions to reduce MUFAs for those with the risk alleles.
Of the 392 participants, 334 were homozygous for the high-risk
allele (G), 54 were heterozygous for the risk allele, and 4 were
homozygous for the low-risk allele (Table 3).

Table 3. Risk allele distribution of highlighted single-nucleotide polymorphisms from weight loss models.a

Number of participants, n (%)SNPb id

Missing2 risk allele1 risk allele0 risk alleleRisk allele

0 (0.0)334 (85.2)54 (13.8)4 (1.0)Grs17300539

1 (0.3)20 (5.1)127 (32.4)244 (62.2)Crs2016520

0 (0.0)25 (10.0)67 (26.7)159 (63.3)Ars4074995

aDistribution of risk alleles of single-nucleotide polymorphisms from weight loss models that were highlighted in plots and Discussion section of the
paper.
bSNP: single-nucleotide polymorphism.

The regression models are interpretable models describing
weight loss in this cohort and may be visualized to gain insight
into variables found to be significant. Figure S3 in Multimedia
Appendix 1 and Figure 2 depict the relationships of engagement
variables and rs17300539 to weight loss in the
genomic-enhanced weight loss percent model. These plots reveal
the least squares fit of weight loss percent for females (panel
A) and males (panel B), as the two visualized predictors are
varied while holding all other model variables constant (SNPs
were held constant at their most frequent [mode] values, whereas
engagement variables were held constant at their gender-specific
means, except for coaching sessions completed, which was fixed
at its gender-specific median). The visualizations permit us to
see the model relationships of particular predictors, as they
impact the outcome variable. For example, the weight loss (%)
model fit to this cohort describes the average male having 2 risk
alleles who posts no food photos as losing 3.5% of body weight,
whereas the average male with the same genomic risk who posts

975 food photos loses 8.75% of body weight (Figure 2). The
coefficients of the fitted predictors reveal that in this model, for
every 100 additional food posts, participants lose, on average,
an additional 0.60% weight while holding all other model
predictors constant (Table S9 in Multimedia Appendix 1).

In this model, for each additional risk allele (G) of rs17300539,
participants lose, on average, an additional 1.09% weight while
holding all other model predictors constant (Table S9 in
Multimedia Appendix 1). Similarly, as the number of risk alleles
of rs17300539 increases from 0 to 1 to 2, so does percentage
weight loss as a function of greater behavioral engagement
measured both in the number of completed coaching sessions
(Figure S3 in Multimedia Appendix 1) and the number of food
photos posted (Figure 2). In essence, participants in this cohort
who were at higher risk lost a greater percentage of weight
compared with their lower risk counterparts. Moreover, the
percentage of weight loss increased in proportion to greater
behavioral engagement.
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Figure 2. Weight loss (%) versus food posts by rs17300539 (monounsaturated fat intake and weight gain tendency single-nucleotide polymorphism)
in females (A) compared with males (B).

Rs2016520 is a variant of the PPARD gene, which encodes a
protein implicated in fat metabolism and baseline cholesterol
levels [92]. In women, this SNP has been shown to be associated
with muscle development and blood cholesterol reduction after
a 12-week exercise regime [93]. High-risk alleles predisposed
women to less weight loss on exercise [93]. Of the 392
participants, 20 were homozygous for the high-risk allele (C)
of SNP rs2016520, 127 were heterozygous for the risk allele,
244 were homozygous for the low-risk allele, and 1 had no
available data (Table 3).

Similar to Figure 2 and Figure S3 in Multimedia Appendix 1,
Figure 3 and Figure 4 and Figure S4 in Multimedia Appendix
1 reveal the least squares fit of weight loss in pounds for females
(panel A) and males (panel B) as the two visualized predictors
are varied while holding all other model variables constant. The
weight loss pounds model fit to this cohort describes the average
female having 2 risk alleles who posts 975 food photos as losing
21 lb (9.5 kg), but only 8 lb (3.6 kg) if no food photos are posted
(Figure S4A in Multimedia Appendix 1). Similarly, this model
describes the average male having 2 risk alleles as losing 25 lb
(11.3 kg) with 975 food posts but only 13 lb (5.9 kg) with no
food posts (Figure S4B in Multimedia Appendix 1). As
visualized in Figures 3 and 4 and Figure S4 in Multimedia

Appendix 1 the effect in this descriptive model of an increase
in the number of risk alleles from 0 to 2 is that pounds of weight
loss with respect to engagement increases when engagement is
measured either as the number of coaching sessions or as the
number of food photos posted in the Digbi Health app.
Moreover, as seen in Figure 4, a higher baseline BMI was
associated with more pounds lost. Males lost more weight than
females in each risk group of this SNP.

The rs4074995 SNP has been implicated in calcium-potassium
regulation [94]; it is located within the RGS14 gene and is
associated with both serum phosphate [95] and serum calcium
[96] levels. In particular, each copy of the A allele is correlated
with an increase in serum calcium concentration [96]. For the
rs4074995_A SNP, of the 251 participants, 25 were homozygous
for the high-risk allele (A), 67 were heterozygous for the risk
allele, and 159 were homozygous for the low-risk allele (Table
3). The sample size of 251 was smaller than for the
abovementioned linear models because rs4074995 was chosen
to be highlighted as a predictor of the genomic-enhanced logistic
regression (success vs failure) model, which was fit to a subset
of the cohort that experienced success, defined as ≥5% weight
loss, or failure, defined as weight gain or negligible change of
<2 lb (0.9 kg).
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Figure 3. Weight loss (lb) versus completed coaching sessions by rs2016520 (cholesterol single-nucleotide polymorphism) in females (A) compared
with males (B).

Figure 4. Weight loss (lb) versus baseline BMI by rs2016520 (cholesterol SNP) in females (A) compared with males (B).

As seen in Figure 5 and Figure S5 in Multimedia Appendix 1,
as the risk alleles of SNP rs4074995 increase from 0 to 1 to 2,
there is an increase in the success score, which is the likelihood
of this model assigning a particular observation to the success
class. Similar to the other models, we found that an increased

number of coaching sessions completed is associated with a
sharp increase in the success score. However, on highest
engagement, the effect of risk status diminishes (those with 0,
1, or 2 risk alleles were approximately equally likely to achieve
weight loss on highest engagement).
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Figure 5. Weight loss success versus completed coaching sessions by rs4074995 (calcium-potassium single-nucleotide polymorphism).

Discussion

Principal Findings
A group of 393 participants underwent lifestyle changes over
120 days through the Digbi Health program—a precision digital
care program applying machine learning analytics to genetic
and microbiome profiles, demographics, and self-reported
lifestyle habits—delivering care through the app and weekly
health coaching check-ins. Over the duration of the program,
patients’ genomic and gut microbiome data pertinent to weight
loss (from Digbi Health–curated panels) were provided and
translated into lifestyle recommendations and recipes. Of the
participants, 72% (283/393) lost weight, whereas 10.7%
(42/393) gained ≥2 lb. Of those who lost weight, 50.2%
(142/283) were able to lose 5% or more over 120 days.

Interpretable linear regression models of weight loss in this
cohort (pounds lost and percentage lost) as a function of
demographic and behavioral engagement variables were fit to
describe the weight loss of this cohort. Genomic-enhanced
models were also built by adding participant genomic data as
predictors. Interpretable success or failure logistic regression
models were also fit, with and without genomic data. The
addition of genomic predictors substantially improved the fit
of all models.

The fitted models were examined to gain insights into the weight
loss journey of this cohort. Gender, engagement, and specific
SNP risk alleles were significantly associated with successful
weight loss. The models described greater average weight loss
in our cohort for participants having more of certain risk alleles.
Here, we consider how successful weight loss may be obtained
in the face of greater genetic risk factors. Notably, Digbi Health
precision coaching for lifestyle modification is personalized to
these genetic risks, and patients reported realizing success that
was previously unattainable after being empowered by the
knowledge of their genetic and microbiome risk factors,

accompanied by advice on lifestyle modifications to address
these risks.

We profiled three of these genetic markers (see Results section)
to elucidate their relationships with explanatory metabolomic
processes and weight gain and loss. Here, we connected these
relationships with personalized recommendations delivered by
the Digbi Health app and coaching staff. The profiled SNPs
were associated with circulating adiponectin and response to
dietary MUFA consumption, fat metabolism, and baseline
cholesterol levels, and serum calcium levels and
calcium-potassium metabolism were strongly associated with
weight loss success.

As an example of personalized dietary advice delivered by both
the app and coach for program participants who are at genetic
risk of weight gain, we considered the advice delivered to
participants with a different genetic outlook with regard to
rs17300539, a risk allele for weight gain with high MUFA
intake. This SNP is depicted in the visualizations of our linear
model for weight loss percentage (Figure 2 and Figure S3 in
Multimedia Appendix 1). As reported earlier, participants in
this cohort who were at higher risk lost a greater percentage of
weight compared with their lower risk counterparts, and
percentages of weight loss correlated with greater behavioral
engagement. This finding can be explained by the fact that those
with high risk for this trait were advised by both the app and
human coaching to avoid MUFA consumption as much as
possible (contrary to the conventional wisdom that these—olive
oils, almond oils, etc—are comparatively healthy fats). Instead,
they were advised to shift to the consumption of polyunsaturated
or saturated fats, depending on their genotypes [97]. Moreover,
this SNP is associated with insulin resistance, and parts of the
Digbi Health Nutrition Plan (eg, intermittent fasting and
reducing processed carbohydrate consumption) would be
expected to reduce insulin resistance, addressing the risk
associated with this SNP, thereby helping with weight loss [93].
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The linear regression pounds lost models found an association
between higher baseline BMI and increased weight loss in this
cohort (Figure 4). For each one-unit increase in baseline BMI,
participants lost an additional 0.2 lb (0.09 kg) on average while
holding the other variables in the model constant. This finding
could be encouraging to new participants with higher BMI, who
may have attempted weight loss with other programs but without
much success. Adding genomic information (Figure 3), the
model describes the average man of this cohort at the highest
baseline BMI, having 2 risk alleles for rs2016520_C and
completing five coaching sessions as losing 21 lb (9.5 kg), but
women having the same risk outlook and behavioral engagement
as losing, on average, 16.5 lb (7.5 kg). When compared with
participants of the same gender, baseline BMI, number of
coaching sessions, and genomic outlook for all SNPs except
rs2016520_C, participants in this data set lost 2.4 lb (1.1 kg),
on average, over their treatment for each additional risk allele
they had of rs2016520_C (Table S7 in Multimedia Appendix
1).

This SNP is poorly characterized in the general population, but
studies associate it with BMI and waist circumference among
Han Chinese [98] as well as with cholesterol metabolism [99].
This latter association drives the recommendation by Digbi
Health that participants presenting with the high-risk allele limit
cholesterol consumption. The association between the number
of risk alleles of rs2016520_C and increased weight loss in this
data set may indicate the efficacy of data-driven coaching by
Digbi Health. A visualization in Figure 3 of this descriptive
model depicts a male of average baseline BMI and the most
frequent genomic outlook for all except rs2016520_C as losing
20 lb (9.0 kg), on average, if he completed 12 coaching sessions,
but only 11 lb (5.0 kg) on average with only one coaching
session over the course of treatment.

Calcium is an essential mineral critical for vascular function,
muscle function, neurotransmission, cell signaling, and hormone
secretion [100]. Serum calcium levels tend not to respond
directly to dietary calcium intake, and instead, the body relies
on reservoirs in bone tissue to maintain consistent calcium
concentrations [100]. Recent research has emerged tying higher
serum calcium levels to the development of insulin resistance
and cardiovascular hypertension [101]. High serum calcium
levels have long been correlated with obesity [102]. Figure 5
depicts the success or fail logistic regression model of the
associations between the number of coaching sessions completed
and rs4074995_A with successful weight loss while holding all
other variables in the model constant at their most frequent
number of risk alleles. As with the linear model, in this Digbi
Health treatment cohort, increasing total coaching sessions was
associated with higher success in losing weight. Those at high
risk for excess serum calcium levels were especially encouraged
to embrace intermittent fasting and carbohydrate avoidance to
combat insulin resistance. This may explain their higher success
in achieving ≥5% weight loss (Figure S5 in Multimedia

Appendix 1). We found that for participants with more risk
alleles of the rs4074995 SNP, success in weight loss increased
with more coaching, although it was not as pronounced in those
with minimum (0) risk alleles. It may be that success for those
with more risk alleles was not as heavily dependent on more
coaching sessions, as the app itself conveys pertinent dietary
advice.

In addition, our data strongly indicate that behavioral
engagement, particularly coaching, contributed to weight loss
success. Participants experienced, on average, 0.37% more
weight loss with each additional coaching session while holding
all other model variables constant (Table S9 in Multimedia
Appendix 1). All models found weight loss to be significantly
associated with behavioral engagement with the program and
app (number of coaching sessions completed, weight entries
logged, and food photos logged as predictors). Food photos and
weight tracking showed more than 98% correlation with each
other and both were significantly associated with weight loss
success (Tables S6 to S11 in Multimedia Appendix 1). Prior
research has shown that regular engagement with digital weight
loss platforms and regular weight tracking is associated with
greater weight loss success [103].

We hypothesized that successful weight loss was achieved by
adhering to data-driven dietary recommendations that depart
from conventional nutritional weight loss advice. Of those
10.7% (42/393) of the participant population who gained weight,
there was a notable lack of engagement in the program. Those
who gained weight, compared with their counterparts who lost
weight, tended to neither engage in coaching nor regularly use
the Digbi Health app to log body weight and post food photos
of meals. Those who checked in with the coach regularly and
logged into the app frequently to post weight and food photos
were more likely to lose weight than those who did not.

Coaching sessions completed, along with other behavioral
engagement variables, differed between participants who lost
weight and those who gained weight, whereas baseline weight
and BMI did not. The density plots in Figure 6 fairly compare
distributions of the two groups: although many more people
lost weight than gained, the area under the curve of each group
is uniform at 1. Figure 6A illustrates the distributions of
completed coaching sessions for those who lost weight (blue)
versus those who gained weight (red). The difference is striking:
only a fraction of those who failed to lose weight completed at
least five (the mean and median) coaching sessions, whereas
those who succeeded generally completed five or more. All
three measures of engagement were significantly higher in
participants who lost weight (blue) versus those who gained
weight (red). These distributions are visualized in Figure 6. In
contrast, however, Figure S6 in Multimedia Appendix 1 shows
no statistical difference in means in (A) baseline weight and
(B) baseline BMI, confirmed by the Welch two-sided
two-sample t test (P=.64 and P=.42, respectively) between
participants who lost (blue) versus gained (red) weight.
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Figure 6. Distributions of engagement variables differ by weight loss group. Measures of engagement were higher in participants who lost weight
(blue) versus those who gained weight (red). Statistical difference in means confirmed by the Welch two-sample t test (A) coaching sessions (P<.001),
(B) number of weight entries (P<.001), and (C) number of food posts (P<.001). Less than 2-lb gain or loss was considered negligible and excluded
from this figure. Engagement variables were summed over the study period of 120 days.

Table 2 and Table S1 in Multimedia Appendix 1 show the
distributions of variables based on gender. A notable feature of
this cohort is that women are grossly overrepresented—a feature
that is not specific to the demographics of obesity. Although
globally, more women are obese than men, the disparity is
driven in large part by demographics, particularly in Africa and
the Middle East. In Western countries, men are more likely to
be obese [104], which is not reflected in our sample. Instead,
our participant demographics may be more reflective of
individual self-image. Women appear more likely to perceive
themselves as overweight and are more likely to attempt weight
loss [105]. Exploration of gender differences in weight loss
maintenance reported that men comprised only 27% of
participants in behavioral weight loss programs [106,107].

Additionally pertinent to the gender composition of this cohort
is that patients self-select and continue with the weight
management program of Digbi Health based on the approach
they feel works for them. One study indicated that women were
more than twice as likely to report having used an organized
weight loss program, whereas men were more self-directed in
their weight loss [108]. In a single-blinded, randomized clinical

trial, the efficacies of three e-coaching approaches were
compared: no coaching, nondirected coaching, and directed
coaching. Women achieved most success (weight loss, reduction
of waist circumference, and improvement of physical activity)
in the first 12 weeks with directive e-coaching (similar to Digbi
Health), whereas men lost more weight with nondirected
e-coaching [80,109]. Men who chose the Digbi Health program
succeeded in weight loss. In this cohort, men lost more weight
than women over 120 days, consistent with previous findings
that men lose weight faster than women [110]. However, the
low participation in behavioral weight loss programs, such as
that examined here, points to the importance of identifying the
underlying factors that impact early engagement and success
in weight loss. We are currently undertaking such a study, with
the aim of innovating for a level of personalization that will
empower and drive success with different subgroups of clients,
including men.

Recent research has explored the incorporation of genotypic
information into nutritional advice. Researchers have tested the
hypothesis that dietary interventions using personalized
genotype information have greater efficacy than the same

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25401 | p. 12https://www.jmir.org/2021/5/e25401
(page number not for citation purposes)

Sinha et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


interventions without genomic data, achieving mixed findings
[111-115]. However, these studies tested only a few SNPs.
Some groups found no benefit from genomic information
[22,111], whereas others found specific SNPs (eg, APOE and
ACE genes) to be associated with improved dietary changes
[21,23]. Some studies observed an increase in positive dietary
behaviors on the part of participants who carried a risk allele
pertinent to a dietary factor (eg, sodium and fat) with whose
recommendations they had not been adhering [21,23]. This
aligns with our anecdotal experience of Digbi Health clients,
including those in this cohort who had risk alleles for
rs17300539, rs2016520, and rs4074995, as described earlier.

Food4Me [111] conducted an RCT to investigate the
effectiveness of internet-based personalized nutrition
interventions on weight loss and dietary intake with 1269
participants randomized into four groups: one control without
personalization and three personalized groups, each with an
additional level of personalization: personalized by individual
baseline diet, by baseline diet and phenotype (anthropometry
and blood markers), and by baseline diet, phenotype, and
genotype (5 SNPs). The group comprising participants combined
from all three levels of personalized nutrition experienced
significantly better improvements in body weight and BMI at
month 3 and a more positive behavioral change than the control
group. The authors found no evidence that the addition of either
phenotype or phenotype plus genotype information to individual
baseline diet data enhanced the efficacy of the personalized
intervention. However, none of the three personalization
interventions, including individual baseline diet, were reportedly
tested in isolation for differences in outcomes from the control
protocol, and furthermore only five variants were used in
genomic personalization.

The five variants used in the Food4Me genomic personalization
were from the MTHFR, FTO, TCF7L2, APOEε4, and FADS1
genes [116]. Of these five variants, three were present in the
Digbi Health panel of 197 curated SNPs, and of these 3 SNPs,
only rs7903146 from the TCF7L2 gene was found to be
significant to any of our 3 genomic-enhanced models (linear
percent weight loss, linear pounds lost, and logistic success or
fail). Rs9939609 (FTO gene) and rs1801133 (MTHFR) were
the 2 SNPs that were a part of our gene panel, and hence
included as variables, but were found to not significantly
contribute to any of the three weight loss models. Rs7903146
was found to be significant to the linear percent weight loss
model, and although it was selected as a variable by Lasso for
the pounds lost model, it was not statistically significant.
Research associates rs7903146 with a higher risk of gestational
[117,118] and type 2 [119-121] diabetes as well as reduced
insulin levels [119,122]. These medical implications are
especially relevant to postmenopausal women [123] as well as
those in childbearing years. Unlike the pounds lost model, the
percent weight loss model captures weight loss independently
of start weight and more aptly models women’s weight loss
alongside that of men. Digbi Health has a robust protocol to
address diabetes risk and insulin resistance, which differs
substantially from the Food4Me personalization based on
rs7903146 as reflected in the Food4Me article (including the
decision tree for TCF7L2-based information delivered to level

3 “Diet plus phenotype plus genotype” in Figure S3 in
Multimedia Appendix 1) [111]; thus, we would not expect the
outcomes of our personalization regarding this SNP to be the
same. We noted that Digbi Health personalization arises from
the much broader set of traits in our curated panels and a greater
number of SNPs associated with those traits, enabling
personalization that is more fine-grained than that informed by
a few SNPs. We are not aware of any RCT to test the added
value of genomic data that uses the breadth of genotypic markers
considered in the Digbi Health program.

Conclusions
Over the last two decades, the obesity epidemic has coincided
with a dramatic change in unhealthy eating habits, a sedentary
lifestyle, and physical inactivity. In the United States, more than
40% of the adult population is now overweight or obese.
Hereditary predisposition to obesity may have interacted with
the obesogenic environment and contributed even further toward
the epidemic. The recent accumulation of genomic and lifestyle
data has led to the demonstration of possible effects of
gene-environmental interactions on obesity [124]. Data from
dietary intervention trials indicate that genetic variants,
particularly those linked to obesity, metabolism, and nutrient
consumption, may significantly alter changes in adiposity and
metabolic responses to nutritional interventions and promote
effective weight loss [59].

In the foreseeable future, the incorporation of data on genes,
eating patterns, metabolites, and gut microbiome into weight
loss interventions will be one of the most promising fields of
precision care and may allow for the generation of predictable
weight loss models based on individual genomic, microbiomic,
and metabolomic factors. The goal is precision nutrition,
individually tailored to enable effective weight loss and prevent
chronic diseases on the basis of genomic history; habitual
consumption of food and drink; intake of nutrients (especially
those that contribute to disease risks); and metabolomics,
microbiome, and other omics profiles of a person [59].

Although using precision medicine to target heterogeneous
conditions may seem counter-intuitive, it is the heterogeneous
nature of conditions, such as obesity and metabolic illness, that
make them such potent targets for intervention, impacting the
greatest number of people [8]. Obese subpopulations identified
as genetically predisposed to favorably or unfavorably respond
to a given weight loss intervention could be targeted
accordingly.

To date, few studies have investigated metabolomic functioning,
lifestyle and behavioral mechanisms, and gut microbiome, which
can affect obesity and health at the interface between genetic
variation and the environment. The Digbi Health digital
precision weight loss program operates at this interface. This
study was limited by its retrospective and descriptive nature.
The field of precision nutrition would benefit from additional
prospective randomized controlled studies on a larger scale.
Although such studies will be needed to validate these findings,
the analysis and modeling presented here appear to support
dietary precision interventions considering genetic predisposition
to disease and genetic variants defining dietary preference and
metabolic risk. In addition, our results point to the efficacy of
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coaching that empowers and actively engages participants in
their own success.

Future studies should explore the synergistic effects of genomic
variables in interactions with other genome, microbiome, and
lifestyle and behavior variables. A follow-up to the work
presented here, exploring not only the effect of incorporating

genomic data but also including the microbiome data used in
Digbi Health precision care, is currently in preparation.
Personalized protocols that incorporate data on genes, eating
patterns, metabolites, and gut microbiome into weight loss
interventions may well be a promising field of precision care,
allowing for the generation of predictable weight loss models
that account for the synergistic effect of these influential factors.

Acknowledgments
This study was funded by Digbi Health, Mountain View, California, United States.

Conflicts of Interest
Digbi Health is sponsoring this study, and the principal investigator and study staff have a financial interest in the company.
RS is the founder and CEO of Digbi Health. Authors DK, RRR, SS-R, KMM, VS, CI, CR-S, GS, and PAF-L are employees at
Digbi Health. IJ is the Chief Medical Officer employed by Digbi Health.

Multimedia Appendix 1
Distributions of predictors, weight loss outcomes, and results of descriptive models.
[PDF File (Adobe PDF File), 363 KB-Multimedia Appendix 1]

References

1. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE). Johns Hopkins Coronavirus Resource
Center. URL: https://coronavirus.jhu.edu/map.html [accessed 2020-10-18]

2. Cunningham JW, Vaduganathan M, Claggett BL, Jering KS, Bhatt AS, Rosenthal N, et al. Clinical outcomes in young US
adults hospitalized with COVID-19. JAMA Intern Med 2020 Sep 09;181(3):379. [doi: 10.1001/jamainternmed.2020.5313]
[Medline: 32902580]

3. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief No. 360, February
2020. URL: https://www.cdc.gov/nchs/products/databriefs/db360.htm [accessed 2020-10-19]

4. Townsend MJ, Kyle TK, Stanford FC. Outcomes of COVID-19: disparities in obesity and by ethnicity/race. Int J Obes
(Lond) 2020 Sep 09;44(9):1807-1809 [FREE Full text] [doi: 10.1038/s41366-020-0635-2] [Medline: 32647359]

5. Apovian C. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care 2016 Jun;22(7 Suppl):176-185 [FREE
Full text] [Medline: 27356115]

6. McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, et al. Ten putative contributors to the obesity
epidemic. Crit Rev Food Sci Nutr 2009 Nov 02;49(10):868-913 [FREE Full text] [doi: 10.1080/10408390903372599]
[Medline: 19960394]

7. Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, Endocrine Society. Pharmacological
management of obesity: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2015 Feb;100(2):342-362.
[doi: 10.1210/jc.2014-3415] [Medline: 25590212]

8. Bray MS, Loos RJ, McCaffery JM, Ling C, Franks PW, Weinstock GM, Conference Working Group. NIH working group
report-using genomic information to guide weight management: from universal to precision treatment. Obesity (Silver
Spring) 2016 Jan 25;24(1):14-22 [FREE Full text] [doi: 10.1002/oby.21381] [Medline: 26692578]

9. Joo JK, Lee KS. Pharmacotherapy for obesity. J Menopausal Med 2014 Dec;20(3):90-96 [FREE Full text] [doi:
10.6118/jmm.2014.20.3.90] [Medline: 25580419]

10. Severin R, Sabbahi A, Mahmoud AM, Arena R, Phillips SA. Precision medicine in weight loss and healthy living. Prog
Cardiovasc Dis 2019 Jan;62(1):15-20 [FREE Full text] [doi: 10.1016/j.pcad.2018.12.012] [Medline: 30610881]

11. Saad L. To lose weight, Americans rely more on dieting than exercise. Gallup Poll Social Series: Health and Healthcare.
2011. URL: https://news.gallup.com/poll/150986/Lose-Weight-Americans-Rely-Dieting-Exercise.aspx [accessed 2020-10-19]

12. Appel LJ, Champagne CM, Harsha DW, Cooper LS, Obarzanek E, Elmer PJ, Writing Group of the PREMIER Collaborative
Research Group. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER
clinical trial. J Am Med Assoc 2003 Apr 23;289(16):2083-2093. [doi: 10.1001/jama.289.16.2083] [Medline: 12709466]

13. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes
Prevention Program Outcomes Study. Lancet 2009 Nov;374(9702):1677-1686. [doi: 10.1016/s0140-6736(09)61457-4]

14. Parkman K. Jenny Craig vs. nutrisystem vs. weight watchers. Consumer Affairs. URL: https://www.consumeraffairs.com/
health/jenny-craig-vs-nutrisystem-vs-weight-watchers.html [accessed 2020-10-19]

15. Brennan L. Metabolomics in nutrition research–a powerful window into nutritional metabolism. Essays Biochem
2016;60(5):451-458. [doi: 10.1042/ebc20160029]

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25401 | p. 14https://www.jmir.org/2021/5/e25401
(page number not for citation purposes)

Sinha et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v23i5e25401_app1.pdf&filename=9be190f10ca3b16b26a59411620f9691.pdf
https://jmir.org/api/download?alt_name=jmir_v23i5e25401_app1.pdf&filename=9be190f10ca3b16b26a59411620f9691.pdf
https://coronavirus.jhu.edu/map.html
http://dx.doi.org/10.1001/jamainternmed.2020.5313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32902580&dopt=Abstract
https://www.cdc.gov/nchs/products/databriefs/db360.htm
http://europepmc.org/abstract/MED/32647359
http://dx.doi.org/10.1038/s41366-020-0635-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32647359&dopt=Abstract
https://www.ajmc.com/pubMed.php?pii=86672
https://www.ajmc.com/pubMed.php?pii=86672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27356115&dopt=Abstract
http://europepmc.org/abstract/MED/19960394
http://dx.doi.org/10.1080/10408390903372599
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19960394&dopt=Abstract
http://dx.doi.org/10.1210/jc.2014-3415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25590212&dopt=Abstract
https://doi.org/10.1002/oby.21381
http://dx.doi.org/10.1002/oby.21381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26692578&dopt=Abstract
https://e-jmm.org/DOIx.php?id=10.6118/jmm.2014.20.3.90
http://dx.doi.org/10.6118/jmm.2014.20.3.90
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25580419&dopt=Abstract
http://europepmc.org/abstract/MED/30610881
http://dx.doi.org/10.1016/j.pcad.2018.12.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30610881&dopt=Abstract
https://news.gallup.com/poll/150986/Lose-Weight-Americans-Rely-Dieting-Exercise.aspx
http://dx.doi.org/10.1001/jama.289.16.2083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12709466&dopt=Abstract
http://dx.doi.org/10.1016/s0140-6736(09)61457-4
https://www.consumeraffairs.com/health/jenny-craig-vs-nutrisystem-vs-weight-watchers.html
https://www.consumeraffairs.com/health/jenny-craig-vs-nutrisystem-vs-weight-watchers.html
http://dx.doi.org/10.1042/ebc20160029
http://www.w3.org/Style/XSL
http://www.renderx.com/


16. Allam-Ndoul B, Guénard F, Garneau V, Cormier H, Barbier O, Pérusse L, et al. Association between metabolite profiles,
metabolic syndrome and obesity status. Nutrients 2016 May 27;8(6):324 [FREE Full text] [doi: 10.3390/nu8060324]
[Medline: 27240400]

17. Bakker G, van Erk MJ, Pellis L, Wopereis S, Rubingh C, Cnubben N, et al. An antiinflammatory dietary mix modulates
inflammation and oxidative and metabolic stress in overweight men: a nutrigenomics approach. Am J Clin Nutr 2010
Apr;91(4):1044-1059. [doi: 10.3945/ajcn.2009.28822] [Medline: 20181810]

18. Paquette M, Medina Larqué AS, Weisnagel SJ, Desjardins Y, Marois J, Pilon G, et al. Strawberry and cranberry polyphenols
improve insulin sensitivity in insulin-resistant, non-diabetic adults: a parallel, double-blind, controlled and randomised
clinical trial. Br J Nutr 2017 Mar 14;117(4):519-531. [doi: 10.1017/s0007114517000393]

19. Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, et al. A six months exercise intervention influences the
genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 2013 Jun 27;9(6):e1003572 [FREE Full text]
[doi: 10.1371/journal.pgen.1003572] [Medline: 23825961]

20. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, et al. Impact of an exercise intervention on DNA methylation
in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012 Dec 01;61(12):3322-3332
[FREE Full text] [doi: 10.2337/db11-1653] [Medline: 23028138]

21. Jacobsen SC, Gillberg L, Bork-Jensen J, Ribel-Madsen R, Lara E, Calvanese V, et al. Young men with low birthweight
exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding. Diabetologia 2014 Jun
26;57(6):1154-1158. [doi: 10.1007/s00125-014-3198-8] [Medline: 24570141]

22. Rodgers GP, Collins FS. Precision nutrition-the answer to "What to Eat to Stay Healthy". J Am Med Assoc 2020 Aug
25;324(8):735-736. [doi: 10.1001/jama.2020.13601] [Medline: 32766768]

23. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, MAGIC, Procardis Consortium, et al.
Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010 Nov
10;42(11):937-948 [FREE Full text] [doi: 10.1038/ng.686] [Medline: 20935630]

24. Fall T, Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol 2014 Jan
25;382(1):740-757. [doi: 10.1016/j.mce.2012.08.018] [Medline: 22963884]

25. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, LifeLines Cohort Study, ADIPOGen Consortium, AGEN-BMI
Working Group, CARDIOGRAMplusC4D Consortium, CKDGen Consortium, GLGC, ICBP, MAGIC Investigators,
MuTHER Consortium, MIGen Consortium, PAGE Consortium, ReproGen Consortium, GENIE Consortium, International
Endogene Consortium, et al. . [doi: 10.1038/nature14177] [Medline: 25673413]

26. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, DIAbetes Genetics ReplicationMeta-analysis (DIAGRAM)
Consortium, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into
the underlying biological pathways. Nat Genet 2012 Sep 12;44(9):991-1005 [FREE Full text] [doi: 10.1038/ng.2385]
[Medline: 22885924]

27. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2
diabetes. Nature 2016 Aug 04;536(7614):41-47 [FREE Full text] [doi: 10.1038/nature18642] [Medline: 27398621]

28. Hunter DJ. Gene-environment interactions in human diseases. Nat Rev Genet 2005 Apr;6(4):287-298. [doi: 10.1038/nrg1578]
[Medline: 15803198]

29. Fabbrini E, Yoshino J, Yoshino M, Magkos F, Luecking CT, Samovski D, et al. Metabolically normal obese people are
protected from adverse effects following weight gain. J Clin Invest 2015 Jan 2;125(2):787-795. [doi: 10.1172/jci78425]

30. Heianza Y, Arase Y, Tsuji H, Fujihara K, Saito K, Hsieh SD, et al. Metabolically healthy obesity, presence or absence of
fatty liver, and risk of type 2 diabetes in Japanese individuals: Toranomon Hospital Health Management Center Study 20
(TOPICS 20). J Clin Endocrinol Metab 2014 Aug;99(8):2952-2960. [doi: 10.1210/jc.2013-4427] [Medline: 24823457]

31. Roberson LL, Aneni EC, Maziak W, Agatston A, Feldman T, Rouseff M, et al. Beyond BMI: The "Metabolically healthy
obese" phenotype & its association with clinical/subclinical cardiovascular disease and all-cause mortality -- a systematic
review. BMC Public Health 2014 Jan 08;14:14 [FREE Full text] [doi: 10.1186/1471-2458-14-14] [Medline: 24400816]

32. Zheng R, Zhou D, Zhu Y. The long-term prognosis of cardiovascular disease and all-cause mortality for metabolically
healthy obesity: a systematic review and meta-analysis. J Epidemiol Community Health 2016 Oct 28;70(10):1024-1031.
[doi: 10.1136/jech-2015-206948] [Medline: 27126492]

33. Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of
prospective cohort studies. Obes Rev 2014 Jun 24;15(6):504-515 [FREE Full text] [doi: 10.1111/obr.12157] [Medline:
24661566]

34. Courcoulas AP, Yanovski SZ, Bonds D, Eggerman TL, Horlick M, Staten MA, et al. Long-term outcomes of bariatric
surgery: a National Institutes of Health symposium. JAMA Surg 2014 Dec 01;149(12):1323-1329 [FREE Full text] [doi:
10.1001/jamasurg.2014.2440] [Medline: 25271405]

35. Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery.
Lancet Diabetes Endocrinol 2014 Feb;2(2):152-164. [doi: 10.1016/s2213-8587(13)70218-3]

36. Carlsson LM, Sjöholm K, Karlsson C, Jacobson P, Andersson-Assarsson JC, Svensson P, et al. Long-term incidence of
microvascular disease after bariatric surgery or usual care in patients with obesity, stratified by baseline glycaemic status:

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25401 | p. 15https://www.jmir.org/2021/5/e25401
(page number not for citation purposes)

Sinha et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.mdpi.com/resolver?pii=nu8060324
http://dx.doi.org/10.3390/nu8060324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27240400&dopt=Abstract
http://dx.doi.org/10.3945/ajcn.2009.28822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20181810&dopt=Abstract
http://dx.doi.org/10.1017/s0007114517000393
https://dx.plos.org/10.1371/journal.pgen.1003572
http://dx.doi.org/10.1371/journal.pgen.1003572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23825961&dopt=Abstract
https://diabetes.diabetesjournals.org/lookup/pmidlookup?view=long&pmid=23028138
http://dx.doi.org/10.2337/db11-1653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23028138&dopt=Abstract
http://dx.doi.org/10.1007/s00125-014-3198-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24570141&dopt=Abstract
http://dx.doi.org/10.1001/jama.2020.13601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32766768&dopt=Abstract
http://europepmc.org/abstract/MED/20935630
http://dx.doi.org/10.1038/ng.686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20935630&dopt=Abstract
http://dx.doi.org/10.1016/j.mce.2012.08.018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22963884&dopt=Abstract
http://dx.doi.org/10.1038/nature14177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25673413&dopt=Abstract
http://europepmc.org/abstract/MED/22885924
http://dx.doi.org/10.1038/ng.2385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22885924&dopt=Abstract
http://europepmc.org/abstract/MED/27398621
http://dx.doi.org/10.1038/nature18642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27398621&dopt=Abstract
http://dx.doi.org/10.1038/nrg1578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15803198&dopt=Abstract
http://dx.doi.org/10.1172/jci78425
http://dx.doi.org/10.1210/jc.2013-4427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24823457&dopt=Abstract
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-14-14
http://dx.doi.org/10.1186/1471-2458-14-14
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24400816&dopt=Abstract
http://dx.doi.org/10.1136/jech-2015-206948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27126492&dopt=Abstract
https://doi.org/10.1111/obr.12157
http://dx.doi.org/10.1111/obr.12157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24661566&dopt=Abstract
http://europepmc.org/abstract/MED/25271405
http://dx.doi.org/10.1001/jamasurg.2014.2440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25271405&dopt=Abstract
http://dx.doi.org/10.1016/s2213-8587(13)70218-3
http://www.w3.org/Style/XSL
http://www.renderx.com/


a post-hoc analysis of participants from the Swedish Obese Subjects study. Lancet Diabetes Endocrinol 2017
Apr;5(4):271-279. [doi: 10.1016/s2213-8587(17)30061-x]

37. Hatoum IJ, Greenawalt DM, Cotsapas C, Reitman ML, Daly MJ, Kaplan LM. Heritability of the weight loss response to
gastric bypass surgery. J Clin Endocrinol Metab 2011 Oct;96(10):1630-1633 [FREE Full text] [doi: 10.1210/jc.2011-1130]
[Medline: 21832118]

38. Rinella E, Still C, Shao Y, Wood GC, Chu X, Salerno B, et al. Genome-wide association of single-nucleotide polymorphisms
with weight loss outcomes after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 2013 Jun;98(6):1131-1136
[FREE Full text] [doi: 10.1210/jc.2012-3421] [Medline: 23633212]

39. Hatoum I, Greenawalt D, Cotsapas C, Daly M, Reitman M, Kaplan L. Weight loss after gastric bypass is associated with
a variant at 15q26.1. Am J Hum Genet 2013 May 02;92(5):827-834 [FREE Full text] [doi: 10.1016/j.ajhg.2013.04.009]
[Medline: 23643386]

40. Breen FM, Plomin R, Wardle J. Heritability of food preferences in young children. Physiol Behav 2006 Jul
30;88(4-5):443-447. [doi: 10.1016/j.physbeh.2006.04.016] [Medline: 16750228]

41. Törnwall O, Silventoinen K, Hiekkalinna T, Perola M, Tuorila H, Kaprio J. Identifying flavor preference subgroups. Genetic
basis and related eating behavior traits. Appetite 2014 Apr;75:1-10. [doi: 10.1016/j.appet.2013.11.020] [Medline: 24361469]

42. Wardle J, Carnell S, Haworth C, Farooqi I, O'Rahilly S, Plomin R. Obesity associated genetic variation in FTO is associated
with diminished satiety. J Clin Endocrinol Metab 2008 Sep;93(9):3640-3643. [doi: 10.1210/jc.2008-0472] [Medline:
18583465]

43. Timpson N, Emmett P, Frayling T, Rogers I, Hattersley AT, McCarthy MI, et al. The fat mass- and obesity-associated locus
and dietary intake in children. Am J Clin Nutr 2008 Oct;88(4):971-978 [FREE Full text] [doi: 10.1093/ajcn/88.4.971]
[Medline: 18842783]

44. McCaffery J, Papandonatos G, Peter I, Huggins GS, Raynor HA, Delahanty LM, Genetic Subgroup of Look AHEAD, Look
AHEAD Research Group. Obesity susceptibility loci and dietary intake in the Look AHEAD Trial. Am J Clin Nutr 2012
Jun;95(6):1477-1486 [FREE Full text] [doi: 10.3945/ajcn.111.026955] [Medline: 22513296]

45. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated gene variant and increased energy
intake in children. N Engl J Med 2008 Dec 11;359(24):2558-2566. [doi: 10.1056/nejmoa0803839]

46. Feeney E, O'Brien S, Scannell A, Markey A, Gibney ER. Genetic variation in taste perception: does it have a role in healthy
eating? Proc Nutr Soc 2010 Nov 22;70(1):135-143. [doi: 10.1017/s0029665110003976]

47. Qi L. Gene-diet interaction and weight loss. Curr Opin Lipidol 2014 Feb;25(1):27-34 [FREE Full text] [doi:
10.1097/MOL.0000000000000037] [Medline: 24345984]

48. Qi L. Gene-diet interactions in complex disease: current findings and relevance for public health. Curr Nutr Rep 2012 Dec
01;1(4):222-227 [FREE Full text] [doi: 10.1007/s13668-012-0029-8] [Medline: 23139897]

49. Qi L, Cho Y. Gene-environment interaction and obesity. Nutr Rev 2008 Dec;66(12):684-694 [FREE Full text] [doi:
10.1111/j.1753-4887.2008.00128.x] [Medline: 19019037]

50. UK biobank. URL: http://www.ukbiobank.ac.uk/2016/11/scanning-study-launched/ [accessed 2018-09-05] [WebCite Cache
ID 72CgBSM4O]

51. Lv J, Yu C, Guo Y, Bian Z, Yang L, Chen Y, China Kadoorie Biobank Collaborative Group. Adherence to healthy lifestyle
and cardiovascular diseases in the Chinese population. J Am Coll Cardiol 2017 Mar 07;69(9):1116-1125 [FREE Full text]
[doi: 10.1016/j.jacc.2016.11.076] [Medline: 28254173]

52. Di Pietro L, Dziura J, Blair SN. Estimated change in physical activity level (PAL) and prediction of 5-year weight change
in men: the Aerobics Center Longitudinal Study. Int J Obes Relat Metab Disord 2004 Dec 29;28(12):1541-1547. [doi:
10.1038/sj.ijo.0802821] [Medline: 15543159]

53. Haapanen N, Miilunpalo S, Pasanen M, Oja P, Vuori I. Association between leisure time physical activity and 10-year
body mass change among working-aged men and women. Int J Obes Relat Metab Disord 1997 Apr 18;21(4):288-296. [doi:
10.1038/sj.ijo.0800403] [Medline: 9130026]

54. Schmitz K, Jacobs D, Leon A, Schreiner P, Sternfeld B. Physical activity and body weight: associations over ten years in
the CARDIA study. Coronary artery risk development in young adults. Int J Obes Relat Metab Disord 2000 Nov
17;24(11):1475-1487. [doi: 10.1038/sj.ijo.0801415] [Medline: 11126345]

55. Washburn RA, Szabo AN, Lambourne K, Willis EA, Ptomey LT, Honas JJ, et al. Does the method of weight loss effect
long-term changes in weight, body composition or chronic disease risk factors in overweight or obese adults? A systematic
review. PLoS One 2014 Oct 15;9(10):e109849 [FREE Full text] [doi: 10.1371/journal.pone.0109849] [Medline: 25333384]

56. Herring MP, Sailors MH, Bray MS. Genetic factors in exercise adoption, adherence and obesity. Obes Rev 2014 Jan
15;15(1):29-39 [FREE Full text] [doi: 10.1111/obr.12089] [Medline: 24034448]

57. Maia JA, Thomis M, Beunen G. Genetic factors in physical activity levels. Am J Prev Med 2002 Aug;23(2):87-91. [doi:
10.1016/s0749-3797(02)00478-6]

58. Cai G, Cole SA, Butte N, Bacino C, Diego V, Tan K, et al. A quantitative trait locus on chromosome 18q for physical
activity and dietary intake in Hispanic children. Obesity (Silver Spring) 2006 Sep;14(9):1596-1604 [FREE Full text] [doi:
10.1038/oby.2006.184] [Medline: 17030971]

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25401 | p. 16https://www.jmir.org/2021/5/e25401
(page number not for citation purposes)

Sinha et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/s2213-8587(17)30061-x
http://europepmc.org/abstract/MED/21832118
http://dx.doi.org/10.1210/jc.2011-1130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21832118&dopt=Abstract
http://europepmc.org/abstract/MED/23633212
http://dx.doi.org/10.1210/jc.2012-3421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23633212&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0002-9297(13)00170-5
http://dx.doi.org/10.1016/j.ajhg.2013.04.009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23643386&dopt=Abstract
http://dx.doi.org/10.1016/j.physbeh.2006.04.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16750228&dopt=Abstract
http://dx.doi.org/10.1016/j.appet.2013.11.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24361469&dopt=Abstract
http://dx.doi.org/10.1210/jc.2008-0472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18583465&dopt=Abstract
http://europepmc.org/abstract/MED/18842783
http://dx.doi.org/10.1093/ajcn/88.4.971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18842783&dopt=Abstract
http://europepmc.org/abstract/MED/22513296
http://dx.doi.org/10.3945/ajcn.111.026955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22513296&dopt=Abstract
http://dx.doi.org/10.1056/nejmoa0803839
http://dx.doi.org/10.1017/s0029665110003976
http://europepmc.org/abstract/MED/24345984
http://dx.doi.org/10.1097/MOL.0000000000000037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24345984&dopt=Abstract
http://europepmc.org/abstract/MED/23139897
http://dx.doi.org/10.1007/s13668-012-0029-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23139897&dopt=Abstract
http://europepmc.org/abstract/MED/19019037
http://dx.doi.org/10.1111/j.1753-4887.2008.00128.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19019037&dopt=Abstract
http://www.ukbiobank.ac.uk/2016/11/scanning-study-launched/
http://www.webcitation.org/

                                            72CgBSM4O
http://www.webcitation.org/

                                            72CgBSM4O
https://linkinghub.elsevier.com/retrieve/pii/S0735-1097(17)30045-1
http://dx.doi.org/10.1016/j.jacc.2016.11.076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28254173&dopt=Abstract
http://dx.doi.org/10.1038/sj.ijo.0802821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15543159&dopt=Abstract
http://dx.doi.org/10.1038/sj.ijo.0800403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9130026&dopt=Abstract
http://dx.doi.org/10.1038/sj.ijo.0801415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11126345&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0109849
http://dx.doi.org/10.1371/journal.pone.0109849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25333384&dopt=Abstract
https://doi.org/10.1111/obr.12089
http://dx.doi.org/10.1111/obr.12089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24034448&dopt=Abstract
http://dx.doi.org/10.1016/s0749-3797(02)00478-6
https://doi.org/10.1038/oby.2006.184
http://dx.doi.org/10.1038/oby.2006.184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17030971&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


59. de Toro-Martín J, Arsenault BJ, Després JP, Vohl M. Precision nutrition: a review of personalized nutritional approaches
for the prevention and management of metabolic syndrome. Nutrients 2017 Aug 22;9(8):913 [FREE Full text] [doi:
10.3390/nu9080913] [Medline: 28829397]

60. Reinehr T, Roth CL. The gut sensor as regulator of body weight. Endocrine 2015 May 30;49(1):35-50. [doi:
10.1007/s12020-014-0518-1] [Medline: 25548085]

61. Frost F, Storck LJ, Kacprowski T, Gärtner S, Rühlemann M, Bang C, et al. A structured weight loss program increases gut
microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: a pilot study. PLoS One 2019
Jul 18;14(7):e0219489 [FREE Full text] [doi: 10.1371/journal.pone.0219489] [Medline: 31318902]

62. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity
modulate metabolism in mice. Science 2013 Sep 06;341(6150):1241214 [FREE Full text] [doi: 10.1126/science.1241214]
[Medline: 24009397]

63. Kang JX. Gut microbiota and personalized nutrition. J Nutrigenet Nutrigenomics 2013;6(2):I-II [FREE Full text] [doi:
10.1159/000353144] [Medline: 23774142]

64. Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut
microbiome. Nat Genet 2016 Nov 3;48(11):1407-1412. [doi: 10.1038/ng.3663] [Medline: 27694959]

65. Corella D, Arregui M, Coltell O, Portolés O, Guillem-Sáiz P, Carrasco P, et al. Association of the LCT-13910C>T
polymorphism with obesity and its modulation by dairy products in a Mediterranean population. Obesity (Silver Spring)
2011 Aug;19(8):1707-1714 [FREE Full text] [doi: 10.1038/oby.2010.320] [Medline: 21193851]

66. Mathur R, Kim G, Morales W, Sung J, Rooks E, Pokkunuri V, et al. Intestinal Methanobrevibacter smithii but not total
bacteria is related to diet-induced weight gain in rats. Obesity (Silver Spring) 2013 Apr 25;21(4):748-754 [FREE Full text]
[doi: 10.1002/oby.20277] [Medline: 23712978]

67. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, MetaHIT consortium, et al. Richness of human gut
microbiome correlates with metabolic markers. Nature 2013 Aug 29;500(7464):541-546. [doi: 10.1038/nature12506]
[Medline: 23985870]

68. Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat Rev Endocrinol 2015 Mar;11(3):182-190 [FREE Full text]
[doi: 10.1038/nrendo.2014.210] [Medline: 25488483]

69. Remely M, Tesar I, Hippe B, Gnauer S, Rust P, Haslberger A. Gut microbiota composition correlates with changes in body
fat content due to weight loss. Beneficial Microbes 2015 Aug;6(4):431-439. [doi: 10.3920/bm2014.0104]

70. Jumpertz R, Le DS, Turnbaugh P, Trinidad C, Bogardus C, Gordon JI, et al. Energy-balance studies reveal associations
between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 2011 Jul;94(1):58-65 [FREE Full
text] [doi: 10.3945/ajcn.110.010132] [Medline: 21543530]

71. Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss.
JAMA Surg 2013 Jun 01;148(6):563-569 [FREE Full text] [doi: 10.1001/jamasurg.2013.5] [Medline: 23571517]

72. Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, et al. Effects of surgical and
dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int 2015;2015:1-12
[FREE Full text] [doi: 10.1155/2015/806248] [Medline: 25710027]

73. Bacigalupo R, Cudd P, Littlewood C, Bissell P, Hawley MS, Buckley Woods H. Interventions employing mobile technology
for overweight and obesity: an early systematic review of randomized controlled trials. Obes Rev 2013 Apr 20;14(4):279-291
[FREE Full text] [doi: 10.1111/obr.12006] [Medline: 23167478]

74. Krukowski RA, Tilford JM, Harvey-Berino J, West DS. Comparing behavioral weight loss modalities: incremental
cost-effectiveness of an internet-based versus an in-person condition. Obesity (Silver Spring) 2011 Aug;19(8):1629-1635
[FREE Full text] [doi: 10.1038/oby.2010.341] [Medline: 21253001]

75. Silberman JM, Kaur M, Sletteland J, Venkatesan A. Outcomes in a digital weight management intervention with one-on-one
health coaching. PLoS One 2020 Apr 30;15(4):e0232221 [FREE Full text] [doi: 10.1371/journal.pone.0232221] [Medline:
32353035]

76. Bray G, Heisel W, Afshin A, Jensen MD, Dietz WH, Long M, et al. The science of obesity management: an endocrine
society scientific statement. Endocr Rev 2018 Apr 01;39(2):79-132 [FREE Full text] [doi: 10.1210/er.2017-00253] [Medline:
29518206]

77. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, American College of Cardiology/American Heart
Association Task Force on Practice Guidelines, Obesity Society. 2013 AHA/ACC/TOS guideline for the management of
overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force
on Practice Guidelines and The Obesity Society. J Am Coll Cardiol 2014 Jul 01;63(25 Pt B):2985-3023 [FREE Full text]
[doi: 10.1016/j.jacc.2013.11.004] [Medline: 24239920]

78. Harvey-Berino J, West D, Krukowski R, Prewitt E, VanBiervliet A, Ashikaga T, et al. Internet delivered behavioral obesity
treatment. Prev Med 2010 Aug;51(2):123-128 [FREE Full text] [doi: 10.1016/j.ypmed.2010.04.018] [Medline: 20478333]

79. Tate DF, Wing RR, Winett RA. Using internet technology to deliver a behavioral weight loss program. J Am Med Assoc
2001 Mar 07;285(9):1172-1177. [doi: 10.1001/jama.285.9.1172] [Medline: 11231746]

80. Obino KF, Pereira CA, Lienert RC. Coaching and barriers to weight loss: an integrative review. Diabetes Metab Syndr
Obes Targets Ther 2016 Dec;Volume 10:1-11. [doi: 10.2147/dmso.s113874]

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25401 | p. 17https://www.jmir.org/2021/5/e25401
(page number not for citation purposes)

Sinha et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.mdpi.com/resolver?pii=nu9080913
http://dx.doi.org/10.3390/nu9080913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28829397&dopt=Abstract
http://dx.doi.org/10.1007/s12020-014-0518-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25548085&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0219489
http://dx.doi.org/10.1371/journal.pone.0219489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31318902&dopt=Abstract
https://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=24009397
http://dx.doi.org/10.1126/science.1241214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24009397&dopt=Abstract
https://www.karger.com?DOI=10.1159/000353144
http://dx.doi.org/10.1159/000353144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23774142&dopt=Abstract
http://dx.doi.org/10.1038/ng.3663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27694959&dopt=Abstract
https://doi.org/10.1038/oby.2010.320
http://dx.doi.org/10.1038/oby.2010.320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21193851&dopt=Abstract
https://doi.org/10.1002/oby.20277
http://dx.doi.org/10.1002/oby.20277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23712978&dopt=Abstract
http://dx.doi.org/10.1038/nature12506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23985870&dopt=Abstract
http://europepmc.org/abstract/MED/25488483
http://dx.doi.org/10.1038/nrendo.2014.210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25488483&dopt=Abstract
http://dx.doi.org/10.3920/bm2014.0104
http://europepmc.org/abstract/MED/21543530
http://europepmc.org/abstract/MED/21543530
http://dx.doi.org/10.3945/ajcn.110.010132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21543530&dopt=Abstract
http://europepmc.org/abstract/MED/23571517
http://dx.doi.org/10.1001/jamasurg.2013.5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23571517&dopt=Abstract
https://doi.org/10.1155/2015/806248
http://dx.doi.org/10.1155/2015/806248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25710027&dopt=Abstract
https://doi.org/10.1111/obr.12006
http://dx.doi.org/10.1111/obr.12006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23167478&dopt=Abstract
https://doi.org/10.1038/oby.2010.341
http://dx.doi.org/10.1038/oby.2010.341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21253001&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0232221
http://dx.doi.org/10.1371/journal.pone.0232221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32353035&dopt=Abstract
http://europepmc.org/abstract/MED/29518206
http://dx.doi.org/10.1210/er.2017-00253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29518206&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0735-1097(13)06030-0
http://dx.doi.org/10.1016/j.jacc.2013.11.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24239920&dopt=Abstract
http://europepmc.org/abstract/MED/20478333
http://dx.doi.org/10.1016/j.ypmed.2010.04.018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20478333&dopt=Abstract
http://dx.doi.org/10.1001/jama.285.9.1172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11231746&dopt=Abstract
http://dx.doi.org/10.2147/dmso.s113874
http://www.w3.org/Style/XSL
http://www.renderx.com/


81. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin
D insufficiency: a genome-wide association study. Lancet 2010 Jul;376(9736):180-188. [doi:
10.1016/S0140-6736(10)60588-0]

82. Kaklamani VG, Sadim M, Hsi A, Offit K, Oddoux C, Ostrer H, et al. Variants of the adiponectin and adiponectin receptor
1 genes and breast cancer risk. Cancer Res 2008 May 01;68(9):3178-3184. [doi: 10.1158/0008-5472.can-08-0533]

83. Clarke R, Halsey J, Bennett D, Lewington S. Homocysteine and vascular disease: review of published results of the
homocysteine-lowering trials. J Inherit Metab Dis 2011 Feb 11;34(1):83-91. [doi: 10.1007/s10545-010-9235-y] [Medline:
21069462]

84. Johnson J. β1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther 2003
Jul;74(1):44-52. [doi: 10.1016/S0009-9236(03)00068-7]

85. Fernando MM, Stevens CR, Sabeti PC, Walsh EC, McWhinnie AJ, Shah A, et al. Identification of two independent risk
factors for lupus within the MHC in United Kingdom families. PLoS Genet 2007 Nov 9;3(11):e192 [FREE Full text] [doi:
10.1371/journal.pgen.0030192] [Medline: 17997607]

86. van Heel DA, Franke L, Hunt K, Gwilliam R, Zhernakova A, Inouye M, et al. A genome-wide association study for celiac
disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 2007 Jul;39(7):827-829 [FREE Full text]
[doi: 10.1038/ng2058] [Medline: 17558408]

87. CoffeeCaffeine Genetics Consortium, Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A, International Parkinson’s
Disease Genomics Consortium (IPDGC), North American Brain Expression Consortium (NABEC), UK Brain Expression
Consortium (UKBEC), et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption.
Mol Psychiatry 2015 May 7;20(5):647-656 [FREE Full text] [doi: 10.1038/mp.2014.107] [Medline: 25288136]

88. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association
yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 2009 Jan 14;41(1):18-24.
[doi: 10.1038/ng.274] [Medline: 19079260]

89. ADIPOQ. SNPedia. URL: https://snpedia.com/index.php/ADIPOQ [accessed 2020-10-20]
90. Goyenechea E, Collins L, Parra D, Abete I, Crujeiras A, O'Dell SD, et al. The - 11391 G/A polymorphism of the adiponectin

gene promoter is associated with metabolic syndrome traits and the outcome of an energy-restricted diet in obese subjects.
Horm Metab Res 2009 Jan 23;41(1):55-61. [doi: 10.1055/s-0028-1087204] [Medline: 18949681]

91. Warodomwichit D, Shen J, Arnett D, Tsai MY, Kabagambe EK, Peacock JM, et al. ADIPOQ polymorphisms,
monounsaturated fatty acids, and obesity risk: the GOLDN study. Obesity (Silver Spring) 2009 Mar;17(3):510-517 [FREE
Full text] [doi: 10.1038/oby.2008.583] [Medline: 19238139]

92. Gallicchio L, Kalesan B, Huang H, Strickland P, Hoffman SC, Helzlsouer KJ. Genetic polymorphisms of peroxisome
proliferator-activated receptors and the risk of cardiovascular morbidity and mortality in a community-based cohort in
washington county, Maryland. PPAR Res 2008;2008:1-9 [FREE Full text] [doi: 10.1155/2008/276581] [Medline: 18288282]

93. Leońska-Duniec A, Cieszczyk P, Jastrzębski Z, Jażdżewska A, Lulińska-Kuklik E, Moska W, et al. The polymorphisms
of the PPARD gene modify post-training body mass and biochemical parameter changes in women. PLoS One 2018 Aug
29;13(8):e0202557 [FREE Full text] [doi: 10.1371/journal.pone.0202557] [Medline: 30157214]

94. rs4074995. SNPedia. URL: https://www.snpedia.com/index.php/rs4074995 [accessed 2020-10-20]
95. Kestenbaum B, Glazer NL, Köttgen A, Felix JF, Hwang S, Liu Y, et al. Common genetic variants associate with serum

phosphorus concentration. J Am Soc Nephrol 2010 Jun 17;21(7):1223-1232. [doi: 10.1681/asn.2009111104]
96. O'Seaghdha CM, Wu H, Yang Q, Kapur K, Guessous I, Zuber AM, SUNLIGHT Consortium, GEFOS Consortium, et al.

Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations. PLoS Genet
2013 Sep 19;9(9):e1003796 [FREE Full text] [doi: 10.1371/journal.pgen.1003796] [Medline: 24068962]

97. 2015-2020 dietary guidelines. Office of Disease Prevention and Health Promotion. 2015. URL: https://health.gov/our-work/
food-nutrition/2015-2020-dietary-guidelines [accessed 2020-10-20]

98. Luo W, Chen F, Guo Z, Wu M, Zhou Z, Yao X. A population association study of PPAR δ gene rs2016520 and rs9794
polymorphisms and haplotypes with body mass index and waist circumference in a Chinese population. Ann Hum Biol
2016 Jun 15;43(1):67-72. [doi: 10.3109/03014460.2015.1023847] [Medline: 26073637]

99. Holzapfel J, Heun R, Lütjohann D, Jessen F, Maier W, Kölsch H. PPARD haplotype influences cholesterol metabolism
but is no risk factor of Alzheimer's disease. Neurosci Lett 2006 Nov 06;408(1):57-61. [doi: 10.1016/j.neulet.2006.08.029]
[Medline: 16979821]

100. Calcium: fact sheet for health professionals. Office of Dietary Supplements. URL: https://ods.od.nih.gov/factsheets/
Calcium-HealthProfessional/ [accessed 2020-10-20]

101. Wu X, Han T, Gao J, Zhang Y, Zhao S, Sun R, et al. Association of serum calcium and insulin resistance with hypertension
risk: a prospective population‐based study. J Am Heart Assoc 2019 Jan 08;8(1). [doi: 10.1161/jaha.118.009585]

102. Dalfardi O, Jahandideh D, Omrani G. The correlation of serum calcium level and obesity; is there any explanation? Galen
Med J. 2013. URL: https://www.gmj.ir/index.php/gmj/article/view/28/34 [accessed 2020-04-21]

103. Chin SO, Keum C, Woo J, Park J, Choi HJ, Woo J, et al. Successful weight reduction and maintenance by using a smartphone
application in those with overweight and obesity. Sci Rep 2016 Nov 07;6:34563 [FREE Full text] [doi: 10.1038/srep34563]
[Medline: 27819345]

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25401 | p. 18https://www.jmir.org/2021/5/e25401
(page number not for citation purposes)

Sinha et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1016/S0140-6736(10)60588-0
http://dx.doi.org/10.1158/0008-5472.can-08-0533
http://dx.doi.org/10.1007/s10545-010-9235-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21069462&dopt=Abstract
http://dx.doi.org/10.1016/S0009-9236(03)00068-7
https://dx.plos.org/10.1371/journal.pgen.0030192
http://dx.doi.org/10.1371/journal.pgen.0030192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17997607&dopt=Abstract
http://europepmc.org/abstract/MED/17558408
http://dx.doi.org/10.1038/ng2058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17558408&dopt=Abstract
http://europepmc.org/abstract/MED/25288136
http://dx.doi.org/10.1038/mp.2014.107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25288136&dopt=Abstract
http://dx.doi.org/10.1038/ng.274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19079260&dopt=Abstract
https://snpedia.com/index.php/ADIPOQ
http://dx.doi.org/10.1055/s-0028-1087204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18949681&dopt=Abstract
https://doi.org/10.1038/oby.2008.583
https://doi.org/10.1038/oby.2008.583
http://dx.doi.org/10.1038/oby.2008.583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19238139&dopt=Abstract
https://doi.org/10.1155/2008/276581
http://dx.doi.org/10.1155/2008/276581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18288282&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0202557
http://dx.doi.org/10.1371/journal.pone.0202557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30157214&dopt=Abstract
https://www.snpedia.com/index.php/rs4074995
http://dx.doi.org/10.1681/asn.2009111104
https://dx.plos.org/10.1371/journal.pgen.1003796
http://dx.doi.org/10.1371/journal.pgen.1003796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24068962&dopt=Abstract
https://health.gov/our-work/food-nutrition/2015-2020-dietary-guidelines
https://health.gov/our-work/food-nutrition/2015-2020-dietary-guidelines
http://dx.doi.org/10.3109/03014460.2015.1023847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26073637&dopt=Abstract
http://dx.doi.org/10.1016/j.neulet.2006.08.029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16979821&dopt=Abstract
https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/
https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/
http://dx.doi.org/10.1161/jaha.118.009585
https://www.gmj.ir/index.php/gmj/article/view/28/34
http://dx.doi.org/10.1038/srep34563
http://dx.doi.org/10.1038/srep34563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27819345&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


104. Kanter R, Caballero B. Global gender disparities in obesity: a review. Adv Nutr 2012 Jul 01;3(4):491-498 [FREE Full text]
[doi: 10.3945/an.112.002063] [Medline: 22797984]

105. Lemon SC, Rosal MC, Zapka J, Borg A, Andersen V. Contributions of weight perceptions to weight loss attempts: differences
by body mass index and gender. Body Image 2009 Mar;6(2):90-96 [FREE Full text] [doi: 10.1016/j.bodyim.2008.11.004]
[Medline: 19188102]

106. Pagoto S, Schneider KL, Oleski JL, Luciani JM, Bodenlos JS, Whited MC. Male inclusion in randomized controlled trials
of lifestyle weight loss interventions. Obesity (Silver Spring) 2012 Jun;20(6):1234-1239 [FREE Full text] [doi:
10.1038/oby.2011.140] [Medline: 21633403]

107. Robertson C, Archibald D, Avenell A, Douglas F, Hoddinott P, van Teijlingen E, et al. Systematic reviews of and integrated
report on the quantitative, qualitative and economic evidence base for the management of obesity in men. Health Technol
Assess 2014 May;18(35):v-vi, xxiii [FREE Full text] [doi: 10.3310/hta18350] [Medline: 24857516]

108. Crane MM, Jeffery RW, Sherwood NE. Exploring gender differences in a randomized trial of weight loss maintenance.
Am J Mens Health 2017 Dec;11(2):369-375 [FREE Full text] [doi: 10.1177/1557988316681221] [Medline: 27923968]

109. Gabriele JM, Carpenter BD, Tate DF, Fisher EB. Directive and nondirective e-coach support for weight loss in overweight
adults. Ann Behav Med 2011 Apr 25;41(2):252-263 [FREE Full text] [doi: 10.1007/s12160-010-9240-2] [Medline: 21108032]

110. Christensen P, Larsen TM, Westerterp-Plantenga M, Macdonald I, Martinez JA, Handjiev S, et al. Men and women respond
differently to rapid weight loss: metabolic outcomes of a multi-centre intervention study after a low-energy diet in 2500
overweight, individuals with pre-diabetes (PREVIEW). Diabetes Obes Metab 2018 Dec 07;20(12):2840-2851 [FREE Full
text] [doi: 10.1111/dom.13466] [Medline: 30088336]

111. Celis-Morales C, Livingstone KM, Marsaux CF, Macready AL, Fallaize R, O'Donovan CB, et al. Effect of personalized
nutrition on health-related behaviour change: evidence from the Food4me European randomized controlled trial. Int J
Epidemiol 2016 Aug 14:dyw186. [doi: 10.1093/ije/dyw186] [Medline: 27524815]

112. Hietaranta-Luoma H, Tahvonen R, Iso-Touru T, Puolijoki H, Hopia A. An intervention study of individual, apoE
genotype-based dietary and physical-activity advice: impact on health behavior. J Nutrigenet Nutrigenomics 2014 Feb
20;7(3):161-174. [doi: 10.1159/000371743] [Medline: 25720616]

113. Bloss CS, Wineinger NE, Darst BF, Schork NJ, Topol EJ. Impact of direct-to-consumer genomic testing at long term
follow-up. J Med Genet 2013 Jun 04;50(6):393-400. [doi: 10.1136/jmedgenet-2012-101207] [Medline: 23559530]

114. Nielsen DE, El-Sohemy A. Disclosure of genetic information and change in dietary intake: a randomized controlled trial.
PLoS One 2014 Nov 14;9(11):e112665. [doi: 10.1371/journal.pone.0112665] [Medline: 25398084]

115. Meisel SF, Beeken RJ, van Jaarsveld CH, Wardle J. Genetic susceptibility testing and readiness to control weight: results
from a randomized controlled trial. Obesity (Silver Spring) 2015 Feb 17;23(2):305-312 [FREE Full text] [doi:
10.1002/oby.20958] [Medline: 25522302]

116. Celis-Morales C, Livingstone KM, Marsaux C, Walsh MC, Woolhead C, Forster H, et al. Baseline characteristics of the
Food4Me proof of principle study: a web-based randomised controlled trial of personalised nutrition in seven European
countries. Proc Nutr Soc 2015 Apr 15;74(OCE1):a [FREE Full text] [doi: 10.1017/s0029665115001330]

117. Freathy RM, Hayes MG, Urbanek M, Lowe LP, Lee H, Ackerman C, HAPO Study Cooperative Research Group.
Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: common genetic variants in GCK and TCF7L2 are
associated with fasting and postchallenge glucose levels in pregnancy and with the new consensus definition of gestational
diabetes mellitus from the International Association of Diabetes and Pregnancy Study Groups. Diabetes 2010 Oct
03;59(10):2682-2689 [FREE Full text] [doi: 10.2337/db10-0177] [Medline: 20682688]

118. Shaat N, Lernmark A, Karlsson E, Ivarsson S, Parikh H, Berntorp K, et al. A variant in the transcription factor 7-like 2
(TCF7L2) gene is associated with an increased risk of gestational diabetes mellitus. Diabetologia 2007 May;50(5):972-979.
[doi: 10.1007/s00125-007-0623-2] [Medline: 17342473]

119. Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, et al. Mechanisms by which common
variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007 Aug;117(8):2155-2163 [FREE Full text]
[doi: 10.1172/JCI30706] [Medline: 17671651]

120. Tong Y, Lin Y, Zhang Y, Yang J, Zhang Y, Liu H, et al. Association between TCF7L2 gene polymorphisms and susceptibility
to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med Genet
2009 Feb 19;10:15 [FREE Full text] [doi: 10.1186/1471-2350-10-15] [Medline: 19228405]

121. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and
3,000 shared controls. Nature 2007 Jun 07;447(7145):661-678 [FREE Full text] [doi: 10.1038/nature05911] [Medline:
17554300]

122. Palmer N, Lehtinen AB, Langefeld CD, Campbell JK, Haffner SM, Norris JM, et al. Association of TCF7L2 gene
polymorphisms with reduced acute insulin response in Hispanic Americans. J Clin Endocrinol Metab 2008 Jan;93(1):304-309
[FREE Full text] [doi: 10.1210/jc.2007-1225] [Medline: 17971425]

123. Bhama SCV, Balaji S, Seethalakshmi A. Analysis of the degree of insulin resistance in post menopausal women by using
skin temperature measurements and fasting insulin and fasting glucose levels: a case control study. J Clin Diagn Res
2012:1644-1647 [FREE Full text] [doi: 10.7860/jcdr/2012/4377.2646]

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25401 | p. 19https://www.jmir.org/2021/5/e25401
(page number not for citation purposes)

Sinha et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://europepmc.org/abstract/MED/22797984
http://dx.doi.org/10.3945/an.112.002063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22797984&dopt=Abstract
http://europepmc.org/abstract/MED/19188102
http://dx.doi.org/10.1016/j.bodyim.2008.11.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19188102&dopt=Abstract
https://doi.org/10.1038/oby.2011.140
http://dx.doi.org/10.1038/oby.2011.140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21633403&dopt=Abstract
https://doi.org/10.3310/hta18350
http://dx.doi.org/10.3310/hta18350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24857516&dopt=Abstract
http://europepmc.org/abstract/MED/27923968
http://dx.doi.org/10.1177/1557988316681221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27923968&dopt=Abstract
http://europepmc.org/abstract/MED/21108032
http://dx.doi.org/10.1007/s12160-010-9240-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21108032&dopt=Abstract
http://europepmc.org/abstract/MED/30088336
http://europepmc.org/abstract/MED/30088336
http://dx.doi.org/10.1111/dom.13466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30088336&dopt=Abstract
http://dx.doi.org/10.1093/ije/dyw186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27524815&dopt=Abstract
http://dx.doi.org/10.1159/000371743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25720616&dopt=Abstract
http://dx.doi.org/10.1136/jmedgenet-2012-101207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23559530&dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0112665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25398084&dopt=Abstract
https://doi.org/10.1002/oby.20958
http://dx.doi.org/10.1002/oby.20958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25522302&dopt=Abstract
https://doi.org/10.1007/s12263-014-0450-2
http://dx.doi.org/10.1017/s0029665115001330
https://diabetes.diabetesjournals.org/lookup/pmidlookup?view=long&pmid=20682688
http://dx.doi.org/10.2337/db10-0177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20682688&dopt=Abstract
http://dx.doi.org/10.1007/s00125-007-0623-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17342473&dopt=Abstract
https://doi.org/10.1172/JCI30706
http://dx.doi.org/10.1172/JCI30706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17671651&dopt=Abstract
https://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-10-15
http://dx.doi.org/10.1186/1471-2350-10-15
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19228405&dopt=Abstract
http://europepmc.org/abstract/MED/17554300
http://dx.doi.org/10.1038/nature05911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17554300&dopt=Abstract
http://europepmc.org/abstract/MED/17971425
http://dx.doi.org/10.1210/jc.2007-1225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17971425&dopt=Abstract
https://doi.org/10.7860/JCDR/2012/4377.2646
http://dx.doi.org/10.7860/jcdr/2012/4377.2646
http://www.w3.org/Style/XSL
http://www.renderx.com/


124. Heianza Y, Qi L. Gene-diet interaction and precision nutrition in obesity. Int J Mol Sci 2017 Apr 07;18(4):787 [FREE Full
text] [doi: 10.3390/ijms18040787] [Medline: 28387720]

Abbreviations
FTO: alpha-ketoglutarate-dependent dioxygenase
LCT: lactase
MUFA: monounsaturated fat
RCT: randomized controlled trial
SNP: single-nucleotide polymorphism

Edited by G Eysenbach; submitted 01.11.20; peer-reviewed by S Rostam Niakan Kalhori, J Alvarez Pitti, AV Das; comments to author
14.12.20; revised version received 18.12.20; accepted 11.04.21; published 19.05.21

Please cite as:
Sinha R, Kachru D, Ricchetti RR, Singh-Rambiritch S, Muthukumar KM, Singaravel V, Irudayanathan C, Reddy-Sinha C, Junaid I,
Sharma G, Francis-Lyon PA
Leveraging Genomic Associations in Precision Digital Care for Weight Loss: Cohort Study
J Med Internet Res 2021;23(5):e25401
URL: https://www.jmir.org/2021/5/e25401
doi: 10.2196/25401
PMID: 33849843

©Ranjan Sinha, Dashyanng Kachru, Roshni Ray Ricchetti, Simitha Singh-Rambiritch, Karthik Marimuthu Muthukumar, Vidhya
Singaravel, Carmel Irudayanathan, Chandana Reddy-Sinha, Imran Junaid, Garima Sharma, Patricia Alice Francis-Lyon. Originally
published in the Journal of Medical Internet Research (https://www.jmir.org), 19.05.2021. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of
Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on
https://www.jmir.org/, as well as this copyright and license information must be included.

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25401 | p. 20https://www.jmir.org/2021/5/e25401
(page number not for citation purposes)

Sinha et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.mdpi.com/resolver?pii=ijms18040787
https://www.mdpi.com/resolver?pii=ijms18040787
http://dx.doi.org/10.3390/ijms18040787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28387720&dopt=Abstract
https://www.jmir.org/2021/5/e25401
http://dx.doi.org/10.2196/25401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33849843&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

