
Original Paper

Automatic Classification of Screen Gaze and Dialogue in
Doctor-Patient-Computer Interactions: Computational Ethnography
Algorithm Development and Validation

Samar Helou1, PhD; Victoria Abou-Khalil2, PhD; Riccardo Iacobucci3, PhD; Elie El Helou4, MD, MSc; Ken Kiyono5,
PhD
1Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
2Academic Center for Computing and Media Studies, Kyoto University, Kyoto, Japan
3Department of Urban Management, Graduate School of Engineering, Kyoto University, Kyoto, Japan
4Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
5Graduate School of Engineering Science, Osaka University, Osaka, Japan

Corresponding Author:
Samar Helou, PhD
Global Center for Medical Engineering and Informatics
Osaka University
Osaka Prefecture, Suita, Yamadaoka 2-2
Osaka, 565-0871
Japan
Phone: 81 8056856848
Email: helou.samar@gmail.com

Abstract

Background: The study of doctor-patient-computer interactions is a key research area for examining doctor-patient relationships;
however, studying these interactions is costly and obtrusive as researchers usually set up complex mechanisms or intrude on
consultations to collect, then manually analyze the data.

Objective: We aimed to facilitate human-computer and human-human interaction research in clinics by providing a computational
ethnography tool: an unobtrusive automatic classifier of screen gaze and dialogue combinations in doctor-patient-computer
interactions.

Methods: The classifier’s input is video taken by doctors using their computers' internal camera and microphone. By estimating
the key points of the doctor's face and the presence of voice activity, we estimate the type of interaction that is taking place. The
classification output of each video segment is 1 of 4 interaction classes: (1) screen gaze and dialogue, wherein the doctor is gazing
at the computer screen while conversing with the patient; (2) dialogue, wherein the doctor is gazing away from the computer
screen while conversing with the patient; (3) screen gaze, wherein the doctor is gazing at the computer screen without conversing
with the patient; and (4) other, wherein no screen gaze or dialogue are detected. We evaluated the classifier using 30 minutes of
video provided by 5 doctors simulating consultations in their clinics both in semi- and fully inclusive layouts.

Results: The classifier achieved an overall accuracy of 0.83, a performance similar to that of a human coder. Similar to the
human coder, the classifier was more accurate in fully inclusive layouts than in semi-inclusive layouts.

Conclusions: The proposed classifier can be used by researchers, care providers, designers, medical educators, and others who
are interested in exploring and answering questions related to screen gaze and dialogue in doctor-patient-computer interactions.

(J Med Internet Res 2021;23(5):e25218) doi: 10.2196/25218
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Introduction

Background
Doctor-patient communication is a combination of verbal and
nonverbal expressions and can affect patient satisfaction,
adherence, disclosure, and outcomes [1-8]. Health
communication researchers have examined various aspects of
clinician-patient verbal interactions, such as the content of the
clinician’s speech and their voice tone [5,9] and the intent that
an utterance has in communication [10]. Various nonverbal
aspects have also been examined, such as facial expressions,
eye contact, body posture, fluency [5,11], and the physical
distance between clinicians and patients [12]. With the
widespread adoption of electronic medical record systems,
computers have become an integral part of clinics. As a result,
the traditional 2-way doctor-patient relationship has been
replaced by a triadic relationship among doctor, patient, and
computer [13]. The use of electronic medical record systems
during consultations has been shown to affect doctor-patient
verbal [14] and nonverbal [2] communication, and consequently,
doctor-patient relationships both positively and negatively
[15,16]. Accordingly, the study of doctor-patient-computer
interactions has become a key research area for examining
doctor-patient relationships [17].

Doctor-Patient-Computer Interactions
Multiple studies, mainly in primary care settings, noted that
doctor-patient communication is affected [18-25] and even
shaped [26] by the use of computers during clinical encounters.
The use of computers was shown to modify or amplify doctors’
verbal and nonverbal behaviors [16,21,27-29] that are essential
to avoid communication failures and to have effective
doctor-patient communication [20]. Examples of negative verbal
and nonverbal behaviors that could be amplified by the use of
a computer include lack of eye contact, deficient active listening,
avoidance, and interruption [30-32].

In addition to studying the effect of computer use on
doctor-patient interactions, multiple studies [25,33] examined
factors that affect the way these computers are used. Pearce et
al [34] described the overarching styles and behaviors of doctors,
patients, and computers by studying the orientation of the
general practitioners' and patients' bodies as well as their
conversations. Chan et al [35] found that doctors spent 50%
less time using computers in examinations with psychological
components than in examinations with no psychological
components. Lanier et al [36] found that consultation content,
physicians’ gender and level of experience, and whether the
consultation was new or a follow-up were modestly related to
the way physicians used the computer in primary care settings.

Computational Ethnography Inside Clinics
Researchers studying doctor-patient-computer interactions need
to identify which interactions are taking place during the
consultations. To do so, researchers have used qualitative
methods such as taking notes during live observations [31,37],
conducting interviews [37,38], administering questionnaires
[39], and sending unannounced standardized patients to collect
information [40] and quantitative methods such as videotaping

consultations and manually coding the videos [36,41,42] or
setting up complex mechanisms for automatic data collection
and analysis inside the clinics [43]. Methods that include direct
observations are likely to generate more accurate data than
clinician or patient reports; however, direct observations are
costly in terms of time and human resources, may be obtrusive
in a clinical environment, and may cause the participants to
knowingly or unknowingly alter their behavior (because of the
presence of an observer) [44]. Moreover, they present privacy
and ethical concerns for patients and doctors such as concerns
about data security and anonymization; changes to the research
question that make it different from the one described in initial
consent forms, and researchers’ inability to take into account
all nonpublic information or situations that will be accessed
[45].

Given recent technological advancements, computational
ethnography has been proposed as an alternative method for
studying doctor-patient-computer interaction in depth.
Computational ethnography was defined as a new family of
methods for conducting human-computer interaction studies in
health care settings by using “automated and less obtrusive (or
unobtrusive) means for collecting in situ data reflective of real
end users’ actual, unaltered behaviors using a software system
or a device in real-world settings [46].”

Recently, a number of tools that automate the measurement and
analysis of specific behaviors in clinical settings were proposed
and evaluated: Hart et al. [47] proposed and validated an
automated video analysis tool to measure the synchrony and
dominance in doctor-patient interactions by analyzing the
cross-correlation of the kinetic energy and the frequency
spectrum of their motion [47]. Gutstein et al reported developing
a system that automatically learns the physician's gaze using
their hand positioning [48] or body positioning and optical flow
[49]. Weibel et al [43] introduced a solution that enables the
capture of multimodal activity in clinical settings [43] to support
computational ethnography studies in clinics. Their solution
combined computer logging functionality, body motion tracking,
audio detection, and eye tracking. By synchronizing data from
these sensors, Weibel et al [43] were able to detect the person
talking, whether the doctor is looking at the screen, the amount
of gesturing, the cognitive load, information searching behavior,
workflow interruptions, and the amount of computer activity;
however, their solution had some limitations. First, the accuracy
of the automatic classification was not reported. Second, they
noted that the use of Kinect presents some limitations such as
the need to set up the machine, Kinect’s inability to reidentify
a body once it re-enters the scene, and the occasional transfer
of skeletal tracking from human to nonhuman objects. Third,
to detect the person who was talking, a Dev-Audio Microcone
[50] was used. This means that such a tool may not fit the needs
of people looking for a cheap and portable solution with a known
robustness level. In this case, recent advancements in pose and
voice activity detection algorithms could address some of these
limitations. For video consultations, Faucett et al [51] created
ReflectLive, a tool that provides real-time feedback to clinicians
about speaking contributions, interruptions, eye gaze, and face
position. ReflectLive [51] uses an open-source library for audio
analysis and a commercial Javascript-based computer-vision
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face-tracking software for visual analysis. The real-time
feedback provided by ReflectLive was evaluated in terms of its
usefulness to the clinicians, but the feedback’s accuracy was
not reported.

Currently, there are few truly robust and unobtrusive
computational ethnography tools for clinical settings, as most
tools require researchers to add external artifacts into the clinical
environment. Moreover, to our knowledge, none of the existing
tools is freely available to the public. To enable human-computer
and human-human interaction studies in clinical settings, there
is a need for publicly available, robust, unobtrusive, and
automated tools for detecting and classifying
doctor-patient-computer interactions.

Aims
We aimed to provide a public, robust, unobtrusive,
privacy-ensuring, and automated tool for detecting and
classifying screen gaze and dialogue in doctor-patient-computer
interactions. We chose to focus on screen gaze and dialogue
due to recent advancements in machine learning that render the

automatic and accurate estimation of pose and voice activity
possible.

Methods

Overview
The purpose of the classifier (Figure 1) was to detect the
following interactions: (1) screen gaze and dialogue: doctor
gazing at the computer screen while having a conversation with
the patient; (2) dialogue: doctor conversing with the patient
while looking away from the computer screen, or (3) screen
gaze: doctor gazing at the computer screen without conversing
with the patient. Any other type of interaction in which the
doctor and the patient were not having a conversation and the
doctor is not gazing at their computer screen were considered
out of scope.

The code of the proposed classifier is publicly available [52]
and can be used by researchers, care providers, designers,
medical educators, and others who are interested in exploring
and answering questions related to screen gaze and dialogue
combinations in doctor-patient-computer interactions.

Figure 1. Overview of the classification process. EMR: electronic medical record.

Screen Gaze Classifier
The purpose of the screen gaze classifier was to detect when
the doctor's gaze was aimed at the computer screen. The input
of the classifier was the video captured by the doctor's computer
camera and the output was a binary classification: no screen
gaze or screen gaze.

We used the pose estimation library OpenPose [53] as a tool to
detect the coordinates of key points of the doctor's face.
OpenPose is an open-source library that allows real-time
multiperson key point detection for body, face, hands, and feet.
We extracted the coordinates of the doctor's eyes (xLeftEye,
yLeftEye), (xRightEye, yRightEye), ears (xLeftEar, yLeftEar), (xRightEar,
yRightEar), and nose (xNose, yNose), and using the coordinates, we

assumed that the doctor's gaze was targeting the computer screen
if (1) the location of both the doctor's ears could be estimated,
and (2) the doctor's nose was centered between the eyes. For
the second condition, we allowed a tolerance equal to half the
distance between the 2 eyes. We assessed these criteria (Figure
2) using the following equations for each frame in the video:

Then we assigned to each 0.5-second interval of video the most
frequent classification of its corresponding frames. This results
in a binary classification (no screen gaze, screen gaze) for each
0.5 seconds of video.
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Figure 2. Classifying the doctor's computer screen gaze using face key point estimation.

Dialogue Classifier
The purpose of the dialogue classifier was to detect when the
doctor and patient were engaging in conversation. The input of
the classifier was the audio captured by the doctor's computer’s
microphone, and the output was a binary classification of the
doctor-patient conversation: no dialogue or dialogue.

We used a library based on the webRTC voice activity detection
engine (an open source project maintained by the Google
WebRTC team [54]). The voice activity detection library allows
the detection of voice activity in an audio file by processing
audio segments and estimating the probability in each segment.

We set the length of each audio segment to 5 milliseconds,
which we found to offer the best results through trial and error.
We set the voice activity detection to its highest aggressiveness
mode in order to increase the probability of filtering out
nonspeech. We assigned to each 0.5-second interval of audio
the most frequent classification of its corresponding segments.

This results in a binary classification (no dialogue, dialogue)
for each 0.5 seconds of audio.

Classifier of Screen Gaze and Dialogue Combinations
By combining the results of the screen gaze classifier and the
dialogue classifier described above, we classify
doctor-patient-computer interactions into 4 different classes
(Table 1). The Screen Gaze and Dialogue (SG+D) class defines
interactions wherein the doctor is gazing at the computer screen
while conversing with the patient. The Dialogue (D) class
defines interactions wherein the doctor is looking away from
the computer screen and conversing with the patient, and the
Screen Gaze (SG) class defines interactions where the doctor
is gazing at the computer screen and not conversing with the
patient. An interaction wherein the doctor is neither looking at
the computer screen nor conversing with the patient is classified
as Other. For each 0.5 seconds of video, the interactions
classifier assigns 1 of the 4 classes.

Table 1. Four classes of doctor-patient-computer interactions.

ClassComponents

LabelDoctor-Patient-Computer interactionDialogueScreen gaze

SG+DScreen Gaze + DialogueDialogueScreen gaze

DDialogueDialogueNo screen gaze

SGScreen GazeNo dialogueScreen gaze

OtherOtherNo dialogueNo screen gaze

Evaluation of the Classifier
We considered 2 clinical layouts in our evaluation: a
semi-inclusive layout, where the patient is seated next to the
computer desk, and a fully inclusive layout, where the patient
is seated next to the doctor and facing the computer desk (Figure

3). The data that we used to evaluate our classifier consisted of
10 videos provided by 5 physicians. Each physician provided
2 videos—1 video simulating a consultation in a fully inclusive
layout and 1 video simulating a consultation in a semi-inclusive
layout. Each video was approximately 3 minutes long.

Figure 3. (a) Semi-inclusive and (b) fully inclusive layouts were considered in the evaluation. C: computer; D: doctor; P: patient.
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For ground truth data, each video was initially annotated by a
human coder. The coder assigned 1 of the 4 interaction classes
to each 0.5 seconds of video. The coder reviewed the videos
several times and refined the initial annotations until they were
satisfied.

To evaluate the classifier, we compared the classifier’s
performance to that of a different human coder. This second
coder was allowed to go through the video only once. This was
to simulate a real-world scenario of video coding assigned to
an external coder. The performance of the classifier and that of
the second human coder were assessed in relation to the ground
truth data (generated by the first coder).

The overall performance reflects the performance over the 10
videos including 5 videos in a semi-inclusive layout and 5 videos
in a fully inclusive layout. The performances were assessed
using an overall accuracy measure in addition to measures of
precision, recall, F1 scores for each class. For each class, the
support number (ie, the number of its occurrences in the ground
truth data set) is reported. Weighted scores of precision, recall,
and F1 scores, where the weight of a class is proportional to its
support, were also measured. Difference in performance between
the classifier and the human coder were assessed using 2-tailed
independent t tests with P values <.05 considered statistically
significant. We first report the overall performance, which
reflects the performance over the 10 videos. Then, we separately

report the performances over the 5 videos in a semi-inclusive
layout and the 5 videos in a fully inclusive layout.

Results

Overall Performance
Table 2 shows the overall performances of the classifier and
the human coder. The classifier showed a slightly lower overall
accuracy than the coder (classifier: 0.83; human coder: 0.85);
however, there was no significant difference between the
accuracy of the classifier and that of the human coder (t18=0.6,
P=.55).

The F1 scores of both the classifier and the coder were better
when classifying SG+D (classifier: 0.81; human coder: 0.81)
and D (classifier: 0.89; human coder: 0.90) than that when
classifying SG (classifier: 0.63; human coder: 0.55) and Other
(classifier: 0.35; human coder: 0.36) interactions. Since the D
class and the SG+D class were the most frequent interactions
(D: 2415/3921, 62%; SG+D: 1189/3921, 30%), the overall
accuracies mainly reflect performances for these 2 classes.

Confusion matrices for overall performance (Figure 4) show
that the classifier and the coder had similar patterns. Both
mistook SG+D for D and vice versa, SG for SG+D, and Other
for D interactions. The main difference between the classifier
and the coder is that the classifier tended to mistake D for Other
interactions, whereas the coder tended not to.

Table 2. Overall performance of the classifier.

Support, nHuman coderClassifierClasses

AccuracyF1 scoreRecallPrecisionAccuracyF1 scoreRecallPrecision

—0.85———0.83———aAll

1189—0.810.840.78—0.810.820.79SG+Db

2425—0.900.900.91—0.890.860.92Dc

228—0.550.450.71—0.630.630.64SGd

79—0.360.380.35—0.350.670.24Other

——0.840.850.85—0.840.830.85Weighted score

aNot calculated or not applicable.
bSG+D: Screen Gaze and Dialogue.
cD: Dialogue.
dSG: Screen Gaze.

Figure 4. (a) Classifier and (b) human coder confusion matrices for overall performance. D: Dialogue; SG: Screen Gaze; SG+D: Screen Gaze + Dialogue.
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Performance in a Semi-inclusive Layout
Table 3 shows the performances of the classifier and human
coder for a semi-inclusive layout. The classifier had a slightly
lower accuracy than the coder (classifier: 0.80; human coder:
0.83); however, there was no significant difference between the
accuracy of the classifier and that of the human coder in the
semi-inclusive layout (t8=1.04, P=0.32).

Both the classifier and the coder performed well when
classifying D (classifier: F1 score 0.86; human coder: F1 score
0.88) and SG+D (classifier: 0.79; human coder: 0.82)
interactions. The classifier had a slightly better F1 score than
the coder when detecting SG (classifier: 0.47; human coder:

0.45), but both the classifier and the coder had low F1 scores
when classifying Other interactions (classifier: 0.24; human
coder: 0.21). The D and the SG+D classes had the most support
(D: 1157/1958, 59%; SG+D: 702/1958, 36%) thus the overall
accuracies mainly reflect performances for these 2 classes.

Confusion matrices of the classifier and the human coder (Figure
5) for a semi-inclusive layout show somewhat similar patterns
for the classifier and the coder. Both mostly mistook D for
SG+D and vice versa. The classifier tended to mainly mistake
SG for SG+D, whereas the coder mistook SG for Other
interactions as well. Finally, the coder exceedingly mistook
Other for D.

Table 3. Performance of the classifier in a semi-inclusive layout.

Support, nHuman coderClassifierClasses

AccuracyF1 scoreRecallPrecisionAccuracyF1 scoreRecallPrecision

—0.83———0.80———aAll

702—0.820.820.81—0.790.830.76SG+Db

1157—0.880.880.88—0.860.800.92Dc

69—0.450.360.61—0.470.570.40SGd

30—0.210.300.17—0.240.500.16Other

——0.830.830.84—0.810.800.83Weighted score

aNot calculated or not applicable.
bSG+D: Screen Gaze and Dialogue.
cD: Dialogue.
dSG: Screen Gaze.

Figure 5. (a) Classifier and (b) human coder confusion matrices for semi-inclusive layout. D: Dialogue; SG: Screen Gaze; SG+D: Screen Gaze +
Dialogue.

Performance in a Fully Inclusive Layout
Table 4 shows the performances of the classifier and the human
coder in a fully inclusive layout. The classifier and the coder
showed similar accuracy (both equal to 0.86), and there was no
significant difference between the accuracy of the classifier and
that of the human coder for a fully inclusive layout (t8=0.43,
P=0.67).

The classifier and the coder had good F1 scores when classifying
D (classifier: 0.92; human coder: 0.93) and SG+D (classifier:
0.83; human coder: 0.80). The classifier performed better than

the coder for the SG class (classifier: 0.73; human coder: 0.59),
but worse for Other interactions (classifier: 0.42; human coder:
0.52). The D and SG+D classes had the most support(D:
1268/1963, 65%; SG+D: 487/1963, 25%), thus the overall
accuracy mainly reflects the performance for these 2 classes.

Confusion matrices of the classifier and the human coder for a
fully inclusive layout (Figure 6) show similar patterns for the
classifier and the coder. Both mistook SG+D for D, SG for
SG+D, and Other interactions for D; however, the classifier
tended to mostly mistake D for Other interactions, whereas the
coder mostly mistook D for SG+D.
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Table 4. Performance of the classifier in a fully inclusive layout.

SupportHuman coderClassifierClasses

AccuracyF1 scoreRecallPrecisionAccuracyF1 scoreRecallPrecision

—0.86———0.86———aAll

487—0.800.860.75—0.830.810.86SG+Db

1268—0.930.920.93—0.920.910.93Dc

159—0.590.490.74—0.730.650.83SGd

49—0.520.430.66—0.420.780.29Other

——0.860.860.86—0.870.860.88Weighted score

aNot calculated or not applicable.
bSG+D: Screen Gaze and Dialogue.
cD: Dialogue.
dSG: Screen Gaze.

Figure 6. (a) Classifier and (b) human coder confusion matrices for fully inclusive layout. D: Dialogue; SG: Screen Gaze; SG+D: Screen Gaze +
Dialogue.

Transitions Between Doctor-Patient-Computer
Interactions
We found that many errors in the classifications (for both the
human coder and our classifier) were due to slight time
inconsistencies during transitions. To confirm this hypothesis,
we conducted an analysis of the transitions between the
interactions. Table 5 reports the frequency of each transition in
the ground truth data and shows that most transitions happen

from D to SG+D and vice versa. We define a transition timing
error as a temporal shift of 0.5 to 1 seconds between the ground
truth and the classification. We only included transitions that
were preceded and followed by a continuous type of interaction
for at least 1.5 seconds. Table 6 reports the absolute and relative
number of errors that can be attributed to early or late coding
of transitions. We think these errors can be overlooked for any
practical purpose.
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Table 5. Transitions in ground truth data.

Fully inclusive, nSemi-inclusive, nTransition

From SG+Da

65103...to Db

1610...to SGc

01...to Other

From D

67104...to SG+D

157...to SG

1610...to Other

From SG

138...to SG+D

1710...to D

20...to Other

From Other

11...to SG+D

1410...to D

42...to SG

aSG+D: Screen Gaze and Dialogue.
bD: Dialogue.
cSG: Screen Gaze.

Table 6. Transition-related errors.

Human coderClassifierLayout

Transition errors, n (%)Total errors, nTransition errors, n (%)Total errors, n

73 (22.2)32965 (16.2)400Semi-inclusive

61 (22.3)27445 (16.5)272Fully inclusive

Discussion

Principal Results
We developed an unobtrusive, inexpensive, and automatic
classifier of screen gaze and dialogue combinations in
doctor-patient-computer interactions. The classifier was
evaluated in 2 clinical layouts, semi-inclusive and fully
inclusive, and had a performance similar to that of a human
coder with an overall accuracy of 0.83. The proposed classifier
is unobtrusive since it does not require additional setup in the
clinic and only requires that doctors record video using their
computer's internal microphone and camera. The proposed
classifier is an inexpensive solution since it is built using
open-source tools and takes advantage of the internal camera
and microphone built into most available computing devices.
Finally, the video can be locally processed, thus reducing the
risks of handling private and sensitive data off the clinic's
premises, and ensuring that no collateral data are collected and
used for purposes other than those initially consented to by the
participants.

Both the classifier and the coder had better accuracies in a fully
inclusive layout (both equal to 0.86) than in the semi-inclusive
layout (classifier: 0.80; human coder: 0.83). The difference in
performance can be attributed to the different postures that the
doctor maintains when interacting in the 2 clinic layouts. In the
fully inclusive layout, the doctor has to rotate their head a full
90 degrees away from the screen in order to gaze at the patient,
whereas in semi-inclusive scenarios, the head rotation angle is
smaller; therefore, it is easier to make distinctions between the
interactions in a fully inclusive layout.

Both the classifier and the coder confused SG+D interactions
and D interactions. Some instances occurred when classifying
near transitions between interactions. Indeed, our analysis
showed that 16.4% of the classifier’s errors (110/672) and 22.2%
of the human coder’s errors (134/603) were early or delayed
markings of transitions, which can be overlooked in practical
use-cases. Unlike the human coder, the classifier tended to
mistake D for Other interactions (ie, the doctor is neither looking
at the screen nor conversing with the patient). This may be
attributed to the fact that human coders overlook small moments
of silence and regard them as response offsets that are due to
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turn-taking in the conversation [55] or lapses that are expected
in multiactivity settings [56,57], whereas our classifier classifies
them as an absence of dialogue. Here, the classifier presents an
advantage since it easily detects moments of silence that are
usually overlooked by human coders. This kind of information
may be useful to detect conversational dimensions such as
hesitant speech [42]. However, for our purposes, this leads the
classifier to overestimate the lack of verbal interaction. To
counteract this, further rules are needed to identify which
moments of silence are part of a conversation and which are
not. These rules need to take into consideration the language
and the content of the conversation [55,58], other activities that
individuals are engaging in while conversing [56,57], and
accompanying nonverbal behavior such as nodding and gaze
[55].

As a collateral result, our experiment also confirmed the findings
of previous work that highlighted the effect of the clinic layout
on doctor-patient-computer interactions [59,60]. Fully inclusive
videos contained more D (64% versus 59%) and SG interactions
(8% versus 3.5%) and fewer SG+D interactions (25% versus
36%) than those in semi-inclusive videos. In a fully inclusive
layout, the doctor has to choose whether to face the computer
or their patient, whereas a semi-inclusive layout allows the
doctors to maintain a conversation with their patients while
looking at the computer screen.

Use Cases

Functionality
Because health communication researchers study various
complex behaviors, the coding process is far more complex
than a binary classification of screen gaze and dialogue over
time. However, the proposed classifier could contribute to
reducing the cost of future studies since gaze and dialogue are
part of the behaviors that health communication researchers and
medical informaticians are often interested in quantifying to
examine the relationship between computer use, clinic and tool
design, and physician-patient interactions [3,5,19,28,61-65].
Moreover, by detecting these behaviors over short intervals of
time, more complex behaviors and patterns could be inferred
as shown in our results on transitions between interactions.
Therefore, the classifier can be directly used to monitor screen
gaze and dialogue or extended and combined with other tools
or processes to examine complex interactions in clinical settings.

For Researchers
The proposed tool can be used to study the effects of screen
gaze and dialogue combinations in doctor-patient-computer
interactions on quality of care and health outcomes. Currently,
conducting this type of study would require (1) recording a
video of the consultation, (2) transferring the video outside of
the clinic, (3) manual coding of screen gaze and presence of
dialogue in the video, and (4) assessing the specific outcome.
This process can be facilitated by our classifier, which eliminates
the need for the second and third steps.

The classifier can also be used in clinics to examine the effect
of external factors on screen gaze and dialogue combinations
in patient-doctor-computer interactions such as
sociodemographic characteristics, clinic layout, and

modifications of electronic medical record system’s design.
Non–self-reported large-scale studies of this kind would be
nearly impossible to conduct using current methods and tools.

In addition, the gaze classifier can be used in conjunction with
commonly used interaction analysis coding systems, such as
the Roter interaction analysis system [42], that do not
systematically account for nonverbal behaviors [66]. This would
provide useful data for studies examining provider-patient
communication in the presence of a computer.

For Practicing Physicians
Since the processing of the video can happen in real time, tools
that allow physicians to reflect in action [67] can be created.
The classifier can be used to create tools that allow physicians
to conduct autoethnographies and reflect on their interactions
with the patient, or on the role of technology in their care
practice [68]. This would allow them to adapt their behavior
and level of attention based on feedback. Similar concepts were
proposed by Liu et al [69] and Faucett et al [51], who described
tools that provide feedback to clinicians about their verbal and
nonverbal communication behaviors during online consultations.
Their studies highlighted the usefulness of summative [70] and
real-time self-reflection tools and the need to design real-time
feedback in a way that minimizes intrusiveness and ensure that
it does not create extra distractions [51].

For Medical Educators and Students
Medical educators and students can use the classifier to teach
and learn the best practices of doctor-patient interactions. The
tool could be expanded to detect different interaction categories
(eg, listening/ignoring; confronting/avoiding [71,72]) and used
during practical learning sessions to provide students with
formative feedback [69].

Limitations and Future Work
The first limitation of the classifier is its applicability to certain
clinic layouts. Our evaluation explored 2 clinical scenarios:
semi-inclusive and fully inclusive. We did not explore exclusive
scenarios, even though these scenarios might be encountered
in real-world clinical settings. With the proposed classifier,
detecting the doctor's computer gaze would not be possible in
a fully exclusive scenario since the classifier considers the
doctor's head turn to estimate her gaze. We consider this
limitation acceptable since inclusive scenarios are already
commonplace [25], and we expect an increase in their
prevalence to support technology-mediated information-sharing
between clinicians and patients. Indeed, previous studies
[31,73,74] have shown that clinicians use their computer screens
as tools to share information with their patients; therefore, the
doctor may turn the screen, along with the camera, toward the
patient. If this interaction happens during an ongoing
conversation, our tool may classify it as a dialogue between
doctor and patient, but the fact that this doctor-patient interaction
is mediated by the computer would not be highlighted. Further
improvements are needed to detect scenarios where both
clinician and patient are interacting with the computer at the
same time.
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Our work also assumes that clinicians use their computers during
consultations, which is not always the case, especially in
secondary care settings. Moreover, the classifier is built and
evaluated around the premise that the only people in the clinic
are the doctor and the patient and that the only screen is the
doctor's computer screen. However, it is possible that patients
are accompanied by their family members, friends, or partners
[75] and that multiple health care staff are involved in the care
of 1 patient and present during the consultation. In addition,
extra screens might be installed inside clinics to engage the
patient in their care and offer them an easy and clear view of
their data. These screens may affect the doctor's behavior in
various ways; for example, they might use this screen as an
explanation support tool while they converse with the patient
or even as their main computer screen. Therefore, another
limitation of this work is its nonapplicability in scenarios that
include patient screens and stakeholders other than the doctor
and patient.

Furthermore, the classifier does not allow us to identify the
speaker's identity or the content of the doctor-patient dialogue.
Therefore, the classifier does not currently support conversation
analysis. To identify the speaker's identity, we would have to
perform accurate speaker diarization, a hard goal to achieve
especially using a single channel for audio recording and without
prior training. Advancements in speaker diarization techniques
may render this task feasible in the near future [76]. To identify
the content of the dialogue, automatic speech recognition
solutions can be used. Though automatic speech recognition
solutions have become more robust in the last decade, the
performance of automatic speech recognition engines remains
limited when applied to conversational clinical speech [77].
Future work could explore the feasibility of automatic
conversation analysis in doctor-patient-computer interactions
through the application of novel speaker diarization and
automatic speech recognition tools.

In other respects, although the direction of the head could be
considered a proxy for the direction of attention, the head only
communicates short-term attention [78,79]. Pearce et al

classified physicians as unipolar, those who maintain the lower
pole of their body facing the computer, or bipolar, those who
repeatedly alternate the orientation of their lower pole between
the computer and the patient [34]. Unipolar physicians
experience situations where their body segments are not aligned,
also referred to as body torque. Body torque communicates an
instability of attention where the most strongly projected
resolution involves the upper body getting realigned with the
lower body. This means that the orientation of the torso
communicates longer-term attention than head orientation, and
the orientation of the legs communicates longer-term attention
than torso orientation and head orientation [79]. Therefore, to
examine the attention of a physician in a clinical scenario, we
also need to examine the orientation of their torso and lower
body. Future work can use the same pose estimation approach
to monitor the direction of the clinician’s torso. This is possible
because the shoulders and the torso of the clinician are usually
visible to their computer’s camera; however, monitoring the
lower part of the body would require setting up extra cameras
in the clinic.

Finally, our classifier is model-driven as it derives its decisions
from the explicit rules that we set. To be able to classify
interactions that do not fit strictly into our specified rules, the
classifier has to be driven by data or perhaps be a system that
combines model-driven and data-driven logic. Our future work
will include collecting and annotating more videos of
consultations in order to create a data-driven classifier.

Conclusions
To facilitate human-computer and human-human interaction
studies in clinical settings, we presented a computational
ethnography tool—an automatic unobtrusive classifier of gaze
and dialogue combinations in doctor-patient-computer
interactions. The classifier only requires that the doctor record
video using their computer’s internal camera and microphone.
Our evaluation showed that the classifier's performance was
similar to that of a human coder when classifying 3
combinations of screen gaze and dialogue in
doctor-patient-computer interactions.
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