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Abstract

Background: Controlling the COVID-19 outbreak in Brazil is a challenge due to the population’s size and urban density,
inefficient maintenance of social distancing and testing strategies, and limited availability of testing resources.

Objective: The purpose of this study is to effectively prioritize patients who are symptomatic for testing to assist early COVID-19
detection in Brazil, addressing problems related to inefficient testing and control strategies.

Methods: Raw data from 55,676 Brazilians were preprocessed, and the chi-square test was used to confirm the relevance of
the following features: gender, health professional, fever, sore throat, dyspnea, olfactory disorders, cough, coryza, taste disorders,
and headache. Classification models were implemented relying on preprocessed data sets; supervised learning; and the algorithms
multilayer perceptron (MLP), gradient boosting machine (GBM), decision tree (DT), random forest (RF), extreme gradient
boosting (XGBoost), k-nearest neighbors (KNN), support vector machine (SVM), and logistic regression (LR). The models’
performances were analyzed using 10-fold cross-validation, classification metrics, and the Friedman and Nemenyi statistical
tests. The permutation feature importance method was applied for ranking the features used by the classification models with the
highest performances.

Results: Gender, fever, and dyspnea were among the highest-ranked features used by the classification models. The comparative
analysis presents MLP, GBM, DT, RF, XGBoost, and SVM as the highest performance models with similar results. KNN and
LR were outperformed by the other algorithms. Applying the easy interpretability as an additional comparison criterion, the DT
was considered the most suitable model.

Conclusions: The DT classification model can effectively (with a mean accuracy≥89.12%) assist COVID-19 test prioritization
in Brazil. The model can be applied to recommend the prioritizing of a patient who is symptomatic for COVID-19 testing.

(J Med Internet Res 2021;23(4):e27293) doi: 10.2196/27293
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Introduction

Overview
In modern medical systems, health care professionals, managers,
and governments use information and data analysis to make

decisions [1]. Data is stored, enabling rapid access and sharing
during the diagnosis, monitoring, and treatment of patients.
Therefore, there are propositions of eHealth and mobile health
(mHealth) systems to assist health care professionals and policy
makers with decision making [2,3]. Such systems are relevant
to provide decision support advice based on patients’ data,
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helping health care professionals and policy makers address
problems related to inefficient COVID-19 testing and control
strategies (eg, limited testing resources) in low- and
middle–income countries [4]. For example, people who live in
low- and middle–income settings, remote settings, and
hard-to-reach settings are the most affected by precarious health
care. Such a situation is even more critical in a pandemic
scenario.

COVID-19 is a disease caused by SARS-CoV-2 [5]. In
December 2019, the first cases of COVID-19 appeared in
Wuhan, Hubei Province, China [6]. Due to the high growth of
COVID-19 confirmed cases worldwide, on January 30, 2020,
the World Health Organization considered the COVID-19
outbreak a Public Health Emergency of International Concern
[7].

Motivation and Problem Statement
As the number of COVID-19 confirmed cases continuously
increases, health care professionals and policy makers need to
define guidelines to prevent the disease, delaying the
transmission rates. Such guidelines are relevant due to the high
probability of collapse in health services and shortages of
medical supplies (eg, testing resources) [8]. Confirmation of
the first COVID-19 case in Brazil was in March 2020, and since
then, there has been an upward trend in confirmed cases and
deaths. Unfortunately, the Brazilian government has reported
more than 13 million cases, with more than 333,000 deaths.
Currently, Brazil is one of the most affected countries by
COVID-19, with insufficient control measure implementation.
Controlling the COVID-19 outbreak in Brazil is a challenge of
continental proportions due to the population’s size and urban
density, inefficient maintenance of social distancing and testing
strategies, and limited availability of testing resources [9].

This study addresses the COVID-19 testing prioritization for
patients who are symptomatic to assist early COVID-19
detection in Brazil. Addressing this problem is relevant due to
the need for prioritization guidelines to improve testing and
control strategies’ efficiency. Therefore, the main research
question (RQ) is can demographic characteristics and symptoms
that do not require expensive exams effectively assist the test
prioritization for early COVID-19 detection in Brazil? From
the main RQ, the four secondary RQs are (1) what demographic
characteristics are relevant to conduct the test prioritization?
(2) what symptoms are suitable to drive the test prioritization?
(3) what is the most suitable classification model for test
prioritization? and (4) what are the impacts of the reduction of
reported symptoms in the test prioritization?

Aim of the Study
The study relied on preprocessing a raw data set with
information on 55,676 patients, aiming to provide a

classification model that effectively recommends or not the
prioritization of patients who are symptomatic for COVID-19
testing (ie, a binary classification problem). The implementation
of classification models also relied on supervised learning and
the algorithms multilayer perceptron (MLP), gradient boosting
machine (GBM), decision tree (DT), random forest (RF),
extreme gradient boosting (XGBoost), k-nearest neighbors
(KNN), support vector machine (SVM), and logistic regression
(LR). The algorithms were trained and tested using preprocessed
data sets composed of demographic characteristics and reported
symptoms that do not require expensive exams [10]. Use of
such symptoms is a relevant strategy for COVID-19 test
prioritization due to the majority of the Brazilian population’s
high poverty levels [11].

Our findings also provide insights for developers of eHealth
and mHealth systems when choosing the most suitable
classification model for COVID-19 testing prioritization. Such
insights are also relevant for health care professionals and policy
makers who envision applying a classification model to
prioritize patients who are symptomatic for testing. The study
enhances the state of the art by providing three main
contributions: (1) the preprocessing of raw data from 55,676
Brazilians, with the availability of data related to patients who
are symptomatic [10]; (2) the implementation of classification
models, along with reports of feature ranking, to support
COVID-19 test prioritization [12]; and (3) a comparative
analysis of the classification models.

Methods

Overview
This study’s research methodology consists of data
preprocessing, the definition of new data sets, English
translation, feature selection, 10-fold cross-validation, statistical
comparisons, and feature ranking (Figure 1). The raw data from
55,676 Brazilians were preprocessed to define new data sets
with information about patients who are symptomatic tested for
COVID-19 using reverse transcriptase polymerase chain reaction
(RT-PCR) and rapid tests (antibody and antigen). The textual
descriptions of six preprocessed data sets (ie, RT-PCR
unbalanced, RT-PCR balanced, rapid unbalanced, rapid
balanced, both unbalanced, and both balanced) were translated
from Portuguese into English for public data availability. The
chi-square test was applied in the new data sets to support the
feature selection with a P<.01, verifying the relevance of
features for the classification task by dependence and
independence relations [13]. The chi-square test for
independence compared two variables in a contingency table
to verify if they relate to each other.
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Figure 1. Overview of the research methodology applied for the study. The methodological steps consist of data preprocessing, the definition of new
data sets, English translation, feature selection, 10-fold cross-validation, statistical comparisons, and feature ranking. AUPR: area under the precision-recall
curve; AUROC: area under the receiver operating characteristic curve; DT: decision tree; GBM: gradient boosting machine; KNN: k-nearest neighbors;
LR: logistic regression (weak regularization); LRR: logistic regression (strong regularization); MLP: multilayer perceptron; RF: random forest; RT-PCR:
reverse transcription polymerase chain reaction; SVM: support vector machine; XGBoost: extreme gradient boosting.

We applied the 10-fold cross-validation method, with five
repetitions, to validate the MLP, GBM, DT, RF, XGBoost,
KNN, SVM, and LR (weak/strong regularization) classification
models using the six data sets. We selected such algorithms
because they have different characteristics such as using neural
layers, tree combinations, and calculating the distance between
data. The mean results for classification metrics were also
calculated: precision, accuracy score, recall, Brier Score, area
under the receiver operating characteristic curve (AUROC),
and area under the precision-recall curve (AUPRC). The recall
results were further analyzed using the Friedman and Nemenyi
statistical tests to improve the classification models’
comparisons. We used the Friedman test to verify the differences
between classification models. We applied the Nemenyi test to
group classification models based on the verification of
differences using multiple comparisons. Finally, we conducted
features’ ranking for each classification model with the highest
performance using the permutation feature importance method,
providing average importance and SD. The source code for
replication is available in a GitHub repository [12].

Data Collection
The raw data from 55,676 Brazilians included information on
tested patients in a spreadsheet format. However, the data
collection is not a contribution of this study. The raw data was
collected by the public health agency of the city of Campina
Grande, Paraíba State in Northeast Brazil. Such a public agency

is informed by all the COVID-19 exams performed in the city
of Campina Grande. The health agency employees removed
patient identification, and the data made available were reused
to enable this study. The raw data set comprises categorical
features such as health professional, security professional,
ethnicity, test type, fever, sore throat, dyspnea, olfactory
disorders, cough, coryza, taste disorders, headache, additional
symptoms, test result, comorbidities, test status, and symptoms
description.

Data Preprocessing
We conducted the data preprocessing using the Python
programming language. The raw data set was preprocessed by
applying string matching algorithms to correct inconsistencies.
One example of inconsistency was the occurrence of empty
columns of symptoms; however, the same symptoms were in a
column for the general description of symptoms.

Furthermore, the following instances from the total 55,676
sample were removed due to our exclusion criteria: patients
with uncompleted tests or undefined final classifications
(n=12,929, 23.22%), duplicated instances (n=251, 0.45%),
outliers related to input errors (n=10,408, 18.69%), test types
that are not RT-PCR or rapid (n=771, 1.38%), undefined gender
(n=27, 0.05%), and patients who were asymptomatic (n=11,269,
20.24%). Patients who were asymptomatic were removed
because the inputs for the algorithms rely on demographic
characteristics and symptoms.
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Removing the feature related to the symptoms’ descriptions
provides dimensionality reduction in the raw data set feature
space. For example, fatigue was removed because the symptom
was reported by 228 (0.41%) of the 55,676 patients. Given the
main focus on symptoms, the data sets did not include
comorbidities and the remaining features (eg, ethnicity). As
inclusion criteria, the most frequently reported symptoms (ie,
fever, sore throat, dyspnea, olfactory disorders, cough, coryza,

taste disorders, and headache) and relevant demographic
characteristics (ie, gender and health professional) were selected
as features of unbalanced and balanced data sets (Table 1).
Health care professionals were considered relevant due to the
frequency of exposure to SARS-CoV-2. However, for gender,
there is no consensus if there is a difference in the proportions
of males and females infected with SARS-CoV-2 (usually a
relatively even distribution) [14,15].

Table 1. Demographic and symptoms from patients who are symptomatic of both test type data sets.

Balanced (n=3128)Unbalanced (n=20,021)Features

Demographic characteristics

1639 (52.40)8919 (44.55)Gender: male, n (%)

475 (15.19)2485 (12.41)Health professional, n (%)

Symptoms

1856 (59.34)9169 (45.80)Fever, n (%)

848 (27.11)5976 (29.85)Sore throat, n (%)

1082 (34.59)3704 (18.50)Dyspnea, n (%)

522 (16.69)1967 (9.82)Olfactory disorders, n (%)

1944 (62.15)11,641 (58.14)Cough, n (%)

266 (8.50)1159 (5.79)Coryza, n (%)

387 (12.37)1596 (12.37)Taste disorders, n (%)

577 (18.45)4034 (20.15)Headache, n (%)

The categorical data were converted into binary representations
during the preprocessing. For the feature gender, the number 0
represents a female patient, and 1 represents a male. For the
features health professional, fever, sore throat, dyspnea,
olfactory disorders, cough, coryza, taste disorders, and
headache, the number 0 represents a positive response, and 1
represents a negative response. For each data set, the test result
was the class that can be labeled as 0 for recommending a patient
who is symptomatic for COVID-19 test prioritization or 1 for
not recommending such patient’s prioritization.

The preprocessing included undersampling using the near-miss
technique [16], considering COVID-19 positive and negative
cases. Undersampling was applied instead of oversampling to
prevent the use of synthetic data in training and testing sets.
However, as stated, unbalanced data were also considered,
without undersampling, to improve the experiments’
representativity and to achieve a scenario closer to a real-world
setting, with more negative than positive COVID-19 cases.

Using the chi-square test for the both unbalanced and both
balanced data sets, the independence hypothesis was only
confirmed for headache. For the RT-PCR unbalanced data set,
the independence hypothesis was confirmed for sore throat,
dyspnea, headache, and coryza. In the rapid unbalanced data
set, the independence hypothesis was confirmed for sore throat
and health professionals features. For the RT-PCR balanced
data set, the independence hypothesis was confirmed for
dyspnea, cough, headache, and coryza; while for the rapid
balanced data set, the hypothesis was only confirmed for sore
throat. Such information was used for feature selection during
the experiments, presenting scenarios with different numbers
of symptoms to implement classification models. Furthermore,
we used a correlation matrix to analyze the correlation
coefficients between the features for each data set (Figure 2).
For example, fever was among the features with the highest
correlation coefficients for all data sets.
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Figure 2. Correlation matrix for (A) RT-PCR unbalanced data set, (B) RT-PCR balanced data set, (C) rapid unbalanced data set, (D) rapid balanced
data set, (E) both unbalanced data set, and (F) both balanced data set. RT-PCR: reverse transcription polymerase chain reaction.

The both unbalanced data set was composed of 20,021 patients
tested by both RT-PCR and rapid tests. The reduction in the
number of patients occurred due to the uncompleted tests,
duplicated instances, outliers related to input errors, test type,
and patients who were asymptomatic. The both unbalanced
data set contained 1564 (7.81%) positive and 18,457 (92.19%)
negative COVID-19 cases, while the balanced one included
1564 cases of each class. From the female patients, 496 (2.48%)

were positive and 10,606 (52.97%) were negative cases. For
male patients, 1068 (5.33%) were positive and 7851 (39.21%)
were negative cases. Cough was the most frequent symptom
(n=11,641, 58.1%). Fever was the second most common
symptom (n=9169, 45.8%). The remaining symptoms were
reported by at most 5976 (29.9%) patients who were
symptomatic (Figure 3A).
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The both balanced data set contained 3128 patients tested by
RT-PCR and rapid tests. The near-miss technique reduced the
number of negative cases to be equal to positive cases; 496
(15.86%) were positive and 993 (31.75%) were negative cases
from the female patients. For males, 1068 (34.14%) were

positive and 571 (18.25%) were negative cases. Cough and
fever continued to be the first and second most frequently
reported symptoms, respectively. The remaining symptoms
were also reported by at most 1082 (34.6%) patients (Figure
3B).

Figure 3. (A) The frequency of symptoms for the 20,021 patients who were symptomatic of the both unbalanced data set and the number of CCs. Top
values are frequencies; numbers on the geometric forms are the CC for frequency. (B) The frequency of symptoms for the 3128 patients who were
symptomatic of the both balanced data set and the number of CCs.

Finally, the RT-PCR unbalanced data set included 916 (32.96%)
positive and 1863 (67.04%) negative COVID-19 cases, while
the balanced one included 916 cases of each class. The rapid
unbalanced data set included 648 (3.76%) positive and 16,594
(96.24%) negative COVID-19 cases, while the balanced one
included 648 of each class. The six scenarios’presentations aim
to compare the classification models’ results using various test
types. Thus, there was no requirement to implement different
clinical protocols or select patients with specific profiles for
testing based on the results related to the six scenarios presented
in this paper.

Algorithms
We implemented the classification models using supervised
learning and the MLP, GBM, DT, RF, XGBoost, KNN, SVM,
and LR algorithms. An MLP machine learning (ML) algorithm
[17] of one hidden layer learns the function:

where W1 represents the weights of the input layer, W2 represents
the hidden layer, b1 is the bias added to the hidden layer, b2 is
the output layer, and g is the activation function.

The GBM is a fixed-size DT that uses a boosting strategy [18].
This ML algorithm has a built-in feature selection and aims to

provide the estimation or approximation or the function F *

(x) that maps x to y, minimizing the expected value using a loss
function L(y, F(x)) over the joint distribution [19], given by:

F * = arg minFEy,xL(y,F(x)) = arg minFEx[Ey(y,F(x)) | x] (2)

A DT is an ML algorithm that usually uses a divide and conquer
strategy to generate a directed acyclic graph by applying division
rules based on information gain [20]. The algorithm has a
built-in feature selection, and the information gain is guided by
the concept of entropy H, which measures the randomness of a
discrete random variable A (with domain a1, a2,..., an), given
by:

where pi is the probability of observing each value a1, a2,..., an.
This algorithm enables a straightforward interpretation of results
by following the decision rules of a unique tree.

The RF is an ML algorithm that relies on classification and
regression trees, following specific tree growing rules, tree
combination, self-testing, and postprocessing [21]. The
algorithm has a built-in feature selection, assessed by the Gini
impurity criterion index. The binary split of a node n is given
by:
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where pj is the relative frequency of class j. This algorithm also
enables a straightforward interpretation of results by following
the decision rules of the trees.

As a variant of the GBM, the XGBoost is a regression tree with
the same decision rules as a DT [22]. If the XGBoost ML
algorithm consists of K DTs, the optimization objective function
is given by:

where fk is an independent tree with leaf scores, and F is the
space of a regression tree. Both algorithms enable a
straightforward interpretation of results.

The KNN is a distance-based ML algorithm that identifies a
new instance based on a neighbor’s distance [23]. An instance
represents a point in the space, and the algorithm calculates the
distance between two points using a metric such as the Euclidean
distance, given by:

where xi and xj are vectors representing objects in the space,

and and are the l-th elements of the vectors.

The SVM is a ML algorithm that handles binary data using a
line to achieve the maximum distance between the data. The
algorithm comprises four basic concepts: separation hyperplane,
maximum margin hyperplane, soft margin, and kernel function
[17]. For instance, the maximization of the margin hyperplane
is given by:

where yi are the output variables, xi are input vectors, b is the
bias, K is a dot products function (Kernel), and αi is calculated
by the maximization of:

where xj are the named support vectors when αi is greater than
0.

Finally, the LR is an extension of linear regression that estimates
relations between variables using a sigmoid function during
probabilistic classifications [24], given by:

where z is the weighted sum of the evidence of a class.
Regularization can also be used to prevent overfitting. We
applied the LR algorithm to compare a compact and linear
model’s performance with the previous ML approaches.

We used the Python programming language and the SciPy
library [25] to implement and validate the classification models
based on such algorithms. We applied the random search method
to configure the algorithms’ hyperparameters to improve

performance carefully. The configurations can be verified in
the GitHub repository [12].

Classification Metrics
We calculated the precision, accuracy score, recall, Brier Score,
AUROC, and AUPRC for the classification models [26]. The
precision represents the proportion of classifications that are
true positives and is given by:

where TP is the true positives and FP is the false positives. The
accuracy score presents fractions of correct classifications and
is given by:

where A is the accuracy score, is the classified value of a
sample, yi is the corresponding true value, n is the number of
samples, and I(x) is the indicator function.

The recall calculates the actual positives that are correctly
positives and is given by:

where FN is the number of false negatives. It is relevant for
evaluating classifications related to diagnosis due to the highly
undesired impacts of false negatives.

The Brier Score provides the mean squared difference between
predicted probabilities and expected results, given by:

where ft is the predicted value, ot is the expected value, and n
is the number of samples.

Finally, the AUROC provides an overview of the diagnostic
abilities of the models. However, the use of the AUPRC is
usually recommended when handling problems using
unbalanced data.

Results

The implementations of classification models using the MLP,
GBM, DT, RF, XGBoost, KNN, SVM, and LR algorithms are
available in the GitHub repository [12]. Using 10-fold
cross-validation with five repetitions, the mean values of
precision, accuracy score, recall, and Brier Score of the
DT-based classification models were among the best results
(Table 2). Such models presented similar results using the six
data sets. For the RT-PCR unbalanced/balanced and both
unbalanced/balanced data sets, the LR algorithm was
outperformed by the other models. In the results, LR and LRR
stand for models with weak and strong regularization,
respectively.
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Table 2. Results of 10-fold cross-validation for the classification models using the unbalanced and balanced data sets.

Brier ScoreRecall (%)Accuracy score (%)Precision (%)Data sets and models

RT-PCRa unbalanced and balanced

0.04 (0.04)97.08 (95.80)96.24 (95.81)97.33 (95.86)MLPb, unbalanced (balanced)

0.04 (0.04)97.17 (95.47)96.30 (95.70)97.32 (95.95)GBMc, unbalanced (balanced)

0.04 (0.04)97.46 (95.97)96.55 (96.00)97.42 (96.06)RFd, unbalanced (balanced)

0.04 (0.04)97.04 (95.32)96.33 (95.91)97.49 (96.50)DTe, unbalanced (balanced)

0.04 (0.04)97.13 (95.10)96.30 (95.52)97.36 (95.94)XGBoostf, unbalanced (balanced)

0.03 (0.05)97.50 (95.04)96.55 (95.48)97.38 (95.92)KNNg, unbalanced (balanced)

0.04 (0.04)97.18 (95.34)96.19 (95.58)97.17 (95.84)SVMh, unbalanced (balanced)

0.13 (0.18)94.37 (90.93)86.72 (81.70)86.97 (76.86)LRRi, unbalanced (balanced)

0.13 (0.19)94.33 (88.53)86.72 (80.63)87.00 (76.56)LRj, unbalanced (balanced)

Rapid unbalanced and balanced

0.01 (0.05)99.32 (94.10)98.70 (95.40)99.33 (96.66)MLP, unbalanced (balanced)

0.01 (0.05)99.34 (94.50)98.72 (95.33)99.33 (96.18)GBM, unbalanced (balanced)

0.01 (0.05)99.44 (93.98)98.76 (95.21)99.26 (96.42)RF, unbalanced (balanced)

0.01 (0.05)99.27 (93.67)98.69 (94.59)99.37 (95.51)DT, unbalanced (balanced)

0.01 (0.05)99.34 (93.94)98.72 (95.41)99.33 (96.83)XGBoost, unbalanced (balanced)

0.01 (0.05)99.49 (91.63)98.84 (94.58)99.31 (97.43)KNN, unbalanced (balanced)

0.01 (0.04)99.37 (93.85)98.73 (95.60)99.30 (97.30)SVM, unbalanced (balanced)

0.04 (0.16)99.53 (87.93)96.23 (84.22)96.65 (82.00)LRR, unbalanced (balanced)

0.04 (0.15)99.32 (86.32)96.14 (85.33)96.75 (84.75)LR, unbalanced (balanced)

Both unbalanced and balanced

0.05 (0.11)99.20 (84.23)94.82 (89.18)95.36 (93.53)MLP, unbalanced (balanced)

0.05 (0.11)99.25 (84.38)94.73 (89.31)95.23 (93.67)GBM, unbalanced (balanced)

0.05 (0.11)99.32 (84.04)94.87 (89.22)95.31 (93.81)RF, unbalanced (balanced)

0.05 (0.11)99.10 (83.87)94.79 (89.12)95.43 (93.75)DT, unbalanced (balanced)

0.05 (0.11)99.21 (84.24)94.78 (89.22)95.32 (93.60)XGBoost, unbalanced (balanced)

0.09 (0.11)94.81 (83.86)91.09 (88.63)95.50 (92.77)KNN, unbalanced (balanced)

0.05 (0.11)99.30 (84.73)94.75 (89.33)95.21 (93.36)SVM, unbalanced (balanced)

0.08 (0.20)99.48 (80.11)92.04 (80.48)92.45 (80.79)LRR, unbalanced (balanced)

0.08 (0.19)99.36 (79.14)91.98 (81.08)92.49 (82.44)LR, unbalanced (balanced)

aRT-PCR: reverse transcription polymerase chain reaction.
bMLP: multilayer perceptron.
cGBM: gradient boosting machine.
dRF: random forest.
eDT: decision tree.
fXGBoost: extreme gradient boosting.
gKNN: k-nearest neighbors.
hSVM: support vector machine.
iLRR: logistic regression (strong regularization).
jLR: logistic regression (weak regularization).

When removing features according to the chi-square results,
there was a considerable decrease in the classification models’

performances (Multimedia Appendix 1). However, in general,
the classification models continued presenting good
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performances. For example, the KNN classification model
presented the lowest accuracy score (77.42%) using the RT-PCR
balanced data set. The remaining classification models,
considering all data sets, presented accuracy scores between
80.15% and 97.58%. Depending on the preprocessed data set,
the LR (weak/strong regularization) continued to be
outperformed by the other algorithms. Presenting such scenarios
is relevant to analyze how the algorithms behave when models
are implemented with reduced reported symptoms.

In addition, by computing the AUROC using the RT-PCR, rapid,
and both test scenarios, the trade-offs between sensitivity
(true-positive rate) and probability (false-positive rate) were
identified, evidencing the diagnostic abilities of the classification
models when the discrimination threshold is varied (Figure 4).
The classification models presented high discriminatory power
for all scenarios, with the curves closer to each graphic
representation’s upper left corner. However, for such scenarios,
the KNN and SVM classification models presented the lowest
discriminatory power.

Given the three unbalanced data sets, there were more negative
than positive COVID-19 cases. We computed the AUPRC to
verify the classification models when handling the minority
class, analyzing the trade-off between precision and recall for
different decision thresholds (Figure 5). The AUPRC was
summarized using the average precision (AP), as a weighted
mean of precision. The RT-PCR unbalanced data set was mildly
unbalanced, with a baseline AUPRC of 0.33. The rapid
unbalanced data set was highly unbalanced, with a baseline
AUPRC of 0.04. This was also the case for the both unbalanced
data set, with a baseline AUPRC of 0.08. The DT and XGBoost
achieved the best AP value (65%) using the RT-PCR unbalanced
data set. For the remaining scenarios, the classification models
presented AP values between 80% and 96%.

We also applied the Friedman and Nemenyi tests to improve
confidence in evaluating the classification models, observing
that the experiments’ results were statistically significant. The
classification models were compared over the 6 data sets using
the Friedman test [27]. This comparison focused on the recall
results due to the highly undesired impacts of false negatives
in the COVID-19 application scenario (Figure 6). The null
hypothesis was that all classification models are equivalent and
have equal mean ranks. The tests resulted in a P<.001 for the
RT-PCR unbalanced (t=307.16), RT-PCR balanced (t=328.72),
rapid unbalanced (t=247.43), rapid balanced (t=239.20), both
unbalanced (t=226.98), and both balanced (t=343.10) data sets.
The results showed that the difference between the mean recall
values was probably real (P≤.1). The Friedman test ranked the
classification models for each data set, resulting in an average
rank for each classification model.

Based on the Friedman test results, the Nemenyi test [27] was
applied to compare the classification models using the mean
ranks. The critical difference (CD) between the classification
models was verified using the Nemenyi test, with α=0.1. The
CD is relevant to highlight if the classification models are
separated by an interval less than the CD, meaning that the

classification models were statistically indistinguishable. Thus,
for most of the data sets, the difference between LRR/LR
(statistically indistinguishable) and the other classification
models was highlighted by the CD using the mean recall results
(Multimedia Appendix 2). Depending on the data set, MLP and
GBM were also statistically indistinguishable, as was the case
of DT, RF, XGBoost, KNN, and SVM.

From the classification metrics results and the Friedman and
Nemenyi tests (Figure 6), the top five features of the
classification models with the highest performances (ie, MLP,
GBM, DT, RF, XGBoost, and SVM) were ranked using the
permutation feature importance method. Each average
importance and SD values were presented for the DT-based
classification models and the RT-PCR, rapid, and both types
scenarios (Table 3). The average importance and SD information
relate to reducing the feature importance when a feature is not
considered. For example, according to the frequency of
symptoms and the number of confirmed cases (Figure 3), fever
showed higher average importance values for almost all
scenarios than other reported symptoms. We also applied the
permutation feature importance method for the unbalanced data
sets (Multimedia Appendix 3).

We also present the results achieved using the permutation
feature importance method for detailing the feature ranking for
classifications with MLP and SVM models (Table 4). For
example, similar to the DT-based classification models, fever
presented higher average importance values for almost all test
scenarios than other symptoms reported by patients. For such
algorithms, we also present the average importance and SD for
the unbalanced data sets (Multimedia Appendix 3).

Therefore, the top five most significant features vary depending
on the algorithm used to implement the classification model
(Table 5). For the RT-PCR balanced data set, all algorithms
prioritized the same top two features (ie, fever and gender),
slightly differing in the top three and top five, while, for the
rapid balanced data set, all algorithms prioritized the same top
two features (ie, dyspnea and olfactory disorders), also slightly
different in the top three, top four, and top five. For the both
balanced data set, the algorithms prioritized the top two features
similar to the classifications with the RT-PCR balanced data
set. We also applied the permutation feature importance method
to rank features using the unbalanced data sets (Multimedia
Appendix 3).

In addition, to improve the experiments conducted to assist the
COVID-19 test prioritization, we combined the classification
models to define voting ensemble models using the majority
voting strategy (Multimedia Appendix 4). Two combinations
of classification models were considered for each data set:
DT-based models (ie, GBM, DT, RF, and XGBoost) and non-DT
models (ie, MLP, SVM, KNN, LRR, and LR). In general, for
the voting ensemble models implemented with the six data sets,
the mean results of classification metrics using 10-fold
cross-validation were similar to those of the MLP, GBM, DT,
RF, XGBoost, KNN, SVM, LRR, and LR models (Table 2).
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Figure 4. The models' ROC curves with (A) RT-PCR unbalanced, (B) RT-PCR balanced, (C) rapid unbalanced, (D) rapid balanced, (E) both unbalanced,
and (F) both balanced. AUC: area under the receiver operating characteristic curve; GBM: gradient boosting machine; KNN: k-nearest neighbors; LR:
logistic regression (weak regularization); LRR: logistic regression (strong regularization); Mlp: multilayer perceptron; ROC: receiver operating
characteristic; RT-PCR: reverse transcription polymerase chain reaction; SVM: support vector machine; XGBoost: extreme gradient boosting.
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Figure 5. Models' precision-recall curve with (A) RT-PCR unbalanced data set, (B) rapid unbalanced data set, and (C) both unbalanced data set. AP:
average precision; GBM: gradient boosting machine; KNN: k-nearest neighbors; LR: logistic regression (weak regularization); LRR: logistic regression
(strong regularization); Mlp: multilayer perceptron; PR: precision-recall; RT-PCR: reverse transcription polymerase chain reaction; SVM: support
vector machine; XGBoost: extreme gradient boosting.
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Figure 6. (A) The mean recall for the MLP, GBM, RF, DT, XGBoost, KNN, SVM, LRR, and LR classification models using the unbalanced data sets
for RT-PCR, rapid, and both types. (B) The mean recall for the MLP, GBM, RF, DT, XGBoost, KNN, SVM, LRR, and LR classification models using
the balanced data sets for RT-PCR, rapid, and both types. DT: decision tree; GBM: gradient boosting machine; KNN: k-nearest neighbors; LR: logistic
regression (weak regularization); LRR: logistic regression (strong regularization); MLP: multilayer perceptron; RF: random forest; RT-PCR: reverse
transcription polymerase chain reaction; SVM: support vector machine; XGBoost: extreme gradient boosting.
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Table 3. The average importance and SD values for each feature for the decision tree–based classification models using the balanced data sets.

XGBoostd, mean (SD)RFc, mean (SD)DTb, mean (SD)GBMa, mean (SD)Data sets and features

RT-PCRe balanced

0.233 (0.013)0.238 (0.013)0.245 (0.013)0.233 (0.013)Gender

0.042 (0.005)0.051 (0.005)0.055 (0.005)0.045 (0.005)Health professional

0.262 (0.013)0.267 (0.013)0.263 (0.012)0.260 (0.012)Fever

0.101 (0.006)0.100 (0.007)0.102 (0.007)0.100 (0.007)Sore throat

0.092 (0.007)0.098 (0.007)0.100 (0.007)0.096 (0.007)Dyspnea

0.016 (0.003)0.014 (0.004)0.029 (0.003)0.026 (0.004)Olfactory disorders

0.082 (0.008)0.084 (0.007)0.096 (0.007)0.087 (0.007)Cough

0.014 (0.003)0.022 (0.004)0.027 (0.004)0.026 (0.004)Coryza

0.024 (0.003)0.027 (0.004)0.040 (0.004)0.030 (0.004)Taste disorders

0.002 (0.003)0.018 (0.004)0.024 (0.005)0.021 (0.004)Headache

Rapid balanced

0.123 (0.010)0.122 (0.010)0.109 (0.009)0.135 (0.009)Gender

0.027 (0.005)0.020 (0.004)0.027 (0.005)0.026 (0.005)Health professional

0.109 (0.010)0.114 (0.011)0.124 (0.012)0.120 (0.012)Fever

0.013 (0.004)0.023 (0.004)0.030 (0.005)0.019 (0.005)Sore throat

0.179 (0.013)0.187 (0.013)0.179 (0.012)0.184 (0.012)Dyspnea

0.154 (0.012)0.180 (0.014)0.178 (0.013)0.175 (0.012)Olfactory disorders

0.080 (0.008)0.080 (0.008)0.084 (0.011)0.076 (0.009)Cough

0.052 (0.005)0.087 (0.007)0.092 (0.009)0.090 (0.008)Coryza

0.071 (0.007)0.053 (0.007)0.081 (0.009)0.078 (0.008)Taste disorders

0.035 (0.007)0.035 (0.006)0.030 (0.007)0.035 (0.007)Headache

Both balanced

0.156 (0.007)0.153 (0.007)0.160 (0.007)0.159 (0.007)Gender

0.025 (0.004)0.023 (0.004)0.024 (0.004)0.025 (0.004)Health professional

0.209 (0.010)0.213 (0.010)0.215 (0.011)0.211 (0.010)Fever

0.078 (0.005)0.082 (0.005)0.081 (0.005)0.080 (0.005)Sore throat

0.076 (0.005)0.073 (0.005)0.075 (0.005)0.077 (0.006)Dyspnea

0.046 (0.005)0.050 (0.005)0.050 (0.005)0.059 (0.006)Olfactory disorders

0.060 (0.005)0.054 (0.005)0.058 (0.005)0.060 (0.005)Cough

0.044 (0.004)0.040 (0.003)0.042 (0.003)0.047 (0.004)Coryza

0.069 (0.005)0.072 (0.005)0.079 (0.006)0.063 (0.006)Taste disorders

0.045 (0.005)0.044 (0.005)0.046 (0.005)0.042 (0.005)Headache

aGBM: gradient boosting machine.
bRF: random forest.
cDT: decision tree.
dXGBoost: extreme gradient boosting.
eRT-PCR: reverse transcription polymerase chain reaction.
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Table 4. The average importance and SD for each feature for the MLP and SVM models and the balanced data sets.

SVMb, mean (SD)MLPa, mean (SD)Data sets and features

RT-PCRc balanced

0.230 (0.013)0.236 (0.013)Gender

0.042 (0.005)0.048 (0.005)Health professional

0.257 (0.013)0.262 (0.013)Fever

0.098 (0.006)0.103 (0.006)Sore throat

0.088 (0.007)0.096 (0.007)Dyspnea

0.015 (0.004)0.027 (0.004)Olfactory disorders

0.078 (0.007)0.084 (0.008)Cough

0.013 (0.004)0.025 (0.004)Coryza

0.020 (0.004)0.031 (0.004)Taste disorders

0.002 (0.003)0.023 (0.003)Headache

Rapid balanced

0.117 (0.010)0.120 (0.009)Gender

0.029 (0.005)0.033 (0.006)Health professional

0.105 (0.011)0.115 (0.010)Fever

0.023 (0.004)0.012 (0.005)Sore throat

0.177 (0.014)0.177 (0.013)Dyspnea

0.149 (0.012)0.157 (0.012)Olfactory disorders

0.076 (0.008)0.082 (0.009)Cough

0.058 (0.006)0.064 (0.006)Coryza

0.055 (0.006)0.072 (0.007)Taste disorders

0.028 (0.005)0.036 (0.006)Headache

Both balanced

0.154 (0.007)0.161 (0.007)Gender

0.024 (0.004)0.025 (0.004)Health professional

0.193 (0.009)0.207 (0.010)Fever

0.075 (0.005)0.084 (0.005)Sore throat

0.088 (0.006)0.078 (0.006)Dyspnea

0.049 (0.005)0.055 (0.006)Olfactory disorders

0.071 (0.005)0.062 (0.005)Cough

0.046 (0.003)0.035 (0.003)Coryza

0.068 (0.005)0.071 (0.006)Taste disorders

0.045 (0.005)0.051 (0.005)Headache

aMLP: multilayer perceptron.
bSVM: support vector machine.
cRT-PCR: reverse transcription polymerase chain reaction.
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Table 5. The five most significant factors for COVID-19 test prioritization using the classification models with the highest performances and the data
sets.

Top fiveTop fourTop threeTop twoTop oneData sets and models

RT-PCRa balanced

CoughDyspneaSore throatGenderFeverMLPb

CoughDyspneaSore throatGenderFeverGBMc

CoughDyspneaSore throatGenderFeverRFd

CoughDyspneaSore throatGenderFeverDTe

CoughDyspneaSore throatGenderFeverXGBoostf

CoughDyspneaSore throatGenderFeverSVMg

Rapid balanced

CoughFeverGenderOlfactory disordersDyspneaMLP

CoryzaFeverGenderOlfactory disordersDyspneaGBM

CoryzaFeverGenderOlfactory disordersDyspneaRF

CoryzaGenderFeverOlfactory disordersDyspneaDT

CoughFeverGenderOlfactory disordersDyspneaXGBoost

CoughFeverGenderOlfactory disordersDyspneaSVM

Both balanced

Taste disordersDyspneaSore throatGenderFeverMLP

Taste disordersDyspneaSore throatGenderFeverGBM

Taste disordersDyspneaSore throatGenderFeverRF

DyspneaTaste disordersSore throatGenderFeverDT

Taste disordersDyspneaSore throatGenderFeverXGBoost

CoughSore throatDyspneaGenderFeverSVM

aRT-PCR: reverse transcription polymerase chain reaction.
bMLP: multilayer perceptron.
cGBM: gradient boosting machine.
dRF: random forest.
eDT: decision tree.
fXGBoost: extreme gradient boosting.
gSVM: support vector machine.

Discussion

Principal Findings
The raw data set’s data preprocessing enabled the
implementation, validation, and comparison of classification
models with different characteristics such as using neural layers,
tree combinations, and calculating the distance between data.
The preprocessing also resulted in the public data availability
of patients who were symptomatic tested using RT-PCR and
rapid tests [10]. Thus, the data sets can be reused by other
studies to improve the state of the art.

The algorithms were trained and tested using the unbalanced
and balanced data sets, improving data representativity. The
best classification metrics results were related to the RT-PCR
and rapid tests scenarios using unbalanced and balanced data.
Although the classification models’ performance was similar

for the RT-PCR and rapid tests scenarios, the RT-PCR test
scenario is the most clinically relevant one due to the RT-PCR
testing’s high confidence. The RT-PCR test’s precision increases
confidence in the diagnosis, even if the patient was tested in the
first days after symptoms onset. For both test scenarios with
unbalanced data, although presenting a low Brier Score and
high precision, accuracy score, and recall, the classification
models presented a lower AUROC because of the higher
negative than positive COVID-19 cases. For both test scenarios
with balanced data, the Brier score continued to be low. The
precision, accuracy, and AUROC were higher; however, the
recall results were slightly decreased if compared to the
unbalanced data results.

The recall metric is relevant due to the undesired impacts of
false negatives in clinical practice. Thus, we improved the
classification models’ quality of comparisons by applying the
Friedman and Nemenyi tests based on the six data sets’ recall.
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We used such statistical comparison results for defining the
MLP, GBM, DT, RF, XGBoost, and SVM as the classification
models with the highest performances for COVID-19 test
prioritization in Brazil.

Given the classification models with the highest performances
and the five most significant features for COVID-19 test
prioritization, the fever’s importance as one of the top two
features is according to the aforementioned statistics (Figure
3). The statistics showed that fever was the second most frequent
symptom reported by patients who were symptomatic, confirmed
as COVID-19 cases. Gender and dyspnea were also among the
highest-ranked features used by classification models. For
example, for the RT-PCR balanced data set, observing the DT
model’s decision rules to get an overview of the role of gender
in classifications, positive or negative decisions for males and
females differed based on reported symptoms and the health
professional feature. However, further investigation about the
role of gender in classifications is recommended for future
works.

Therefore, secondary RQ 1 was answered by showing that
gender and health professional features are related to relevant
demographic characteristics to support the COVID-19 test
prioritization in Brazil (Tables 4 and 5). Secondary RQ 2 was
also answered, showing that fever, sore throat, dyspnea,
olfactory disorders, cough, coryza, taste disorders, and headache
are relevant symptoms.

All DT-based classification models considered in this study are
among the classification models with the highest performances,
grouped based on the results of classification metrics and
statistical tests. This fact is relevant due to the high levels of
DTs’ interpretability, positively impacting health care
professionals’ final decision making. In clinical practice,
ML-based applications’ acceptance increases when health care
professionals can easily understand and interpret classification
models’ outputs to track decision-making logic [28]. Given the
grouping of models with similar performances, we used the
criterion of easy interpretability to answer secondary RQ 3.
Thus, the DT classification model was considered the most
suitable for COVID-19 test prioritization in Brazil. We
configured the model with the Gini impurity criterion, best split
strategy, no maximum depth, a minimum number of two samples
split and one sample leaf, no minimum weighted fraction leaves
and no impurity decrease and split, unlimited number of features
and leaves, global random state instance, no class weight, and
no pruning. As one of the classification models with the highest
performances, DT provides a simple tree representation of the
decision making, enabling a unique tree’s straightforward
interpretation by health care professionals.

To answer secondary RQ 4, we analyzed the DT model’s
classification results, observing that a considerable fraction of
the incorrectly classified instances occurred when patients
reported only one, two, or three symptoms. Furthermore, we
conducted an experiment to verify the impacts of reducing
features in the performance of the implemented classification
models (Multimedia Appendix 1). For example, with the both
RT-PCR balanced data set, when the symptoms of sore throat,
dyspnea, headache, and coryza were not considered to

implement the DT classification model, the performance results
decreased considerably. This reduces the ability of the model
to distinguish between positive and negative cases.

Although the DT is considered the most suitable model, all the
other classification models that presented high performance
were relevant to address COVID-19 test prioritization. In Brazil,
due to other epidemics (eg, dengue fever [29]), many people
report symptoms that may or may not be related to COVID-19.
As a limited-income country, Brazil also has inefficient testing
strategies such as shortages of COVID-19 tests. One of the
available classification models can be applied for COVID-19
test prioritization during primary health care, with a mean
accuracy score of at least 88.63%.

Comparison With Prior Work
The relevance of research addressing viral infection outbreaks
is evidenced from the public administration (eg, surveillance
systems) to the diagnosis viewpoint. For example, Son et al [30]
used a South Korean time series of influenza incidence for early
outbreak detection, aiming to assist the definition of control
policies. Chatterjee et al [31] analyzed COVID-19 data sets to
identify risks of spreading, identify correlated factors associated
with the disease’s spread, identify the impact of social isolation,
and experiment with univariate long short-term memory models
for forecasting of total cases and total deaths. In general,
infectious disease research is guided by trends in data analytics
[32].

Indeed, the COVID-19 pandemic is an example of a problematic
scenario. Kumar [33] applied cluster analysis to study and
improve the monitoring of SARS-CoV-2 infections in India,
providing insights on clusters of affected Indian states and union
territories. Besides aiming to improve the management of
available resources, Khakharia et al [34] developed outbreak
classification models for COVID-19 using data sets with
information about patients who live in India, Bangladesh, the
Democratic Republic of Congo, Pakistan, China, Philippines,
Germany, Indonesia, Ethiopia, and Nigeria. Vaid et al [35]
implemented and validated models (eg, XGBoost) to predict
mortality and critical events using electronic health records of
patients who tested positive for COVID-19 in New York City.

To assist COVID-19 detection, Brinati et al [36] validated
models implemented using DT, extremely randomized trees,
KNN, LR, naive Bayes, RF, and three-way RF algorithms. The
authors considered COVID-19 detection using routine blood
exams, gender, and age. The accuracy of the models ranged
between 82% and 86%. However, the large number of required
blood exams (ie, 13) was a limitation, which may compromise
this approach’s feasibility in low- and middle–income countries.

Ahamad et al [21] used a Chinese data set to assist the
COVID-19 detection considering symptoms (ie, fever, cough,
pneumonia, lung infection, coryza, muscle soreness, and
diarrhea), gender, age, travel history, and isolation. The authors
validated the XGBoost, SVM, DT, RF, and GBM models.
XGBoost presented the highest accuracy with more than 85%,
varying according to age. However, lung infection use, detected
by chest images, increases costs and may limit the disease’s
rapid screening.
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Aiming to improve confidence in screening COVID-19, Mei et
al [37] used computerized tomography (CT) images along with
symptoms (ie, fever, cough, and cough with sputum), exposure
history, laboratory testing (ie, white blood cells, neutrophils,
percentage neutrophils, lymphocytes, and percentage
lymphocytes), age, gender, and temperature. They applied the
deep convolutional neural network to analyze images, besides
comparing the performance of SVM, RF, and MLP models,
showing that MLP presented the highest accuracy score.
Afterward, the authors combined images and clinical
information. Similarly, requiring images increases costs and
may limit the rapid screening of COVID-19 in low- and
middle–income countries.

Finally, Zoabi et al [4] used gender, age, symptoms (eg, cough,
fever, sore throat, shortness of breath, and headache), and
contact with a confirmed case to classify positive and negative
COVID-19 cases. The authors implemented a GBM model
based on data reported by the Israeli Ministry of Health. The
GBM model presented an AUROC of 86% and 90% using a
reduced set of features and the complete set, respectively.
Similar to our study, the authors reported the high importance
of gender during the classifications. We also improved the state
of the art by presenting a comparison of other implementations
of classification models. Besides cough, fever, sore throat,
shortness of breath, and headache, we used the symptoms of
olfactory disorders, coryza, and taste disorders to improve the
results.

In contrast to such prior works, we focused on raw data from
55,676 Brazilians and used features that do not require expensive
exams such as CT images and blood tests. Symptoms included
fever, sore throat, dyspnea, olfactory disorders, cough, coryza,
taste disorders, and headache. The gender and health
professional features were the additional information required
to conduct the COVID-19 test prioritization using the
classification models. Gender was also used as a feature by
prior works [4,20,36,37]. The use of exams such as CT images
and blood tests limits classification models’ application
scenarios because it is necessary to prioritize patients who are
symptomatic for testing in the first days after symptoms onset.

Limitations
By preprocessing the 55,676 raw data, the RT-PCR balanced
data set only included 1832 patients who were symptomatic,
the rapid balanced data set included 1296 patients who were
symptomatic, and the both balanced data set included 3128
patients who were symptomatic. However, to improve the
strength of results and decrease size limitation, we also
considered 3 unbalanced data sets. For example, the both
unbalanced data set was composed of 20,021 patients who were
symptomatic and tested for COVID-19.

Furthermore, in a real-world scenario, the number of patients
who were asymptomatic with COVID-19 can also be considered
a limitation to the classification models’ applicability. In this
case, this study continues to be relevant due to the remaining
symptomatic cases that also require health care professionals
and the government’s attention. The evaluation of patients who
are symptomatic is also relevant to prevent the unplanned use
of COVID-19 testing resources due to other disease outbreaks

in Brazil caused by other viral infections (eg, dengue, Zika, and
chikungunya). Such viral infections present similar symptoms
that may complicate health care professionals’ decision on the
adequate testing type needed.

The reduced number of symptoms reported by a patient who is
symptomatic can also negatively impact the reuse classification
models. Nevertheless, the feature ranking and other information
(eg, contact with infected people) are relevant to complement
the classification models during the decision making conducted
by health care professionals and policy makers. We verified the
impacts of reducing features in the performance of implemented
classification models (Multimedia Appendix 1).

Finally, the number of classification models implemented,
validated, and compared is another limitation of our study, given
the wide variety of available algorithms and ensemble strategies.
This limitation was reduced by selecting well-known algorithms
based on trees, linear regression, statistical learning, distance,
and the concept of neurons.

Clinical Practice Context
The availability of eHealth and mHealth systems is relevant to
assist decision making in different scenarios. One such scenario
is detecting COVID-19 in patients who reside in remote and
hard-to-reach locations (eg, Amazonia or Latin America) [38].
Developers can integrate eHealth and mHealth systems with
services that enable health care professionals to be alerted when
the risk of disease is detected. The use of eHealth and mHealth
systems should be encouraged, considering that the early
detection of COVID-19 is essential in clinical practice to enable
early medical attention, possibly reducing the negative impacts
of late treatments. This type of eHealth and mHealth system
can also benefit public health systems when factors related to
the human condition (eg, fatigue and lack of experience) and
the collapse of health services negatively influence health care
professionals’ decision making during patients’ evaluation.
Such scenarios are authentic in the context of the COVID-19
pandemic [39].

Therefore, the implemented classification models can be the
basis for eHealth and mHealth systems to support health care
professionals and policy makers during the COVID-19 test
prioritization. To be applied in clinical practice and integrated
with the current clinical workflow, the availability of the DT
classification model and the use of feature ranking information
through web services to be consumed by an eHealth or mHealth
system is recommended. Such a system shall present
classification results for health care professionals in a
user-friendly manner. The straightforward interpretation of
classification models is relevant to increase health care
professionals’confidence in classification results. For example,
the web services can be integrated with Brazilian public health
facilities’ systems to prioritize the reduced COVID-19 testing
resources.

We present an application scenario integrating a clinical
workflow and the DT classification model (Figure 7). The DT
is used to prioritize patients who are symptomatic for COVID-19
testing. However, when the number of reported symptoms is
too low, the classification models cannot distinguish between
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positive and negative cases. In this case, health care
professionals can reuse the feature ranking and other information
(eg, contact with infected people) to make decisions about
COVID-19 testing. Thus, the use of feature ranking information
is guided by the answer of secondary RQ 4. If the result is not
prioritized, the patient’s clinical condition should be further
investigated in regard to other viral diseases.

For the application scenario, there are five possible flows: (1)
confirmed case with classification model and rapid test result,

(2) confirmed case with classification model and RT-PCR test
result, (3) confirmed case using feature ranking and rapid test
result, (4) confirmed case using feature ranking and RT-PCR
test result, and (5) negative case with the recommendation of
investigation of other viral diseases. It is relevant to consider
the days between the onset of symptoms and COVID-19 testing:
closed interval of 3-7 days for RT-PCR test, from the eighth
day for the rapid antibody test, and closed interval of 2-7 days
for the rapid antigen test [40-42].

Figure 7. An application scenario to connect the decision tree classification model with a clinical workflow. The model guides the test prioritization
of patients who were symptomatic suspected of COVID-19. RT-PCR: reverse transcription polymerase chain reaction.

Conclusions
The results showed the relevance of using classification models
for COVID-19 test prioritization in Brazil, mainly based on the
symptoms that do not require expensive exams. By comparing
the classification models using raw data from 55,676 Brazilians,
the 10-fold cross-validation method, classification metrics, and
the Friedman and Nemenyi tests, the MLP, GBM, DT, RF,
XGBoost, and SVM presented the highest performances with
similar results.

DT-based classification models’high performances are relevant
for our application scenario due to the high levels of DTs’
interpretability, positively impacting health care professionals’
final decision making. Therefore, applying the easy
interpretability as an additional comparison criterion, DT was
considered the most suitable classification model, effectively
assisting in the decision making for prioritizing patients who
are symptomatic for testing. Information about the features
gender, health professional, fever, sore throat, dyspnea,
olfactory disorders, cough, coryza, taste disorders, and
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headache enable the COVID-19 test prioritization for patients
who are symptomatic. The use of symptoms that do not require
expensive exams contributes to assisting patients who live, for
example, in needy and hard-to-reach communities. The results
of feature ranking reported in this paper are also relevant to
support a more detailed analysis in a scenario where a patient
reports a reduced number of symptoms.

To improve testing prioritization, we plan to investigate the
relationship between the symptoms reported by patients with
COVID-19 and other widespread diseases in Brazil, such as
dengue fever, Zika fever, and chikungunya. Thus, we aim to
include implementing and validating classification models and
developing and validating an eHealth system to support health
care professionals and policy makers in decision making for
testing strategies.
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