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Abstract

Background: The number of deaths from COVID-19 continues to surge worldwide. In particular, if a patient’s condition is
sufficiently severe to require invasive ventilation, it is more likely to lead to death than to recovery.

Objective: The goal of our study was to analyze the factors related to COVID-19 severity in patients and to develop an artificial
intelligence (AI) model to predict the severity of COVID-19 at an early stage.

Methods: We developed an AI model that predicts severity based on data from 5601 COVID-19 patients from all national and
regional hospitals across South Korea as of April 2020. The clinical severity of COVID-19 was divided into two categories: low
and high severity. The condition of patients in the low-severity group corresponded to no limit of activity, oxygen support with
nasal prong or facial mask, and noninvasive ventilation. The condition of patients in the high-severity group corresponded to
invasive ventilation, multi-organ failure with extracorporeal membrane oxygenation required, and death. For the AI model input,
we used 37 variables from the medical records, including basic patient information, a physical index, initial examination findings,
clinical findings, comorbid diseases, and general blood test results at an early stage. Feature importance analysis was performed
with AdaBoost, random forest, and eXtreme Gradient Boosting (XGBoost); the AI model for predicting COVID-19 severity
among patients was developed with a 5-layer deep neural network (DNN) with the 20 most important features, which were
selected based on ranked feature importance analysis of 37 features from the comprehensive data set. The selection procedure
was performed using sensitivity, specificity, accuracy, balanced accuracy, and area under the curve (AUC).

Results: We found that age was the most important factor for predicting disease severity, followed by lymphocyte level, platelet
count, and shortness of breath or dyspnea. Our proposed 5-layer DNN with the 20 most important features provided high sensitivity
(90.2%), specificity (90.4%), accuracy (90.4%), balanced accuracy (90.3%), and AUC (0.96).

Conclusions: Our proposed AI model with the selected features was able to predict the severity of COVID-19 accurately. We
also made a web application so that anyone can access the model. We believe that sharing the AI model with the public will be
helpful in validating and improving its performance.
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Introduction

The COVID-19 pandemic has had a major impact on health
care systems globally. Since early 2020, COVID-19 has spread
rapidly around the world, exceeding 100 million cases and 2
million deaths [1]. In the COVID-19 pandemic situation, the
most important issue in the management of COVID-19 patients
is to triage patients at high risk of mortality and provide tailored
treatment, so that medical costs and mortality rates can be
reduced.

Several models have been proposed to predict the severity or
mortality of COVID-19 patients using artificial intelligence
(AI) techniques. The majority of them have been developed
based on limited information or variables, such as medical
images [2-7], blood and/or urine information [8,9], clinical
characteristics [10-12], individual-level epidemiological data
sets [13], and electronic health records (ie, demographics,
laboratory results, medical history, and vital signs) during
hospitalization [14]. However, most of them were developed
based on relatively small samples from limited data sources,
which makes their generalization problematic. More specifically,
the numbers of patients used for training of some models were
375 [15], 443 [16], 548 [17], and 663 [18].

To overcome the generalization issue, we aimed to develop an
AI prediction model based on confirmed nationwide patient
data obtained from the South Korean government, which
included 5601 patients from more than 100 hospitals. In this
model, we used comprehensive data sets composed of 37 factors,
including basic demographic information, vital signs, physical
examination results, clinical symptoms and severity, comorbid
diseases, and general blood test results. To the best of our
knowledge, this is the first attempt to develop an AI model to
predict the severity of COVID-19 based on a nationwide cohort
and comprehensive data set in South Korea.

Methods

Data Sets
This study was approved by the Korea Disease Control and
Prevention Agency (KDCA) in South Korea. Informed consent
was waived. The KDCA has been managing comprehensive

data from COVID-19–confirmed patients in Korea obtained
from approximately 100 hospitals. The KDCA discloses this
data to few selected researchers during a specific study period.
Thus, we investigated this data between September 15 and
October 5, 2020, under the approval of the KDCA.

Table 1 describes the KDCA data set. The basic patient
information includes the patient’s ID, age, gender, outcome,
quarantine period, pregnancy status, and pregnancy week. The
physical index includes body mass index. The initial
examination findings include systolic and diastolic blood
pressure, heart rate average, and body temperature at the hospital
admission stage. The clinical findings include the status of fever,
cough, sputum production, sore throat, rhinorrhea, myalgia,
malaise, dyspnea, headache, confusion, nausea, and diarrhea.
The current or previous comorbid diseases include diabetes
mellitus, hypertension, heart failure, chronic heart disease,
chronic obstructive pulmonary disease, chronic kidney disease,
cancer, chronic liver disease, rheumatism or autoimmune
disease, and dementia. The clinical severity has two categories:
low and high severity. The conditions of patients in the
low-severity group correspond to no limit of activity, oxygen
support with nasal prong or facial mask, and noninvasive
ventilation. The conditions of patients in the high-severity group
correspond to invasive ventilation, multi-organ failure with
extracorporeal membrane oxygenation required, and death. The
general blood test results include levels of hemoglobin,
hematocrit, lymphocytes, platelets, and white blood cells.

Out of 5628 COVID-19 patient records, the clinical severity
information was missing in 27 patient records, so we excluded
them from our study. Thus, we used 5601 patient data records
to develop the AI prediction model for clinical severity. For
each patient data record, we used 37 variables as model inputs;
these variables are summarized in Table 1 without ID, outcome,
quarantine period, and clinical severity. As the model output,
we used clinical severity, which is a binary component
composed of low and high severity.

Table 2 summarizes the clinical features from the high-severity
group (271/5601, 4.8%) and the low-severity group (5330/5601,
95.2%). Notably, in the high-severity group, 241 out of 271
patients were deceased (88.9%), while no patients died in the
low-severity group.
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Table 1. Description of COVID-19 patient data.

DescriptionTypeItem category and data

Basic patient information

AnonymousNumberID

0-9 (0), 10-19 (1), 20-29 (2), 30-39 (3), 40-49 (4), 50-59 (5), 60-69 (6), 70-79 (7), ≥80
(8)

9 categoriesAge (years)

Male (0), female (1)2 categoriesGender

Survived (0), deceased (1)2 categoriesOutcome

Days (0 if confirmed after death)ContinuousQuarantine period

No (0), yes (1)2 categoriesPregnancy

Weeks (0 if not pregnant)NumberPregnancy week

<18.5 (0), 18.5-22.9 (1), 23.0-24.9 (2), 25.0-29.9 (3), ≥30 (4)5 categoriesPhysical index: BMI (kg/m2)

Initial examination findings

<120 (0), 120-129 (1), 130-139 (2), 140-159 (3), ≥160 (4)5 categoriesSystolic blood pressure

<80 (0), 80-89 (1), 90-99 (2), ≥100 (3)4 categoriesDiastolic blood pressure

Heart rateNumberHeart rate

TemperatureNumberTemperature

Clinical findings

No (0), yes if higher than 37.5 °C (1)2 categoriesFever

No (0), yes (1)2 categoriesCough

No (0), yes (1)2 categoriesSputum production

No (0), yes (1)2 categoriesSore throat

No (0), yes (1)2 categoriesRunny nose or rhinorrhea

No (0), yes (1)2 categoriesMuscle aches or myalgia

No (0), yes (1)2 categoriesFatigue or malaise

No (0), yes (1)2 categoriesShortness of breath or dyspnea

No (0), yes (1)2 categoriesHeadache

No (0), yes (1)2 categoriesAltered consciousness or confusion

No (0), yes (1)2 categoriesVomiting or nausea

No (0), yes (1)2 categoriesDiarrhea

Current or previous comorbid diseases

No (0), yes (1)2 categoriesDiabetes mellitus

No (0), yes (1)2 categoriesHypertension

No (0), yes (1)2 categoriesHeart failure

No (0), yes (1)2 categoriesChronic cardiac disease

No (0), yes (1)2 categoriesAsthma

No (0), yes (1)2 categoriesChronic obstructive pulmonary dis-
ease

No (0), yes (1)2 categoriesChronic kidney disease

No (0), yes (1)2 categoriesCancer

No (0), yes (1)2 categoriesChronic liver disease

No (0), yes (1)2 categoriesRheumatism or autoimmune diseases

No (0), yes (1)2 categoriesDementia

J Med Internet Res 2021 | vol. 23 | iss. 4 | e27060 | p. 3https://www.jmir.org/2021/4/e27060
(page number not for citation purposes)

Chung et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


DescriptionTypeItem category and data

Low severity, including no limit of activity, oxygen support required with nasal prong
or facial mask, and noninvasive ventilation (0); high severity, including invasive ventila-
tion, multi-organ failure, extracorporeal membrane oxygenation, and death (1)

2 categoriesClinical severity

General blood test results

g/dLNumberHemoglobin

%NumberHematocrit

%NumberLymphocytes

109/LNumberPlatelets

109/LNumberWhite blood cells
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Table 2. Statistical summary of clinical features from the low-severity group and high-severity group (N=5601).

P valueHigh-severity group (n=271)Low-severity group (n=5330)Participant data

Basic patient information

<.0017.05 (1.08)4.26 (1.92)Age categorya, mean (SD)

<.001Gender, n (%)

144 (53.1)2166 (40.6)Male

127 (46.9)3164 (59.4)Female

.330 (0)19 (0.4)Pregnancy status (yes), n (%)

N/AN/Ab16.50 (10.01)Pregnancy week, mean (SD)

.541.84 (1.13)1.79 (1.02)Physical index: BMI categoryc, mean (SD)

Initial examination findings, mean (SD)

.0081.98 (1.46)1.75 (1.31)Systolic blood pressure categoryd

.110.90 (1.00)1.00 (0.97)Diastolic blood pressure categorye

<.00189.05 (19.64)85.66 (14.79)Heart rate (beats per minute)

<.00137.11 (0.80)36.94 (0.54)Temperature (°C)

Clinical findings (low-severity group n=5326), n (%)

<.001105 (38.7)1197 (22.5)Fever

.00892 (33.9)2239 (42.0)Cough

.8979 (29.2)1532 (28.8)Sputum production

<.00114 (5.2)858 (16.1)Sore throat

<.0018 (3.0)609 (11.4)Runny nose or rhinorrhea

.00226 (9.6)894 (16.8)Muscle aches or myalgia

.0418 (6.6)215 (4.0)Fatigue or malaise

<.001134 (49.4)531 (10.0)Shortness of breath or dyspnea

<.00117 (6.3)946 (17.8)Headache

<.00126 (9.6)9 (0.2)Altered consciousness or confusion

.0618 (6.6)226 (4.2)Vomiting or nausea

.2820 (7.4)496 (9.3)Diarrhea

Current or previous comorbid diseases, n (%)

<.001106 (39.1)582/5327 (10.9)Diabetes mellitus

<.001164 (60.5)1034/5327 (19.4)Hypertension

<.00120 (7.4)39/5327 (0.7)Heart failure

<.00129 (10.7)150/5311 (2.8)Chronic cardiac disease

.00513 (4.8)115/5327 (2.2)Asthma

<.0019 (3.3)31/5327 (0.6)Chronic obstructive pulmonary disease

<.00118 (6.6)37/5327 (0.7)Chronic kidney disease

<.00122 (8.1)123/5326 (2.3)Cancer

.177 (2.6)76/5004 (1.5)Chronic liver disease

.443 (1.1)35/4998 (0.7)Rheumatism or autoimmune diseases

<.00176 (28.0)148/5001 (3.0)Dementia

General blood test results, mean (SD)

<.00111.89 (2.23)13.37 (1.69)Hemoglobin (g/dL)

<.00135.28 (6.56)39.51 (4.72)Hematocrit (%)
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P valueHigh-severity group (n=271)Low-severity group (n=5330)Participant data

<.00115.08 (10.69)30.08 (11.12)Lymphocytes (%)

<.001188.51 (87.38)239.96 (81.57)Platelets (109/L)

<.0017.99 (5.10)6.00 (2.55)White blood cells (109/L)

aAge categories were as follows (years): 0-9 (0), 10-19 (1), 20-29 (2), 30-39 (3), 40-49 (4), 50-59 (5), 60-69 (6), 70-79 (7), ≥80 (8).
bN/A: not applicable; there were no pregnant participants in the high-severity group.
cBMI categories were as follows (kg/m2): <18.5 (0), 18.5-22.9 (1), 23.0-24.9 (2), 25.0-29.9 (3), ≥30 (4).
dSystolic blood pressure categories were as follows (mm Hg): <120 (0), 120-129 (1), 130-139 (2), 140-159 (3), ≥160 (4).
eDiastolic blood pressure categories were as follows (mm Hg): <80 (0), 80-89 (1), 90-99 (2), ≥100 (3).

Imputation and Standardization
In the data set, some features were missing (Table S1 in
Multimedia Appendix 1). To handle the missing data, we
calculated the mean value from the training data set for each
feature and replaced the missing data with the mean value in
both the training and testing data sets. We then performed
standardization of the data set, which is a common requirement
for machine learning algorithms. The standardization changes
the data distribution of each feature with a mean of zero and
standard deviation of one:

where mean(train) and SD(train) are the mean and standard
deviation values, respectively, for each feature from the training
data set. We applied the standardization to both the training and
testing data sets.

Data Split
For the feature importance analysis and the AI prediction model
development, we performed a grid search with a 5-fold

cross-validation and 10-time repetition. For that, we divided
the 5601 records into training (4480/5601, 80.0%) and testing
(1121/5601, 20.0%) data sets in a stratified fashion (Table 3).
We used 4480 records as the training data set (4260/4480, 95.1%
low severity and 220/4480, 4.9% high severity) and 1121 records
as the testing data set (1070/1121, 95.5% low severity and
51/1121, 4.5% high severity). The testing data set was isolated
and used only for evaluating the performance of the proposed
model.

The training data set (n=4480) was randomly shuffled and
partitioned into 5 equal folds in a stratified manner: each fold
included 433 low-severity records and 15 high-severity records.
Of the 5 folds, a single fold was retained as the validation data
set for testing the model, and the remaining 4 folds were used
as the training data. We repeated the process 10 times, with
each of the 10 folds used exactly once as the validation data.
Here, since the number of low-severity records was much higher
than the number of high-severity records, we up-sampled the
high-severity data by randomly copying the data to prevent the
model’s bias toward the low-severity data by balancing the
amount of data in the two groups.

Table 3. Summary of training and testing data sets.

Records, n (%)Data set

High-severity groupLow-severity group

220 (4.9)4260 (95.1)Training (n=4480)

51 (4.5)1070 (95.5)Testing (n=1121)

271 (4.8)5330 (95.2)Total (N=5601)

Feature Selection
In order to select important features that influence clinical
severity, we first investigated the contribution of each of the 37
input variables on severity via feature importance analysis using
AdaBoost [19,20], random forest [21], and eXtreme Gradient
Boosting (XGBoost) [22] algorithms. After analyzing the feature
importance values from each classifier algorithm, we normalized
and averaged the values to calculate the combination feature
importance values.

By repeating the 5-fold cross-validation 10 times, we found the
best hyperparameters. For AdaBoost, we set the hyperparameters
as follows: the number of tree estimators was set to 50 and the
learning rate was set to 0.4. For random forest, we set the
number of tree estimators to 100, the maximum depth to 4, and

the maximum features to 5. For XGBoost, we set the maximum
depth to 2, the learning rate to 0.2, the number of tree estimators
to 100, the value of the regularization parameter α to 1.0, the
fraction of observations to 0.9, and the fraction of columns to
0.9.

The 10-time repeated 5-fold cross-validation provided 50 sets
of feature importance values for each classifier (ie, AdaBoost,
random forest, and XGBoost). We then averaged the 50 sets of
importance values and normalized them so that the importance
values from each classifier were in the range from 0 to 1.
Finally, we averaged the importance values for the final ranked
feature importance value. Moreover, we determined the optimal
number of top features to incorporate into the AI prediction
model based on the cross-validation results.
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AI Prediction Model Development
To develop the final AI model for severity prediction, we used
a deep neural network (DNN). In the DNN approach, we
investigated up to 5 hidden layers and each layer depth (ie, node)
up to the previous layer depth (ie, node). For the input layer,
we first ranked the features according to their importance and
increased the number of top features used in the input layer
from 1 to 37. For the fully connected (FC) layers as hidden
layers, we applied dropouts by changing the dropout rate from
0 to 0.5 with 0.1 increments. The last FC layer was fed into a
sigmoid layer, which is an output layer providing the
probabilities for the patient severity. We trained the models
with the Adam optimizer and binary cross-entropy cost function
with a learning rate of 0.0001 and batch size of 64. We
implemented the models using R, version 4.0.2 (The R
Foundation), with TensorFlow, version 1.13.1, for DNN;
scikit-learn, version 0.22.1, for machine learning algorithms;
and xgboost, version 0.6.4, for the XGBoost algorithm.

For each set of top features, we found the best cross-validation
accuracy using the metrics of area under the curve (AUC) and
balanced accuracy:

Given the cross-validation accuracy analysis, we finally modeled
with the 5-layer DNN using the top 20 features. The 5-layer
DNN comprised an input layer, 3 FC layers as hidden layers,
and an output layer. The input layer was fed into a series of 3
FC layers consisting of 20, 16, and 8 nodes, respectively. In the
first 2 FC layers, we used a dropout rate of 0.5. Then, the last
FC layer was fed into a sigmoid layer.

Performance Evaluation
We evaluated the prediction performance of our proposed
5-layer DNN model with the isolated testing data set (n=1121).
To compare the prediction performance of the DNN model with
those of other external AI models, we separately trained the
following models: logistic regression, decision tree, random

forest, support vector machine, XGBoost, AdaBoost, GradBoost,
and HistBoost. We evaluated the prediction performance of
these AI models as single models as well as ensemble models.

Results

Feature Selection
Figure 1 shows the results of the ranked feature importance
analysis from AdaBoost, random forest, XGBoost, and their
combination. Results from AdaBoost indicate that platelet count
had the highest importance value, followed by lymphocyte level,
age, and body mass index (Figure 1, a). Results from random
forest indicate that age had the highest importance value,
followed by lymphocyte level, shortness of breath or dyspnea,
and platelet count (Figure 1, b). Results from XGBoost indicate
that platelet count had the highest importance value, followed
by age, lymphocyte level, and temperature (Figure 1, c). By
averaging the values obtained from the three models, age had
the highest importance value, followed by lymphocyte level,
platelet count, and shortness of breath or dyspnea (Figure 1, d).
On the other hand, cancer, fatigue or malaise, chronic
obstructive pulmonary disease, sputum production, chronic
cardiac disease, heart failure, asthma, rheumatism or
autoimmune diseases, pregnancy, and pregnancy week rarely
contributed to the predictive model. The normalized feature
importance values from AdaBoost, random forest, and XGBoost,
as well as the combined ranked feature importance values with
those averages, are summarized in Table S2 in Multimedia
Appendix 1.

We investigated the cross-validation performance with the
metrics of AUC and balanced accuracy (Figure 2). The results
show that both AUC and balanced accuracy reached the highest
values when the top 20 features from the combination of
AdaBoost, random forest, and XGBoost were used for the input
layer. Therefore, we incorporated the top 20 features into the
AI prediction model, which yielded a sensitivity of 88%,
specificity of 90%, accuracy of 90%, balanced accuracy of 89%,
and AUC of 0.96 (Table 4).
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Figure 1. Results of normalized feature importance analysis from (a) AdaBoost, (b) random forest, and (c) eXtreme Gradient Boosting (XGBoost) as
well as (d) the combined average ranked feature importance. ACC: altered consciousness/confusion; BMI: body mass index; CCD: chronic cardiac
disease; CKD: chronic kidney disease; CLD: chronic liver disease; COPD: chronic obstructive pulmonary disease; DBP: diastolic blood pressure;
DEMEN: dementia; DIARR: diarrhea; DM: diabetes mellitus; FM: fatigue/malaise; HCT: hematocrit; HEADA: headache; HF: heart failure; HGB:
hemoglobin; HR: heart rate; HTN: hypertension; LYMPHO: lymphocyte; MAM: muscle aches/myalgia; PLT: platelets; Preg: pregnancy; PregWk:
pregnancy weeks; RDAD: rheumatism/autoimmune disease; RNR: runny nose/rhinorrhea; SBP: systolic blood pressure; SOB: shortness of breath/dyspnea;
SPUTUM: sputum production; ST: sore throat; Temp: temperature; VN: vomiting/nausea; WBC: white blood cells.
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Figure 2. The influence of feature importance values on cross-validation accuracy. AUC: area under the curve.

Table 4. Cross-validation results.

Cross-validation measures (n=448), mean (SD)Model

Area under the curveBalanced accuracyAccuracySpecificitySensitivity

0.96 (0.01)0.89 (0.04)0.90 (0.02)0.90 (0.02)0.88 (0.06)5-layer deep neural network

Performance of the AI Prediction Model
With the isolated testing data set (n=1121), our proposed 5-layer
DNN showed a sensitivity of 90.20%, specificity of 90.37%,
accuracy of 90.37%, balanced accuracy of 90.28%, and AUC
of 0.96. Table 5 shows the prediction performances on the
testing data set. First, we compared the accuracy metrics when
the synthetic minority oversampling technique was applied, and
we found that both balanced accuracy and AUC were slightly
lower. Second, we compared the accuracy metrics when
principal component analysis (PCA)–based feature reduction
was applied with eight dimensions, and we found that both

balanced accuracy and AUC were also slightly lower. Table 5
[19-28] also shows the prediction performances of various AI
models; it can be seen that our proposed 5-layer DNN method
provided higher accuracy, balanced accuracy, and AUC values
than the other external AI models (ie, logistic regression,
decision tree, random forest, support vector machine, XGBoost,
AdaBoost, GradBoost, and HistBoost).

Furthermore, we investigated the prediction performance of
ensemble AI models (ie, combination of AI models); none of
the ensemble AI models outperformed our proposed 5-layer
DNN model (Table 6).
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Table 5. Testing data results and comparison with other machine learning algorithms.

AUCiBAhAccgSpefSeneTPdFNcFPbTNaModel

0.96170.90280.90370.90370.90204651039675-layer DNNj: copying

0.95550.88140.91610.91960.8431438869845-layer DNN: SMOTEk [23]

0.95490.88180.86350.86170.90204651489225-layer DNN with PCAl (8 features)

0.95630.89070.91610.91870.862744787983Linear regression [24]

0.92520.87860.85730.85510.9020465155915Decision tree [25]

0.95900.89720.89300.89250.9020465115955Random forest [21]

0.95880.89720.89300.89250.9020465115955Support vector machine [26]

0.95580.88280.88310.88320.8824456125945XGBoostm [22]

0.95860.88880.87690.87570.9020465133937AdaBoost [19,20]

0.95250.87860.87510.87480.8824456134936GradBoost [27]

0.95350.87950.89470.89630.8627447111959HistBoost [28]

aTN: true negative.
bFP: false positive.
cFN: false negative.
dTP: true positive.
eSen: sensitivity.
fSpe: specificity.
gAcc: accuracy.
hBA: balanced accuracy.
iAUC: area under the curve.
jDNN: deep neural network.
kSMOTE: synthetic minority oversampling technique.
lPCA: principal component analysis.
mXGBoost: eXtreme Gradient Boosting.
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Table 6. Test result comparison with ensemble approaches.

AUCiBAhAccgSpefSeneTPdFNcFPbTNaModel

0.96170.90280.90370.90370.90204651039675-layer deep neural network (DNN)

(proposed)

0.95890.89730.91080.91210.882445694976DNN + linear regression (LR)

0.95720.90280.90370.90370.9020465103967DNN + random forest (RF)

0.96070.90190.90190.90190.9020465105965DNN + AdaBoost

0.94900.89120.89920.90000.8824456107963DNN + eXtreme Gradient Boosting (XGBoost)

0.95630.90050.89920.89910.9020465108962DNN + support vector machine (SVM)

0.95150.89680.89210.89160.9020465116954RF + AdaBoost

0.95790.90280.90370.90370.9020465103967DNN + RF + AdaBoost

0.95560.90050.89920.89910.9020465108962DNN + RF + SVM

0.95850.90100.90010.90000.9020465107963DNN + RF + LR

0.95710.89210.88310.88220.9020465126944DNN + RF + AdaBoost + XGBoost

0.95620.89910.89650.89630.9020465111959DNN + RF + AdaBoost + SVM

0.95720.89820.91260.91400.882445692978DNN + RF + AdaBoost + XGBoost + SVM

aTN: true negative.
bFP: false positive.
cFN: false negative.
dTP: true positive.
eSen: sensitivity.
fSpe: specificity.
gAcc: accuracy.
hBA: balanced accuracy.
iAUC: area under the curve.

Discussion

Principal Findings
Our proposed AI model, the 5-layer DNN using the selected
top 20 features, was able to predict the severity of COVID-19
patients at the hospital admission stage with excellent prediction
performance: 90.2% sensitivity, 90.4% specificity, and 90.4%
accuracy. The model has several unique characteristics. First,
it was developed based on nationwide confirmed COVID-19
patient data obtained from the KDCA. In South Korea, all
confirmed cases must be reported to the KDCA; thus, the KDCA
data are very accurate and updated on a daily basis [4]. The
Korean government designated more than 100 general hospitals,
including 20 tertiary hospitals, as specialized infection control
hospitals equipped with isolation and negative pressure rooms.
These designated hospitals should report important clinical
information about COVID-19 patients to the KDCA, especially
for patients who are admitted to hospitals or show severe
conditions. When we were allowed to access the KDCA data
sets in September 2020, there were data from 5601 patients with
comprehensive clinical information that we could use to develop
an AI prediction model. This is the largest cohort with a
sufficient amount of data to develop reliable and generalizable
AI prediction models.

Second, our AI prediction model development started with
feature importance analysis of the 37 features in the

comprehensive data set. Of these, 20 were selected based on
ranked feature importance analysis results in order to develop
an accurate AI prediction model. The cross-validation
demonstrated that the AI prediction model showed higher
accuracy using the selected 20 features compared to using all
37 features. In addition, the selected 20 features (ie, age,
lymphocyte level, platelet count, shortness of breath or dyspnea,
temperature, hemoglobin level, white blood cell count, body
mass index, hematocrit level, heart rate, systolic blood pressure,
dementia, hypertension, altered consciousness or confusion,
diabetes, gender, cough, sore throat, chronic liver disease, and
runny nose or rhinorrhea) can be easily acquired from patient
history, basic physical examinations, and routine laboratory
tests. Thus, our AI prediction model can be easily incorporated
into routine clinical practice. Furthermore, we observed that
PCA-based feature selection also provided as good of a
performance as did the feature importance analysis. In particular,
we expect that many researchers will be able to flexibly diversify
the model for predicting the severity of COVID-19 patients, in
that a similar level of accuracy could be obtained with only
eight features.

In terms of our feature selection process, we combined
AdaBoost, random forest, and XGBoost machine learning
algorithms to rank the important features. The AdaBoost
algorithm is part of the family of boosting algorithms and
sequentially growing decision trees as weak learners [19]. It is
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well known that it rarely overfits in low-noise data sets [20].
The random forest algorithm is based on a bagging approach,
which is based on the aggregation of a set of weak learners [21].
XGBoost is a recently introduced algorithm with optimized
gradient boosting [22]. In low-dimensional or highly separable
data, all of the classifiers generally provide reasonably good
performance. However, they may provide different performances
depending on various factors, such as feature dimension, data
separability, data balancing, and feature correlation. That is the
reason we have combined the three algorithm results.

We named our proposed AI prediction model KOVIDnet,
indicating the deep learning algorithm for Korean COVID-19
patients. Owing to its high accuracy and generalizability in
Korea, we expect that KOVIDnet will be able to provide
treatment priority guidance at the time of admission regarding
who should be treated intensively. Although most patients with
COVID-19 showed mild and self-limiting illness, some patients
became severely and critically ill, showing the rapid progression
to acute respiratory failure, sepsis, septic shock, multi-organ
failure, and eventual death [29-32]. The mortality rate of severe
cases is about 20 times higher than that of mild cases [30,33].
This indicates that early identification of patients at risk of
mortality is important for the management of COVID-19
patients.

Limitations and Future Work
In our earlier study, we grouped the patients into eight
subgroups. Subgroup 1 patients had no limits to their activity.
Subgroup 2 patients had limits to their activity, but did not need
oxygen. Subgroup 3 patients needed oxygen with a nasal prong.
Subgroup 4 patients needed oxygen with a facial mask.
Subgroup 5 patients needed noninvasive ventilation. Subgroup
6 patients needed invasive ventilation. Subgroup 7 patients had
multi-organ failure or underwent extracorporeal membrane
oxygenation. Subgroup 8 patients died. For the multiclass
classification, we also trained the model through the same
procedure as mentioned above, but the accuracy when using
the testing data was not satisfactory (Table S3 in Multimedia

Appendix 1). It may be because there was no distinct difference
in features according to each subgroup or because the number
of training data values was insufficient. In addition, the data
were extremely imbalanced: the imbalance ratio was 405 (Table
S4 in Multimedia Appendix 1). After analyzing the results from
the eight-subgroup multiclass classification problem, we
considered the binary classification problem, where the
low-severity group included subgroups 1 to 4 and the
high-severity group included subgroups 5 to 8. Not only was
the binary classification problem the most realistic in training
the predictive model based on our current data, but it was also
useful to convey clinically important implications. We believe
that we can extend our model to the multiclass classification
problem based on more extensive data.

Our study also has additional limitations. First, our proposed
AI prediction model was validated with an isolated test data set
(n=1121), which was a data set that was split from the entire
data set. It may be necessary to validate our AI model with
external data sets, such as prospectively collected data. To
validate and update KOVIDnet, we made a web application
[34] so that anyone can access the model. We believe that
sharing the AI model with the public will be helpful in validating
and improving its performance. Second, our data did not include
patients of other races, such as Caucasian or Middle East Asian.
In the near future, we have a plan to apply our AI model to
various data sets, including data from patients of other races.
To realize this goal, we will establish a real-time training
framework that can train our model using prospectively collected
data from all over the world. We believe that we can improve
KOVIDnet for better generalization based on the extended data.

Conclusions
In conclusion, we developed our AI model with 20 selected
features based on a large nationwide data set, and it was able
to predict the severity of COVID-19 accurately. We believe that
our model can help health care providers to effectively treat
COVID-19 patients at an early stage and ultimately reduce
deaths.

Acknowledgments
We acknowledge all the health care workers involved in the diagnosis and treatment of COVID-19 patients in South Korea. We
also thank the KDCA, the National Medical Center, and the health information managers at the hospitals for their efforts in
collecting the medical records. This study was supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning (grants 202012B04 and
NRF-2020R1A2C1014829), and by the Korea Health Industry Development Institute (grant HI18C1216).

Authors' Contributions
HC and HK carried out the machine learning and deep learning simulation for hyperparameter search and modeling. CP performed
data validation to be applied to COVID-19 patients. KWK, H-OS, T-YC, and JHS validated and confirmed the simulations and
helped to draft the manuscript. HL developed and maintained the web application. JL and WSK conceived of the study, participated
in the study’s design and coordination, and wrote the initial manuscript. All authors read and approved the final manuscript.

Conflicts of Interest
None declared.

J Med Internet Res 2021 | vol. 23 | iss. 4 | e27060 | p. 12https://www.jmir.org/2021/4/e27060
(page number not for citation purposes)

Chung et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 1
Supplementary tables.
[DOCX File , 54 KB-Multimedia Appendix 1]

References

1. Honein MA, Christie A, Rose DA, Brooks JT, Meaney-Delman D, Cohn A, CDC COVID-19 Response Team. Summary
of guidance for public health strategies to address high levels of community transmission of SARS-CoV-2 and related
deaths, December 2020. MMWR Morb Mortal Wkly Rep 2020 Dec 11;69(49):1860-1867 [FREE Full text] [doi:
10.15585/mmwr.mm6949e2] [Medline: 33301434]

2. Zhu J, Shen B, Abbasi A, Hoshmand-Kochi M, Li H, Duong TQ. Deep transfer learning artificial intelligence accurately
stages COVID-19 lung disease severity on portable chest radiographs. PLoS One 2020;15(7):e0236621 [FREE Full text]
[doi: 10.1371/journal.pone.0236621] [Medline: 32722697]

3. Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, et al. Abnormal lung quantification in chest CT images of COVID-19
patients with deep learning and its application to severity prediction. Med Phys 2020 Nov 22:1-13 [FREE Full text] [doi:
10.1002/mp.14609] [Medline: 33225476]

4. Ko H, Chung H, Kang WS, Kim KW, Shin Y, Kang SJ, et al. COVID-19 pneumonia diagnosis using a simple 2D deep
learning framework with a single chest CT image: Model development and validation. J Med Internet Res 2020 Jun
29;22(6):e19569 [FREE Full text] [doi: 10.2196/19569] [Medline: 32568730]

5. Rajaraman S, Siegelman J, Alderson PO, Folio LS, Folio LR, Antani SK. Iteratively pruned deep learning ensembles for
COVID-19 detection in chest x-rays. IEEE Access 2020;8:115041-115050 [FREE Full text] [doi:
10.1109/access.2020.3003810] [Medline: 32742893]

6. Das D, Santosh KC, Pal U. Truncated inception net: COVID-19 outbreak screening using chest x-rays. Phys Eng Sci Med
2020 Sep;43(3):915-925 [FREE Full text] [doi: 10.1007/s13246-020-00888-x] [Medline: 32588200]

7. Brunese L, Martinelli F, Mercaldo F, Santone A. Machine learning for coronavirus COVID-19 detection from chest x-rays.
Procedia Comput Sci 2020;176:2212-2221 [FREE Full text] [doi: 10.1016/j.procs.2020.09.258] [Medline: 33042308]

8. Yao H, Zhang N, Zhang R, Duan M, Xie T, Pan J, et al. Severity detection for the coronavirus disease 2019 (COVID-19)
patients using a machine learning model based on the blood and urine tests. Front Cell Dev Biol 2020;8:683 [FREE Full
text] [doi: 10.3389/fcell.2020.00683] [Medline: 32850809]

9. Brinati D, Campagner A, Ferrari D, Locatelli M, Banfi G, Cabitza F. Detection of COVID-19 infection from routine blood
exams with machine learning: A feasibility study. J Med Syst 2020 Jul 01;44(8):135 [FREE Full text] [doi:
10.1007/s10916-020-01597-4] [Medline: 32607737]

10. Liang W, Yao J, Chen A, Lv Q, Zanin M, Liu J, et al. Early triage of critically ill COVID-19 patients using deep learning.
Nat Commun 2020 Jul 15;11(1):3543 [FREE Full text] [doi: 10.1038/s41467-020-17280-8] [Medline: 32669540]

11. Izquierdo JL, Ancochea J, Savana COVID-19 Research Group, Soriano JB. Clinical characteristics and prognostic factors
for intensive care unit admission of patients with COVID-19: Retrospective study using machine learning and natural
language processing. J Med Internet Res 2020 Oct 28;22(10):e21801 [FREE Full text] [doi: 10.2196/21801] [Medline:
33090964]

12. An C, Lim H, Kim D, Chang JH, Choi YJ, Kim SW. Machine learning prediction for mortality of patients diagnosed with
COVID-19: A nationwide Korean cohort study. Sci Rep 2020 Oct 30;10(1):18716 [FREE Full text] [doi:
10.1038/s41598-020-75767-2] [Medline: 33127965]

13. Li Y, Horowitz MA, Liu J, Chew A, Lan H, Liu Q, et al. Individual-level fatality prediction of COVID-19 patients using
AI methods. Front Public Health 2020;8:587937 [FREE Full text] [doi: 10.3389/fpubh.2020.587937] [Medline: 33102426]

14. Vaid A, Somani S, Russak AJ, De Freitas JK, Chaudhry FF, Paranjpe I, et al. Machine learning to predict mortality and
critical events in a cohort of patients with COVID-19 in New York City: Model development and validation. J Med Internet
Res 2020 Nov 06;22(11):e24018 [FREE Full text] [doi: 10.2196/24018] [Medline: 33027032]

15. Yan L, Zhang H, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An interpretable mortality prediction model for COVID-19
patients. Nat Mach Intell 2020 May 14;2(5):283-288. [doi: 10.1038/s42256-020-0180-7]

16. Shang W, Dong J, Ren Y, Tian M, Li W, Hu J, et al. The value of clinical parameters in predicting the severity of COVID-19.
J Med Virol 2020 Oct;92(10):2188-2192 [FREE Full text] [doi: 10.1002/jmv.26031] [Medline: 32436996]

17. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in
Wuhan. J Allergy Clin Immunol 2020 Jul;146(1):110-118 [FREE Full text] [doi: 10.1016/j.jaci.2020.04.006] [Medline:
32294485]

18. Zhang J, Wang X, Jia X, Li J, Hu K, Chen G, et al. Risk factors for disease severity, unimprovement, and mortality in
COVID-19 patients in Wuhan, China. Clin Microbiol Infect 2020 Jun;26(6):767-772 [FREE Full text] [doi:
10.1016/j.cmi.2020.04.012] [Medline: 32304745]

19. Freund Y, Schapire R. Game theory, on-line prediction and boosting. In: Proceedings of the 9th Annual Conference on
Computational Learning Theory.: Association for Computing Machinery; 1996 Presented at: 9th Annual Conference on
Computational Learning Theory; June 28-July 1, 1996; Desenzano del Garda, Italy p. 325-332. [doi: 10.1145/238061.238163]

J Med Internet Res 2021 | vol. 23 | iss. 4 | e27060 | p. 13https://www.jmir.org/2021/4/e27060
(page number not for citation purposes)

Chung et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v23i4e27060_app1.docx&filename=4c79c9efde3871a2bd57941709579692.docx
https://jmir.org/api/download?alt_name=jmir_v23i4e27060_app1.docx&filename=4c79c9efde3871a2bd57941709579692.docx
https://doi.org/10.15585/mmwr.mm6949e2
http://dx.doi.org/10.15585/mmwr.mm6949e2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33301434&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0236621
http://dx.doi.org/10.1371/journal.pone.0236621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32722697&dopt=Abstract
https://aapm.onlinelibrary.wiley.com/doi/epdf/10.1002/mp.14609
http://dx.doi.org/10.1002/mp.14609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33225476&dopt=Abstract
https://www.jmir.org/2020/6/e19569/
http://dx.doi.org/10.2196/19569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32568730&dopt=Abstract
http://europepmc.org/abstract/MED/32742893
http://dx.doi.org/10.1109/access.2020.3003810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32742893&dopt=Abstract
http://europepmc.org/abstract/MED/32588200
http://dx.doi.org/10.1007/s13246-020-00888-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32588200&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1877-0509(20)32162-1
http://dx.doi.org/10.1016/j.procs.2020.09.258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33042308&dopt=Abstract
https://doi.org/10.3389/fcell.2020.00683
https://doi.org/10.3389/fcell.2020.00683
http://dx.doi.org/10.3389/fcell.2020.00683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32850809&dopt=Abstract
http://europepmc.org/abstract/MED/32607737
http://dx.doi.org/10.1007/s10916-020-01597-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32607737&dopt=Abstract
https://doi.org/10.1038/s41467-020-17280-8
http://dx.doi.org/10.1038/s41467-020-17280-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32669540&dopt=Abstract
https://www.jmir.org/2020/10/e21801/
http://dx.doi.org/10.2196/21801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33090964&dopt=Abstract
https://doi.org/10.1038/s41598-020-75767-2
http://dx.doi.org/10.1038/s41598-020-75767-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33127965&dopt=Abstract
https://doi.org/10.3389/fpubh.2020.587937
http://dx.doi.org/10.3389/fpubh.2020.587937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33102426&dopt=Abstract
https://www.jmir.org/2020/11/e24018/
http://dx.doi.org/10.2196/24018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33027032&dopt=Abstract
http://dx.doi.org/10.1038/s42256-020-0180-7
http://europepmc.org/abstract/MED/32436996
http://dx.doi.org/10.1002/jmv.26031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32436996&dopt=Abstract
http://europepmc.org/abstract/MED/32294485
http://dx.doi.org/10.1016/j.jaci.2020.04.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32294485&dopt=Abstract
http://europepmc.org/abstract/MED/32304745
http://dx.doi.org/10.1016/j.cmi.2020.04.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32304745&dopt=Abstract
http://dx.doi.org/10.1145/238061.238163
http://www.w3.org/Style/XSL
http://www.renderx.com/


20. Rätsch G, Onoda T, Müller KR. Soft margins for AdaBoost. Mach Learn 2001;42:287-320. [doi: 10.1023/A:1007618119488]
21. Breiman L. Random forests. Mach Learn 2001;45:5-32. [doi: 10.1023/A:1010933404324]
22. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining.: Association for Computing Machinery; 2016 Presented at: 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; August 13-17, 2016; San Francisco,
CA p. 785-794. [doi: 10.1145/2939672.2939785]

23. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic minority over-sampling technique. J Artif Intell
Res 2002 Jun 01;16:321-357. [doi: 10.1613/jair.953]

24. Cox DR. The regression analysis of binary sequences. J R Stat Soc Series B Stat Methodol 2018 Dec 05;20(2):215-232.
[doi: 10.1111/j.2517-6161.1958.tb00292.x]

25. Kamiński B, Jakubczyk M, Szufel P. A framework for sensitivity analysis of decision trees. Cent Eur J Oper Res
2018;26(1):135-159 [FREE Full text] [doi: 10.1007/s10100-017-0479-6] [Medline: 29375266]

26. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995 Sep;20(3):273-297. [doi: 10.1007/bf00994018]
27. Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot 2013;7:21. [doi: 10.3389/fnbot.2013.00021]

[Medline: 24409142]
28. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: A highly efficient gradient boosting decision tree.

In: Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS). 2017 Presented at: 31st
Annual Conference on Neural Information Processing Systems (NIPS); December 4-9, 2017; Long Beach, CA p. 3146-3154
URL: https://papers.nips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

29. Epidemiology Working Group for NCIP Epidemic Response‚ Chinese Center for Disease Control and Prevention. The
epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China [Article in Chinese].
Zhonghua Liu Xing Bing Xue Za Zhi 2020 Feb 10;41(2):145-151. [doi: 10.3760/cma.j.issn.0254-6450.2020.02.003]
[Medline: 32064853]

30. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019
novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020 Feb 15;395(10223):507-513 [FREE Full
text] [doi: 10.1016/S0140-6736(20)30211-7] [Medline: 32007143]

31. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in
Wuhan, China. Lancet 2020 Feb 15;395(10223):497-506 [FREE Full text] [doi: 10.1016/S0140-6736(20)30183-5] [Medline:
31986264]

32. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak
in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020
Apr 07;323(13):1239-1242. [doi: 10.1001/jama.2020.2648] [Medline: 32091533]

33. Shahriarirad R, Khodamoradi Z, Erfani A, Hosseinpour H, Ranjbar K, Emami Y, et al. Epidemiological and clinical features
of 2019 novel coronavirus diseases (COVID-19) in the South of Iran. BMC Infect Dis 2020 Jun 18;20(1):427 [FREE Full
text] [doi: 10.1186/s12879-020-05128-x] [Medline: 32552751]

34. KOVIDnet. URL: http://kcovidnet.site/ [accessed 2021-04-02]

Abbreviations
AI: artificial intelligence
AUC: area under curve
DNN: deep neural network
FC: fully connected
KDCA: Korea Disease Control and Prevention Agency
NRF: National Research Foundation of Korea
PCA: principal component analysis
XGBoost: eXtreme Gradient Boosting

Edited by R Kukafka; submitted 09.01.21; peer-reviewed by R Jaimies, C Jeong, J Lee, D Cha; comments to author 31.01.21; revised
version received 18.02.21; accepted 24.03.21; published 19.04.21

Please cite as:
Chung H, Ko H, Kang WS, Kim KW, Lee H, Park C, Song HO, Choi TY, Seo JH, Lee J
Prediction and Feature Importance Analysis for Severity of COVID-19 in South Korea Using Artificial Intelligence: Model Development
and Validation
J Med Internet Res 2021;23(4):e27060
URL: https://www.jmir.org/2021/4/e27060
doi: 10.2196/27060
PMID: 33764883

J Med Internet Res 2021 | vol. 23 | iss. 4 | e27060 | p. 14https://www.jmir.org/2021/4/e27060
(page number not for citation purposes)

Chung et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1023/A:1007618119488
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1111/j.2517-6161.1958.tb00292.x
http://europepmc.org/abstract/MED/29375266
http://dx.doi.org/10.1007/s10100-017-0479-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29375266&dopt=Abstract
http://dx.doi.org/10.1007/bf00994018
http://dx.doi.org/10.3389/fnbot.2013.00021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24409142&dopt=Abstract
https://papers.nips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
http://dx.doi.org/10.3760/cma.j.issn.0254-6450.2020.02.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32064853&dopt=Abstract
http://europepmc.org/abstract/MED/32007143
http://europepmc.org/abstract/MED/32007143
http://dx.doi.org/10.1016/S0140-6736(20)30211-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32007143&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(20)30183-5
http://dx.doi.org/10.1016/S0140-6736(20)30183-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31986264&dopt=Abstract
http://dx.doi.org/10.1001/jama.2020.2648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32091533&dopt=Abstract
https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-05128-x
https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-05128-x
http://dx.doi.org/10.1186/s12879-020-05128-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32552751&dopt=Abstract
http://kcovidnet.site/
https://www.jmir.org/2021/4/e27060
http://dx.doi.org/10.2196/27060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33764883&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Heewon Chung, Hoon Ko, Wu Seong Kang, Kyung Won Kim, Hooseok Lee, Chul Park, Hyun-Ok Song, Tae-Young Choi,
Jae Ho Seo, Jinseok Lee. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 19.04.2021.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic
information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be
included.

J Med Internet Res 2021 | vol. 23 | iss. 4 | e27060 | p. 15https://www.jmir.org/2021/4/e27060
(page number not for citation purposes)

Chung et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

