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Abstract

Background: National governments worldwide have implemented nonpharmaceutical interventions to control the COVID-19
pandemic and mitigate its effects.

Objective: The aim of this study was to investigate the prediction of future daily national confirmed COVID-19 infection
growth—the percentage change in total cumulative cases—across 14 days for 114 countries using nonpharmaceutical intervention
metrics and cultural dimension metrics, which are indicative of specific national sociocultural norms.

Methods: We combined the Oxford COVID-19 Government Response Tracker data set, Hofstede cultural dimensions, and
daily reported COVID-19 infection case numbers to train and evaluate five non–time series machine learning models in predicting
confirmed infection growth. We used three validation methods—in-distribution, out-of-distribution, and country-based
cross-validation—for the evaluation, each of which was applicable to a different use case of the models.

Results: Our results demonstrate high R2 values between the labels and predictions for the in-distribution method (0.959) and

moderate R2 values for the out-of-distribution and country-based cross-validation methods (0.513 and 0.574, respectively) using
random forest and adaptive boosting (AdaBoost) regression. Although these models may be used to predict confirmed infection
growth, the differing accuracies obtained from the three tasks suggest a strong influence of the use case.

Conclusions: This work provides new considerations in using machine learning techniques with nonpharmaceutical interventions
and cultural dimensions as metrics to predict the national growth of confirmed COVID-19 infections.

(J Med Internet Res 2021;23(4):e26628) doi: 10.2196/26628
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Introduction

Background
In response to the COVID-19 pandemic, national governments
have implemented nonpharmaceutical interventions (NPIs) to
control and reduce the spread in their respective countries [1-5].
Indeed, early reports suggested the potential effectiveness of
the implementation of NPIs to reduce the transmission of
COVID-19 [2,4-8] and other infectious diseases [9-11]. Many
epidemiological models that forecast future infection numbers
have therefore suggested the role of NPIs in reducing infection
rates [2,4,7,12], which can aid the implementation of national
strategies and policy decision-making. Recent research
incorporates publicly available data with machine learning for
use cases such as reported infection case number forecasting
[13-16]. Although these studies have used various features, such
as existing infection statistics [13], weather [14], media and
internet activity [15], and lockdown type [16], to predict
infection case numbers, no study has yet examined the
combination of NPIs and cultural dimensions in predicting
infection growth. In this paper, we include the implementation
of NPIs at the national level as features (ie, independent
variables) in predicting the national growth of the number of
confirmed infection cases. Based on recent studies that identify
cultural dimensions as having influence in the effectiveness of
NPIs [17-19], we also incorporate cultural dimensions as
features. Prior work has focused on NPI variations in different
regions of specific countries [2,5,6,20,21]. In contrast, our study
involves 114 countries.

Various metrics may provide different perspectives and insights
on the pandemic. In this study, we focus on one: confirmed
infection growth (CIG), which we define as the 14-day growth
in the cumulative number of reported infection cases. Other
common metrics to measure the transmission rates of an
infectious disease are the basic reproduction number, R0, which
measures the expected number of direct secondary infections
generated by a single primary infection when the entire
population is susceptible [3,22] and the effective reproduction
number, Rt [2], which accounts for immunity within a specified
population. Although such metrics are typically used by
epidemiologists as measures of the transmission of an infectious
disease, these metrics are dependent on estimation model
structures and assumptions; therefore, they are
application-specific and can potentially be misapplied [22].
Furthermore, the public may be less familiar with such metrics
as opposed to more practical and observable metrics, such as
the absolute or relative change in cumulative reported cases.

Related Work
Mathematical modelling of the transmission of infectious disease
is a common method to simulate infection trajectories. A
common technique for epidemics is the
susceptible-infected-recovered (SIR) model, which separates
the population into three subpopulations (susceptible, infected,
and recovered) and iteratively models the interaction and shift
between these subpopulations, which change throughout the
epidemic [23,24]. Variations of this model have since been
introduced to reflect other dynamics expected of the spread of

infectious diseases [25-27]. These variations of the SIR model
have also been applied to the ongoing COVID-19 pandemic
[28-31].

The recent increase in data availability through advances in the
internet and other data sources has enabled the inclusion of other
factors in epidemiology modelling [32,33]. Since the early
months of the COVID-19 pandemic, Johns Hopkins University
has managed the COVID-19 Data Repository by the Center for
Systems Science and Engineering (CSSE), which aggregates
daily statistics of reported infection and mortality numbers
across multiple countries [34]. Data sets related to governmental
policies and NPIs have also been released publicly on the web.
Notable COVID-19–related data sets include the Oxford
COVID-19 Government Response Tracker (OxCGRT) [1],
Complexity Science Hub COVID-19 Control Strategies List
[35], CoronaNet [36], county-level socioeconomic data for
predictive modeling of epidemiological effects (US-specific)
[37], and CAN-NPI (Canada-specific) [20]. Additional
COVID-19 data sets relate to social media activity [38-41],
scientific publications [42-44], population mobility [45-48],
and medical images [49-52]. In this work, we focus on the use
of NPIs in the forecast of COVID-19 infection growth.
Specifically, we selected the CSSE data set for infection
statistics and the OxCGRT for NPI features due to their global
comprehensiveness. Although features can be extracted from
additional COVID-19 data sets in our models, we limited the
scope of this study to COVID-19 NPI features.

Recent research has also linked the effect of cultural dimensions
in responses to the COVID-19 pandemic. Studies suggest that
cultural dimensions may affect individual and collective
behavior [53-57] and the effectiveness of NPIs [17-19], and that
cultural dimensions should be considered when implementing
NPIs [17]. Although these studies identify the importance of
cultural dimensions in controlling the COVID-19 pandemic, to
our knowledge, this work is the first to complement cultural
dimensions with NPIs to forecast future COVID-19 infection
growth. We recognize that various cultural dimension models
exist, such as the six Hofstede cultural dimensions [58], Global
Leadership and Organizational Effectiveness (GLOBE) [59],
and the Cultural Value Scale (CVSCALE) [60], and that each
model has their advocates and criticisms [61]. In this work, we
selected the 2015 edition of the Hofstede model [62] due to the
relevance of its cultural dimensions in the mentioned studies
[17-19,55-57].

Machine learning has been used in applications to combat the
COVID-19 pandemic, such as in patient monitoring and genome
sequencing [63-66]. Recent studies have also used various
statistical and machine learning techniques for short-term
forecasting of infection rates for the COVID-19 pandemic
[13,15,16,30,33] using reported transmission and mortality
statistics, population geographical movement data, and media
activity. Pinter et al [13] combined multilayer perceptron with
fuzzy inference to predict reported infection and mortality
numbers in Hungary with only case number features from May
to August 2020. Although reported infection and mortality case
numbers aligned with their predictions for May 2020,
comparison of the predictions with actual reported numbers
from June to August 2020 suggest inaccuracies. Liu et al [15]

J Med Internet Res 2021 | vol. 23 | iss. 4 | e26628 | p. 2https://www.jmir.org/2021/4/e26628
(page number not for citation purposes)

Yeung et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


used internet and news activity predictors within a clustering
machine learning model for reported COVID-19 case numbers
within Chinese provinces. However, the predictors used within
this work are heavily limited to Chinese populations (eg, Baidu
search and mobility data, Chinese media sources), and they only
predicted cases 2 days ahead. Malki et al [14] used weather,
temperature, and humidity features as predictors for COVID-19
mortality rates in regressor machine learning models. Their
results suggest that these predictors are relevant for COVID-19
mortality rate modelling. Similar to our work, Saba et al [16]
implemented multiple machine learning models to forecast
COVID-19 cases based on NPI implementation. However, their
work differs in that it only includes lockdown type as an NPI
feature (and does not consider cultural dimensions), the study
is limited to 9 countries, and the reported case numbers are
predicted instead of the change in case numbers. To our
knowledge, no other studies have combined NPI and cultural
dimension features to predict the growth of reported COVID-19
cases using machine learning. Furthermore, only this work
forecasts COVID-19 growth as a measure of CIG (ie, 14-day
growth in the cumulative number of reported cases at a national
level) across 114 countries via three validation methods, each
of which is applicable to a different use case of the model.

Description of the Study
Due to its direct inference from the number of reported cases,
the CIG is a verifiable metric, and it may have a greater impact
on the public perception of the magnitude of the COVID-19
pandemic than the actual transmission rate. In this work, CIG
reflects the growth in the total number of reported cases within
a country in 14 days relative to the total number of previously
reported infections, including recoveries and mortalities. We
selected 14 days as a suitable period for measuring the change
in reported cases because of the expected incubation period of
COVID-19. Researchers have found that 97.5% of reported
patients with identifiable symptoms developed symptoms within
11.5 days, and 99% developed symptoms within 14 days [67].
We therefore propose the use of 14 days, or 2 weeks, as a
suitable period to observe changes in reported case numbers
occurring after the implementation of NPIs. A shorter period
may lead to the misleading inclusion of reported infections that
occurred prior to the implementation of an NPI. Results for a
longer period may be misleading as well, given the higher
likelihood of change in NPIs within this period that will not be
accounted for during prediction. We propose that the CIG over
14 days is a suitable metric that enables inference of the effect
of NPIs while being within a relevant period for short-term
epidemiology forecasting. We emphasize that the reported
number of infections may not necessarily be correlated with the
actual transmission rate due to factors such as different testing
criteria and varying accessibility in testing over time.

We deployed five machine learning models to predict the CIG
for individual countries across 14 days. Explicitly, this value
was the label (ie, dependent variable) we sought to predict. We
used features (ie, independent variables) representing the
implementation levels of NPIs and the cultural dimensions of
each country. We obtained daily metrics for the implementation
of NPIs at the national level from the OxCGRT data set [1].
Although different countries may implement similar NPIs,

researchers have suggested that cross-cultural variations across
populations lead to different perceptions and responses toward
these NPIs [53,54,68]. We intended to capture any effects due
to national cross-cultural differences by complementing the
OxCGRT data set with national cultural norm values from the
Hofstede cultural dimensions [58]. Our non–time series deep
learning models predicted the expected future national CIG
using both NPI implementation and cultural norm features.
Although time series deep learning models (eg, recurrent neural
networks or transformers) may also provide CIG predictions,
these models generally require greater amounts of accurately
labeled trajectory data and assume that past trajectory trends
are readily available representatives of future trajectories.
Instead, our non–time series models were trained on more
granular data that did not necessarily need to be temporally
concatenated into a trajectory. We also opted for less complex
non–time series models due to indeterminacies in acquiring and
verifying sufficient trajectory data, especially due to the lack
of reliable data at the onset of the COVID-19 outbreak.

Our results suggest that non–time series machine learning
models can predict future CIG according to multiple validation
methods, depending on the user's application. Although we do
not necessarily claim state-of-the-art performance for infection
rate prediction given the rapidly growing amount of parallel
work in this area, to the best of our knowledge, our work is the
first to use machine learning techniques to predict the change
in national cumulative numbers of reported COVID-19
infections by combining NPI implementation features with
national cultural features.

Our implementation uses publicly available data retrieved from
the internet and relies on the open-sourced Python libraries
Pandas [69] and Scikit-Learn [70].

Methods

Data and Preprocessing
Candidate features at the national level were extracted from
three data sets for input into our machine learning models: NPIs,
cultural dimensions, and current confirmed COVID-19 case
numbers.

OxCGRT provides daily level metrics of the NPIs implemented
by countries [1]. This data set sorts NPIs into 17 categories,
each with either an ordinal policy level metric ranging from 0
(not implemented) to 2, 3, or 4 (strictly enforced) or a continuous
metric representing a monetary amount (eg, research funding).
The value of each national NPI metric is assigned daily from
data in publicly available sources by a team of Oxford
University staff and students using the systematic format
described in [1]. We limited our candidate features to the 13
ordinal policy categories and 4 computed indices, which
represent the implementation of different policy types taken by
governments, based on the implemented NPIs. This data set
contains data starting from January 1, 2020.

To represent cultural differences across populations of different
countries, the 2015 edition of the Hofstede cultural dimensions
[62,71] was tagged to each country. Although these dimensions
are rarely used in epidemiology studies, they have been used
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frequently in international marketing studies and cross-cultural
research as indicators of the cultural values of national
populations [61,72]. Multiple studies have also linked cultural
dimensions to health care–related behavior, such as antibiotic
usage and body mass index [73-76]. Because the 2015 edition
of this data set groups certain geographically neighboring
countries together (eg, Ivory Coast, Burkina Faso, Ghana, etc,
into Africa West), we tagged all subgroup countries with the
dimension values of their group. Although we recognize that
this approach is far from ideal and will likely lead to some
degree of inaccurate approximation in these subgroup countries,
we performed this preprocessing step to include those countries
in our study. The dimension values for each country were
constant across all samples. Six cultural dimensions were
presented for each country or region [71]:

• Power distance index: the establishment of hierarchies in
society and organizations and the extent to which lower
hierarchical members accept inequality in power

• Individualism versus collectivism: the degree to which
individuals are not integrated into societal groups, such as
individual or immediate family (individualistic) versus
extended families (collectivistic)

• Uncertainty avoidance: a society's tendency to avoid
uncertainty and ambiguity through use of societal
disapproval, behavioral rules, laws, etc

• Masculinity versus femininity: Societal preference toward
assertiveness, competitiveness, and division in gender roles
(masculinity) compared to caring, sympathy, and similarity
in gender roles (femininity)

• Long-term versus short-term orientation: Societal values
toward tradition, stability, and steadfastness (short-term)
versus adaptability, perseverance, and pragmatism
(long-term)

• Indulgence versus restraint: The degree of freedom available
to individuals for fulfilling personal desires by social norms,
such as free gratification (indulgence) versus controlled
gratification (restraint)

We extracted the daily number of confirmed cases, nt, for each
country from the COVID-19 Data Repository by the CSSE at
Johns Hopkins University [34]. We used a rolling average of
the previous 5-day window to smooth fluctuations in nt, which
may be caused by various factors, such as inaccurate case
reporting, no release of confirmed case numbers (eg, on
weekends and holidays), and sudden infection outbreaks. We
refer to the smoothed daily number of confirmed cases for date

t as .

We computed the CIG for a specified date, τ, as:

The CIG represents the expected number of new confirmed
cases from date τ – 13 to date τ as a percentage of the total
number of confirmed infection cases up to date τ – 14.

Our goal was to predict the CIG 14 days in advance (ie, CIGτ+14)
given information from the current date τ for each country.
Available candidate features included all ordinal policy metrics
and the four computed indices from OxCGRT, the six cultural
dimension values from the Hofstede model, the CIG of the
current date CIGτ, and the smoothed cumulative number of

confirmed cases , for a total of 25 candidate features.
Neither the date nor any other temporal features were included.

We trimmed samples with fewer than 10 cumulative confirmed
infection cases and with the highest 2.5% and the lowest 2.5%
of CIGτ+14 to remove outliers in the data. Because the lowest
2.5% of CIGτ+14 were all 0.0%, we removed the samples with
CIGτ+14=0.0% by ascending date.

Our data range from April 1 to September 30, 2020, inclusively.
We excluded all countries from our combined data set that had
missing feature values. In total, our combined data set and our
experiments applied to 114 countries: Algeria, Angola,
Argentina, Australia, Austria, Bahrain, Bangladesh, Belgium,
Benin, Botswana, Brazil, Bulgaria, Burkina Faso, Burundi,
Cameroon, Canada, Central African Republic, Chad, Chile,
China, Colombia, Comoros, Croatia, Czech Republic, Denmark,
Djibouti, Egypt, El Salvador, Eritrea, Estonia, Ethiopia, Finland,
France, Gabon, Gambia, Germany, Ghana, Greece, Guinea,
Hong Kong, Hungary, India, Indonesia, Iran, Iraq, Ireland, Italy,
Japan, Jordan, Kenya, Kuwait, Latvia, Lebanon, Lesotho,
Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi,
Malaysia, Mali, Mauritania, Mauritius, Mexico, Morocco,
Mozambique, Namibia, Netherlands, New Zealand, Niger,
Nigeria, Norway, Oman, Pakistan, Palestine, Peru, Philippines,
Poland, Portugal, Qatar, Romania, Russia, Rwanda, Saudi
Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore,
Slovenia, Somalia, South Sudan, Spain, Sudan, Sweden,
Switzerland, Syria, Taiwan, Tanzania, Thailand, Togo, Trinidad
and Tobago, Tunisia, Turkey, Uganda, United Arab Emirates,
United States, Uruguay, Venezuela, Vietnam, Yemen, Zambia,
and Zimbabwe.

The mean, standard deviation, and range of each candidate
feature value for the above countries are shown in Table 1.

The data preprocessing procedure is shown in Figure 1.
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Table 1. Statistical measurements of candidate feature values.

RangeMean (SD)Candidate features

Nonpharmaceutical interventions

0.00 to 3.002.23 (1.01)School closure

0.00 to 3.001.67 (0.92)Workplace closure

0.00 to 2.001.64 (0.65Cancellation of public events

0.00 to 4.002.89 (1.27)Restrictions on gatherings

0.00 to 2.000.71 (0.77)Closure of public transport

0.00 to 2.001.17 (0.90)Stay-at-home requirements

0.00 to 2.001.15 (0.88)Restrictions on internal movement

0.00 to 4.003.13 (1.00)International travel controls

0.00 to 2.001.04 (0.79)Income support

0.00 to 2.001.23 (0.76)Debt/contract relief

0.00 to 2.001.97 (0.23)Public information campaigns

0.00 to 2.001.84 (0.82)Testing policy

0.00 to 2.001.50 (0.64)Contact tracing

0.00 to 100.0063.02 (20.57)Stringency Index

0.00 to 95.5461.43 (15.03)Government Response Index

0.00 to 98.9662.91 (16.50)Containment Health Index

0.00 to 100.0052.53 (28.93)Economic Support Index

Current infection numbers

4.00 to 7,155,220.00113,302.24 (505,170.50)
Current cumulative number of confirmed cases: 

–0.423 to 228.000.85 (3.83)CIG τ
a

Hofstede cultural dimensions

11.00 to 104.0066.74 (17.34)Power distance

12.00 to 91.0038.52 (18.71)Individualism

5.00 to 95.0048.32 (14.06)Masculinity

8.00 to 112.0064.17 (17.42)Uncertainty avoidance

3.52 to 92.9535.36 (21.52)Long-term orientation

0.00 to 100.0046.88 (20.47)Indulgence

aCIGτ: confirmed infection growth on the current day.
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Figure 1. Data preprocessing pipeline from the OxCGRT data set, Johns Hopkins COVID-19 Data Repository, and six Hofstede cultural dimensions
to the training, validation, and test data sets for each validation method. OxCGRT: Oxford COVID-19 Government Response Tracker.

Feature Selection and Processing
We selected features to input into our machine learning models
from our candidate feature pool using mutual information [77].
Mutual information is a measure of the dependency between
an individual feature (ie, the independent variable) and the label
(ie, the dependent variable), and it captures both linear and
nonlinear dependencies. However, mutual information does not
capture multivariate dependencies or indicate collinearity
between features. To include both linear and nonlinear
dependencies, features are selected if they achieve substantially

nonzero mutual information (ie, greater than 0.10). Feature
selection was conducted prior to training with the training set
in all validation methods. Similar feature filtering and selection
techniques have been used in other machine learning
applications [70,78]. The candidate features considered for input
and their respective mutual information are listed in Table 2 for
the in-distribution and out-of-distribution validation methods.
Mutual information was also computed for each of the ten folds
of the cross-validation method.

All selected features were then normalized to the range [0,1]
using standard min-max normalization.
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Table 2. Mutual information of candidate features for the in-distribution and out-of-distribution validation methods. In the cross-validation method,
the 10 folds have varying mutual information.

Mutual informationCandidate feature

Out-of-distributionIn-distribution

Nonpharmaceutical interventions

0.2050.184School closurea,b

0.1270.098Workplace closureb

0.1270.089Cancellation of public eventsb

0.1120.107Restrictions on gatheringsa,b

0.1240.094Closure of public transportb

0.1630.139Stay-at-home requirementsa,n

0.1460.126Restrictions on internal movementa,b

0.0990.099International travel controls

0.1100.095Income supportb

0.0530.043Debt/contract relief

0.0230.020Public information campaigns

0.0640.056Testing policy

0.0380.030Contact tracing

0.6680.638Stringency Indexa,b

0.6410.634Government Response Indexa,b

0.6550.621Containment Health Indexa,b

0.1240.119Economic Support Indexa,b

Current infection numbers

0.5570.517
Current cumulative number of confirmed cases: a,b

0.7980.866CIG τ
a,b,c

Hofstede cultural dimensions

0.3420.288Power distancea,b

0.3550.309Individualisma,b

0.3720.310Masculinitya,b

0.3700.314Uncertainty avoidancea,b

0.5350.461Long-term orientationa,b

0.5290.456Indulgencea,b

aSelected feature for the in-distribution method.
bSelected feature for the out-of-distribution method.
cCIGτ: confirmed infection growth on the current day.

Model Training and Validation
We trained the machine learning models by performing a grid
search over the combinations of hyperparameters listed in Table
3 [70,79-82]. We optimized the models using the mean squared
error (MSE) criterion and selected the model hyperparameters
with the lowest mean absolute error (MAE) as the optimal

configuration of the model. The MSE heavily penalizes large
residual errors disproportionately, while the MAE provides an
absolute mean of all residual errors [83]. The MAE of the
training data acts as a measure of the goodness-of-fit of the
model, while the MAE of the validation and testing data acts
as a measure of the predictive performance [84].
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Table 3. Machine learning models and hyperparameter combinations used in the grid search.

HyperparametersModel

Ridge regression

0.00, 0.25, 0.50, 0.75, 1.00, 1.25α

Decision tree regression

5, 10, 15, 20, 25, 30Depth

2, 5, 10Minimum sample split

1, 2, 4, 8, 10Minimum sample leaves

Random forest regression

5, 10, 20, 25, 30Depth

3, 5, 10, 15, 20, 30, 50, 75, 100, 125, 150Estimators

2, 5, 10Minimum sample split

1, 2, 4, 8, 10Minimum sample leaves

AdaBoosta regression

Decision tree (maximum depth: 2)Weak learner

3, 5, 10, 15, 20, 30, 50, 75, 100, 125, 150Estimators

LinearLoss function

0.1, 0.5, 1.0Learning rate

Support vector regression

0.00, 0.10, 0.20, 0.50ε

Linear, radial, sigmoidKernel

aAdaBoost: adaptive boosting.

To validate in-distribution and out-of-distribution, we split our
samples into 70-15-15 training-validation-test sets. For
cross-validation [85,86], we split our samples into 10 folds (ie,
90-10). These three methods of validation each represent a
different definition of performance for the machine learning
models.

In-Distribution Validation
We randomly split the samples into training, validation, and
test sets. Consequently, the models were trained from samples
distributed across the entire date range available in our data.
This is critical, as it is generally expected that model
performance is best when training and test data are drawn from
the same distribution. Because the COVID-19 infection numbers
naturally constitute a time series, this method ensures that
validation and test samples are indeed from the same distribution
as the training samples. Because the samples are disassociated
from their dates and all other known temporal features, the
prediction of the validation and test samples using the training
samples is unordered. This method may be applicable to use
cases in which the date-to-predict is expected to be in a similar
distribution as the training samples, such as predicting CIGτ+14

when data up to the current date τ are available.

Out-of-Distribution Validation
Although the in-distribution method can ensure that the training,
validation, and test data are all sampled from the same
distribution, it may not necessarily be the most practical method.
Generally, the goal of long-term infection rate forecasting is to

anticipate future infection rates, and it should not be represented
as an in-distribution task, where we trained it with data from
near or later than the date-to-predict. Therefore, we also
validated the performance of our models by training on the
earliest 70% of the samples. The validation and test sets were
then randomly split between the remaining 30% of the samples.
This setup ensures that all training samples occurred earlier than
the validation and testing samples and that no temporal features
(known or hidden) were leaked. However, due to the changing
environment related to COVID-19 infections (eg, the
introduction of new NPIs, seasonal changes, new research), the
validation and testing distributions are likely different from that
of the training set. This method may be applicable for use cases
in which the date-to-predict is in the far future and not all data
up to 14 days prior to the date-to-predict are available.

Country-Based Cross-Validation
As a compromise between the above two methods, we also used
a cross-validation method in which we split the available
countries into 10 folds. The aim was to evaluate validation
samples from the same date range as the training samples, but
not the same country trajectory. That is, only data from countries
not in the validation set are included in the training set. Although
the samples from the training and validation sets are therefore
sampled from different distributions (ie, different countries),
we anticipate that features from the Hofstede cultural dimensions
[58] may assist in identifying similar characteristics between
countries, thus reducing the disparity between the training and
validation distributions. This method may be applicable in
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predicting the CIG of countries for which previous associated
data is unavailable or unreliable.

Results

Feature Selection
For both the in-distribution and out-of-distribution training sets,
we observed that most candidate features met our requirement
of nonzero mutual information (≥0.10) (see Table 2).

In both training sets, the candidate features that did not meet
the requirements were international travel control (0.099, 0.099),
debt/contract relief (0.043, 0.053), public information campaigns
(0.020, 0.023), testing policy (0.056, 0.064), and contact tracing
(0.030, 0.038). Additional candidate features that did not meet
the requirements for the in-distribution training set were
workplace closure (0.098) and cancellation of public events
(0.089). Overall, the in-distribution and out-of-distribution data
sets contained 17 and 20 features, respectively.

CIGτ had the highest mutual information out of all features,
suggesting similarities between the feature CIGτ and the label
CIGτ+14. Further analysis showed a correlation of r=.309
between CIGτ and CIGτ+14. This may be due to similar trends
in the CIG when the implementation of NPIs is consistent within
a 14-day period. We also observed that all candidate features
for the six Hofstede cultural dimensions had higher mutual
information than all individual NPI candidate features, aside
from the aggregated indices. This finding suggests a high

statistical relationship between each cultural dimension feature
and the label we sought to predict. Although the cultural
dimension values may not fully represent the cultural differences
of each country (see Limitations), there is sufficient information
between each cultural dimension feature and the label for them
to be relevant predictors of the label.

Comparison of Machine Learning Models
Out of all the available configurations (ie, hyperparameter
combinations) of each model, we selected the model
configurations with the lowest validation errors and computed
the test errors. The parameters for these selected models are
listed in Table 4. The mean training, validation, and test errors
are included in Table 5, Table 6, and Table 7, respectively, for
the in-distribution, out-of-distribution, and cross-validation
methods. We also include the median percent error [87], which

is the percentage difference of the prediction f(x(i)) and the label

y(i) for each instance {x(i)
,y

(i)}, computed as:

We observed that random forest regression had the lowest mean
test error in the interpolation method (0.031) and adaptive
boosting (AdaBoost) regression had the lowest mean test errors
in the extrapolation and cross-validation methods (0.089 and
0.167, respectively) (see Table 5, Table 6, and Table 7). For all
models aside from ridge regression, the in-distribution method
had the lowest mean test errors and the lowest median percent
error.

Table 4. Hyperparameters of the optimal configuration (lowest validation mean absolute error) for each model for each validation method.

Validation methodModel

Cross-validationOut-of-distributionIn-distribution

Ridge regression

0.000.250.00α

Decision tree regression

51025Depth

252Minimum sample split

411Minimum sample leaves

Random forest regression

151530Depth

12510150Estimators

222Minimum sample split

10101Minimum sample leaves

AdaBoosta regression

355Estimators

0.11.00.1Learning rate

Support vector regression

0.000.000.00ε

LinearLinearRadialKernel

aAdaBoost: adaptive boosting.

J Med Internet Res 2021 | vol. 23 | iss. 4 | e26628 | p. 9https://www.jmir.org/2021/4/e26628
(page number not for citation purposes)

Yeung et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Optimal MAE and median percent error values for the in-distribution validation method.

Test percent errorValidation percent errorTest MAEValidation MAETrain MAEaModel

0.601.580.2590.2690.270Ridge regression

0.001.000.0390.0410.001Decision tree regression

1.011.010.0310.0330.012Random forest regressionb

1.241.310.1550.1660.162AdaBoostc regression

1.011.000.1650.1720.170Support vector regression

aMAE: mean absolute error.
bThe model with the lowest test MAE.
cAdaBoost: adaptive boosting.

Table 6. Optimal MAE and median percent error values for the out-of-distribution validation method.

Test percent errorValidation percent errorTest MAEValidation MAETrain MAEa

1.222.260.2470.2400.296Ridge regression

0.121.150.1140.1090.117Decision tree regression

0.441.450.1050.0980.098Random forest regression

0.391.400.0890.0810.207AdaBoostb regressionc

0.601.660.1760.1670.268Support vector regression

aMAE: mean absolute error.
bAdaBoost: adaptive boosting.
cThe model with the lowest test MAE.

Table 7. Optimal MAE and median percent error values for the cross-validation method. Validation error is equivalent to test error for cross-validation.

Validation percent errorValidation MAETrain MAEaModel

0.620.2750.262Ridge regression

0.280.2070.181Decision tree regression

0.400.1750.073Random forest regression

0.270.1670.164AdaBoostb regressionc

0.030.2400.230Support vector regression

aMAE: mean absolute error.
bAdaBoost: adaptive boosting.
cThe model with the lowest test MAE.

Analysis of Best-Performing Models
Intercepts near 0.0 and slopes near 1.0 are the linear calibration
measures that indicate a perfect calibration relationship between
the predictions and the labels [84]. For the optimal models in
all the validation methods, we observed slopes close to 1.0 and
intercepts close to 0.0 (see Table 8). Due to the large sample
sizes, statistical significance testing indicated that several slopes
and intercepts are significantly different from 1.0 and 0.0,
respectively. However, the small mean differences (standardized
to the standard deviation, ie, the z score) indicate that these
differences have no practical significance. High correlations (

r>0.70) and moderate-to-high R2 values (R2>.50) [88,89]
between the predictions and labels were observed in all three
validation methods (see Figure 2, Figure 3, and Figure 4).

To assess the fine-grained model performance, we discretized
both the true labels and model predictions into bins of size 0.5
for all three validation methods (see Figure 5, Figure 6, and
Figure 7). Comparing the resulting empirical distributions, it
can be seen that the resulting distributions are extremely similar
in both the in-distribution and out-of-distribution methods. In
the cross-validation method, the predictions skew slightly higher
than the labels in the 0.0-1.0 range, showing a general tendency
of the model to slightly overestimate the CIG within this range.

Further analysis shows that the performance of the models varies
with the values of the labels. In both the in-distribution and
cross-validation methods, the test MAE is lowest for samples
with labels of 0.0 (see Table 9 and Table 10), followed by the
label range of 0.0-0.5. In the out-of-distribution method, the
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test MAE is lowest for samples with labels from 0.0-0.5 (see
Table 11). For all validation methods, the mean MAE and

median percent errors also increase with label bins greater than
1.0, showing a decrease in accuracy for a larger CIG.

Table 8. Linear calibration measures of the models with the lowest test mean absolute error for each validation method.

Validation methodMeasure

Cross-validationOut-of-distributionIn-distribution

19,66928112847Test sample size, n

AdaBoostAdaBoostaRandom forestModel

0.7580.7160.979Correlation, r

0.968 (0.006)0.986 (0.018)1.037 (0.004)Slope (SE)

–0.039–0.0150.176Slope standardized mean difference (z score) from 1

<.001.43<.001Slope P value (mean of 1)

0.006 (0.003)–0.011 (0.004)–0.013 (0.002)Intercept (SE)

0.014–0.044–0.119Intercept standardized mean difference (z score) from 0

.06.02<.001Intercept P value (mean of 0)

0.5740.5130.959R2 value

aAdaBoost: adaptive boosting.

Figure 2. Calibration plot between the labels and predictions for the interpolation validation method, with the mean of each prediction bin of size 0.25.
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Figure 3. Calibration plot between the labels and predictions for the extrapolation validation method, with the mean of each prediction bin of size 0.25.

Figure 4. Calibration plot between the labels and predictions for the cross-validation method, with the mean of each prediction bin of size 0.25.
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Figure 5. Distributions of the test labels (ie, true confirmed infection growth) and model predictions (n=2847) for the in-distribution method.

Figure 6. Distributions of the test labels (ie, true confirmed infection growth) and model predictions (n=2811) for the out-of-distribution method.
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Figure 7. Distributions of the test labels (ie, true confirmed infection growth) and model predictions (n=19,669) for the cross-validation method.

Table 9. Test errors and median percent errors of label bins of size 0.5 for the in-distribution validation method.

Test percent errorTest mean absolute error (SD)Test mean nonabsolute error (SD)CountUpper threshold

N/Aa0.000 (0.000)0.000 (0.000)200.0

0.010.017 (0.050)0.011 (0.052)21830.5

0.000.047 (0.060)0.003 (0.076)4081.0

–0.020.094 (0.115)–0.052 (0.139)1401.5

–0.040.158 (0.167)–0.104 (0.205)682.0

–0.080.297 (0.294)–0.283 (0.309)262.5

–0.431.108 (0.470)–1.108 (0.470)23.0

aN/A: not applicable.

Table 10. Test errors and median percent errors of label bins of size 0.5 for the cross-validation method.

Test percent errorTest mean absolute error (SD)Test mean nonabsolute error (SD)CountUpper threshold

N/Aa0.059 (0.086)–0.059 (0.086)1140.0

0.4930.109 (0.153)–0.073 (0.174)15,0560.5

–0.0060.217 (0.181)–0.010 (0.282)28151.0

–0.2990.393 (0.265)0.333 (0.337)9601.5

–0.3910.719 (0.370)0.719 (0.370)4512.0

–0.4591.141 (0.321)1.141 (0.321)2462.5

–0.4861.225 (0.266)1.362 (0.266)273.0

aN/A: not applicable.
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Table 11. Test errors and median percent errors of label bins of size 0.5 for the out-of-distribution validation method.

Test percent errorTest mean absolute error (SD)Test mean nonabsolute error (SD)CountUpper threshold

N/Aa0.076 (0.000)0.076 (0.000)190.0

0.440.071 (0.074)0.034 (0.096)26070.5

–0.250.225 (0.164)–0.161 (0.228)1521.0

–0.520.648 (0.222)–0.648 (0.222)221.5

–0.601.044 (0.147)–1.044 (0.147)32.0

–0.671.464 (0.116)–1.464 (0.116)82.5

aN/A: not applicable.

Discussion

Principal Results
Our results suggest that traditional, non–time series machine
learning models can predict future CIG to an appreciable degree

of accuracy, as suggested by the moderate-to-high R2 values

(R2>0.50) and strong linear calibration relationships (r>0.70)
[88,89] between the labels and predictions in all the validation
methods.

A comparison of our results for all the validation methods
suggests differences in the predictive performance of the
machine learning models across the varying use cases. The

in-distribution method has the highest R2 value and the lowest
test mean error and median percent error; this is to be expected,
as the test samples were obtained from the same distribution as
the training samples. Intuitively, although the samples in the
in-distribution method are unordered (ie, no temporal features
are included), the availability of samples across the entire
temporal range in the training set enables the validation and test
samples to interpolate between these training samples.

The out-of-distribution method achieved a higher test mean

error and a lower R2 value than the in-distribution method. This
is expected, as the evolving COVID-19 infection trajectories
observed in most countries give distributions of training samples
from earlier dates that may differ greatly from those of
validation and test samples from later dates (ie, data shift), which
machine learning models are often ill-equipped to handle [90].

Conversely, although the cross-validation method contained
the training and validation sets within the same date range, the
cross-validation method also separated countries across these
sets (ie, the 10 folds) such that no country had samples in both
the training and validation sets. This difference led to higher
test mean errors and median percent errors than the other two

methods and a similar R2 value to that of the out-of-distribution
method, suggesting that including training samples from the
same country as the validation samples is more important than
ensuring temporal overlap. We speculate that this result occurs
because the unique cultural dimensions per country may
potentially act as categorical rather than continuous features for
each country. In such cases, the cultural dimensions observed
in the training set would be considered irrelevant to the cultural
dimensions within the validation set.

The performance also varied depending on the value of the label
(see Table 9, Table 10, and Table 11), which may be due to the
imbalanced frequency of the training samples. That is, the
rareness of samples with higher CIG compared to lower CIG
in the training set may be the cause of their comparatively poor
performance.

In Figure 3 and Figure 4, we also show constraints of the trained
AdaBoost regression models. The discretization of the prediction
values may be due to the low number of estimators used in the
lowest mean test error configuration, as shown in Table 4. The
low number of estimators in these configurations may also
restrict the predictions to a maximum of 1.5 selected to the
relatively low number of samples with labels greater than 1.5
(see Figure 6 and Figure 7). The label ranges with the most
samples are selected over underrepresented ranges as candidates
for prediction values in the discretized AdaBoost regression
models. Although additional estimators in the AdaBoost
regression models may result in less discrete prediction values,
they may also cause over-fitting by increasing the complexity
of the models.

Limitations
First, the scores in the OxCGRT and Hofstede cultural
dimensions data sets are imprecise. NPI enforcement levels and
definitions may vary even between countries with the same
scores, while countries sharing similar cultural dimension scores
may have unobserved differences in terms of cultural practices
due to low representation of their cultures with only six
dimensions. Although the Hofstede model is convenient for the
goal of our work, it does not identify intracountry cultural
differences. Furthermore, distinct countries may be grouped
within specific geographical regions (eg, Africa West). We also
acknowledge that there are trade-offs between different cultural
models and different definitions of culture [61]. We encourage
further exploration of appropriate cultural dimensions in addition
to the Hofstede model, such as GLOBE [59] and CVSCALE
[60]. Second, by predicting the CIG 14 days in advance of the
current date, the models do not account for information
regarding changes in NPIs between the current date and the
date-to-predict. Third, the CIG is a measure of the change in
the cumulative number of confirmed infections and may not
necessarily be correlated with the change in the daily number
of confirmed infections or the actual transmission rate of
COVID-19. For example, differences in testing and reporting
policies of different jurisdictions (eg, prioritizing high-risk
patients, performing more tests per capita, and obfuscating test
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results) may lead to a misleading representation of the infection
growth.

Conclusion
In this study, we trained five non–time series machine learning
models to predict the CIG 14 days into the future using NPI
features extracted from the OxCGRT data set [1] and cultural
norm features extracted from the Hofstede cultural dimensions
[58]. Together, these features enabled the prediction of
near-future CIG in multiple machine learning models.
Specifically, we observed that random forest regression and
AdaBoost regression resulted in the most accurate predictions
out of the five evaluated machine learning models.

We observed differences in the predictive performance of the
machine learning models across the three validation methods;
the highest accuracy was achieved with the in-distribution
method and the lowest with the cross-validation method. These
differences in performance suggest that the models have varying
levels of accuracy depending on the use case. Specifically,
predictions are expected to have higher accuracies when existing
data from the same country in nearby dates are available (ie,
in-distribution method). This enables applications such as
predicting the CIG over the upcoming 14 days from the current
date. The decrease in accuracy when data from nearby dates are

unavailable (ie, the out-of-distribution method) suggests weaker
performance in predicting the CIG over 14 days for relatively
distanced future dates. We observed the greatest decrease in
performance when data from the same country were unavailable
(ie, the cross-validation method). However, with all validation
methods, we observed appreciable calibration measures between
the predictions and labels of the test set.

This study adds to the rapidly growing body of work related to
predicting COVID-19 infection rates by introducing an approach
that incorporates routinely available data on NPIs and cultural
dimensions. Importantly, this study emphasizes the utility of
NPIs and cultural dimensions for predicting country-level
growth of confirmed infections of COVID-19, which to date
have been limited in existing forecasting models. Our findings
offer a new direction for the broader inclusion of these types of
measures, which are also relevant for other infectious diseases,
using non–time series machine learning models. Our
experiments also provide insight into validation methods for
different applications of the models. As the availability of this
data increases and the nature of the data continues to evolve,
we expect that models such as these will produce accurate and
generalizable results that can be used to guide pandemic
planning and other infectious disease control efforts.
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