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Abstract

Background: The COVID-19 pandemic is probably the greatest health catastrophe of the modern era. Spain’s health care system
has been exposed to uncontrollable numbers of patients over a short period, causing the system to collapse. Given that diagnosis
is not immediate, and there is no effective treatment for COVID-19, other tools have had to be developed to identify patients at
the risk of severe disease complications and thus optimize material and human resources in health care. There are no tools to
identify patients who have a worse prognosis than others.

Objective: This study aimed to process a sample of electronic health records of patients with COVID-19 in order to develop a
machine learning model to predict the severity of infection and mortality from among clinical laboratory parameters. Early patient
classification can help optimize material and human resources, and analysis of the most important features of the model could
provide more detailed insights into the disease.

Methods: After an initial performance evaluation based on a comparison with several other well-known methods, the extreme
gradient boosting algorithm was selected as the predictive method for this study. In addition, Shapley Additive Explanations was
used to analyze the importance of the features of the resulting model.

Results: After data preprocessing, 1823 confirmed patients with COVID-19 and 32 predictor features were selected. On bootstrap
validation, the extreme gradient boosting classifier yielded a value of 0.97 (95% CI 0.96-0.98) for the area under the receiver
operator characteristic curve, 0.86 (95% CI 0.80-0.91) for the area under the precision-recall curve, 0.94 (95% CI 0.92-0.95) for
accuracy, 0.77 (95% CI 0.72-0.83) for the F-score, 0.93 (95% CI 0.89-0.98) for sensitivity, and 0.91 (95% CI 0.86-0.96) for
specificity. The 4 most relevant features for model prediction were lactate dehydrogenase activity, C-reactive protein levels,
neutrophil counts, and urea levels.

Conclusions: Our predictive model yielded excellent results in the differentiating among patients who died of COVID-19,
primarily from among laboratory parameter values. Analysis of the resulting model identified a set of features with the most
significant impact on the prediction, thus relating them to a higher risk of mortality.

(J Med Internet Res 2021;23(4):e26211) doi: 10.2196/26211
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Introduction

The COVID-19 pandemic is one of the most prominent health
catastrophes of the modern era. This is not exclusive to the
health field, as the far-reaching economic and social
consequences of this crisis are still unquantifiable [1]. The
disease primarily affects the respiratory system, causing
respiratory failure, and in certain patients, results in severe
inflammatory syndrome. This is mediated by proinflammatory
cytokines and can lead to marked systemic complications, which
may be fatal in many cases [2].

The lack of knowledge of this virus led the World Health
Organization, together with the US Center for Disease Control
and Prevention, to define a profile of high-risk patients; this
included factors such as age over 65 years, living in nursing
homes, and having at least one of the following health problems:
chronic lung disease, severe heart disease, obesity, diabetes,
kidney failure, liver disease, or an immunocompromised status.
The result has been a highly uneven response to the pandemic,
both with respect to treatment and the diagnostic and prognostic
criteria for the disease [3].

The exponential increase in COVID-19 cases over a short
period, lack of experience and knowledge of the virus, and the
shortcomings in health resources and health care personnel
(many of whom were infected) have caused hospitals to become
saturated, especially intensive care units, which have received
a very high number of patients every day, many of whom
required long stays. Pressure on the health care system after the
first wave of the pandemic led to a search for different resources
in order to help understand and accurately predict how each
patient would react on interacting with the virus. The availability
of tools to enable us to classify at-risk patients is crucial because
microbiological diagnostics are slow, the PCR test takes more
than 4 hours, and emergency physicians do not usually receive
the results for up to 24 hours after collecting the sample.
Furthermore, the treatments are based on vital support that is
not always effective, and potentially gives rise to a large number
of adverse events; furthermore, drug availability is sometimes
limited. Developing tools that allow us to classify patients at
the risk of complications, such those with a prothrombotic status,
or an increase in the number of inflammation parameters in a
blood sample, would help alleviate the saturation of the health
system, optimize resources, and save time in resolving clinical
complications [4].

Hence, we developed a model to predict the mortality risk from
the laboratory parameters obtained during patients’ hospital
stay [5]. With this model, we aimed to evaluate how laboratory
parameters are related to the risk of a more (or less) severe
disease, so that when a patient presents at the emergency
department at a hospital, the mortality risk can be predicted on
the basis of the blood parameters.

Methods

Data Description
This study is based on anonymized clinical data obtained from
a private hospital group in Spain (HM Hospitales), with centers

primarily in the Autonomous Communities of Madrid and
Galicia and in Barcelona. This group made its data available to
the scientific community for research purposes. Using these
electronic case histories, we accessed data on individuals
suspected with COVID-19 admitted to their centers between
March and June 2020. From all the data tables provided, we
selected the following: (1) a main table containing specific data
on hospitalization and patients (2547 records) and (2) a
laboratory data table with the results of the various tests
requested for each patient during hospitalization and those
presenting at the emergency department (584,136 records).

In the table, an “Outcome” feature is present, with 5 possible
values: “Death,” “Home,” “Transfer to hospital,” “Transfer to
sociosanitary center” and “Voluntary discharge.” This Outcome
feature is the aim of the predictive model developed in this
study.

Data Preprocessing
Before developing the model, and as a prior step in any machine
learning procedure, the information in the 2 tables was
preprocessed as follows:

1. Only those patients with a confirmed diagnosis of
COVID-19, and whose “Outcome” feature was either
“Home” or “Death,” were selected.

2. Data from both tables were combined in accordance with
the patient ID. Since the patients can present a variable
number of measurements for each laboratory parameter,
the mean value was calculated and assigned to each of them.

3. Owing to the large number of missing values, we decided
to filter records and features in order to handle data without
missing values. Some machine learning algorithms can
function by directly using data with missing values, and
imputation methods can also be used. In this study, for the
sake of uniformity and simplicity, the following procedure
was used: first, those features having missing values in
>10% of all records were eliminated; thereafter, only those
records that had value in all the remaining features were
selected.

4. Features such as “Sex” and “Outcome” were properly
encoded as binary values. No other preprocessing such as
normalization or scalarization was applied to the data.

Machine Learning Techniques
A range of machine learning methods to obtain predictive
models have been developed, such as those based on logistic
regression, linear discriminant analysis, instance-based learning,
artificial neural networks, decision trees, and ensemble learning.
This study applied the gradient boosting method to develop a
predictive model.

Gradient Boosting
Gradient boosting is a machine learning technique used to
resolve regression and classification problems and yields a
predictive model through an ensemble of weak prediction
models, usually decision trees. As in other boosting methods,
it builds the model incrementally by incorporating weak
prediction models, but it optimizes an arbitrary differentiable
loss function. Finally, the prediction for a new case is obtained
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by aggregating the predictions of all the individual decision
trees that constitute the model. By combining many trees,
nonlinearity and interactions between predictor features are
achieved [6].

Extreme gradient boosting (XGBoost) is a relatively new
gradient boosting implementation that has achieved excellent
results in many classification tasks. It is an open-source software
library that provides a gradient boosting framework designed
to be highly efficient and flexible [7]. It has also been
successfully applied in medicine; for example, for the prediction
of diabetes risk [8], hypertension [9], drug responses [10], or
kidney injury [11].

Shapley Additive Explanations
A fundamental feature of studies performed with machine
learning techniques is the interpretability of the results. In
medicine, this feature is essential for health care professionals
to draw conclusions and take decisions based on the results
obtained from machine learning algorithms. Doshi-Velez and
Kim [12] defined interpretability as the “ability to explain or to
present in understandable terms to a human.” This renders
interpretability in machine learning a favorable model
characteristic.

Recently, the Shapley Additive Explanations (SHAP) framework
has been applied to interpret derived machine learning models
[13]. SHAP is based on the game theory [14] and helps evaluate
feature contributions toward model prediction, identifying the
features that most prominently influence the prediction. SHAP
values are associated with each feature’s marginal contribution
when aggregated to the model. The XGBoost method has an
additional advantage when SHAP is used, in that being based
on decision trees we can use TreeSHAP, a fast variant of SHAP
for tree-based machine learning [15].

Model Training and Evaluation
In order to obtain a mortality predictive model (“Outcome”
feature), a gradient boosting model was trained using previously
described data. Input features were “Age,” “Sex,” and each of
the laboratory values (mean values) in accordance with the data
preprocessing described above. For this, the XGBoost model
was developed using the existing implementation for Python.

To initially assess the performance of the XGBoost algorithm
in relation to other models in the literature, a comparison was
made with 8 representative classifiers in machine learning:
decision tree, K-nearest neighbors, linear discriminant analysis,
logistic regression, multilayer perceptron, Gaussian naive Bayes,
random forest, and support vector machines. For this, the
corresponding implementation in the Python Scikit-learn library
[16] was used. The metrics analyzed were the area under the
receiver operator characteristic curve (AUROC), the area under
the precision-recall curve (AUPRC), accuracy, and F-score (F1).
To assess a value for these metrics, bootstrap validation was
used.

For each classifier, the most relevant model parameters
(hyperparameters) were adjusted by selecting the best values
after an iterative tuning procedure, and leaving the rest with
their default values. Hyperparameter values were identified
using hyperopt, a Python library for distributed hyperparameter
optimization [17]; the metric and the algorithm used in the
optimization were AUROC and the 3-structured Parzen
estimator. To estimate the AUROC value, k-fold stratified
cross-validation (k=10) was employed. Thus, each tuning cycle
involved 10 training-test executions using different
nonoverlapping test data (each with 10% of the total records).
Through cross-validation, the variance of the estimates can be
reduced, and the estimation of the generalization performance
was improved [18].

Once the results were analyzed, suitable behavior was confirmed
in most of the metrics obtained using XGBoost. To further
improve its performance, the final model parameters were
adjusted using a more exhaustive tuning procedure. Among the
variety of parameters available in XGBoost, the ones considered
more relevant were selected for tuning. The 6 selected
parameters influence the number of gradient boosted trees and
their structure (n_estimators, max_depth, and
min_child_weight), and the learning process (learning_rate,
subsample, and colsample_bytree).

Following this parameter tuning phase, the final model was
assessed through bootstrapping. The performance metrics were
as follows: AUROC, AUPRC, accuracy, F1, Youden's index,
sensitivity, and specificity. Finally, the relative importance of
the features in the model was obtained using SHAP (Figure 1).
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Figure 1. Procedure for obtaining the model parameters, validation, and feature importance. AUC: area under the curve, SHAP: Shapley Additive
Explanations.

Results

Study Population and Features
Following the initial data preprocessing phase, the combination
of the data in the 2 tables produced a data set composed of 1823
records and 33 features. All the data correspond to patients with

a confirmed diagnosis of COVID-19. Tables 1 and 2 show
prevalence and clinical laboratory values, respectively. The
median age of all patients was 68 (IQR 57-79) years, and 1114
(61.1%) were male. The “Death” outcome had a prevalence of
approximately 14% in the resulting subset of patients after data
preprocessing.

Table 1. Prevalence for the “Age,” “Sex,” and “Outcome” features.

Patients, n (%)Feature

Age (years)

7 (0.4)0-25

235 (12.9)25-50

942 (51.7)50-75

635 (34.8)75-100

4 (0.2)100-125

Sex

1114 (61.1)Male

709 (38.9)Female

Outcome

1561 (85.6)Home

262 (14.4)Death
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Table 2. Clinical laboratory values for the features in the data set.

Reference valueMedian (IQRa)Feature (units)

<4031.7 (19.2-55.7)Alanine transaminase (U/L)

<4031.8 (22.2-47.3)Aspartate transaminase (U/L)

11.5-14.513.0 (11.9-14.1)Anisocytosis coefficient (%)

0-10.3 (0.2-0.5)Basophils (%)

0-0.10.02 (0.01-0.03)Basophil count (10-3/µL)

<552.8 (24.1-94.0)C-reactive protein (mg/L)

0.6-1.00.8 (0.7-1.0)Creatinine (mg/dL)

<500885 (492-1883)D-Dimer (ng/mL)

2-70.8 (0.2-1.6)Eosinophils (%)

0.1-0.60.05 (0.01-0.10)Eosinophil count (10-3/µL)

70-105110 (97-132)Glucose (mg/dL)

40-5439.5 (36.5-42.5)Hematocrit (%)

13.5-17.513.3 (12.1-14.3)Hemoglobin (g/dL)

120-230507 (402-654)Lactate dehydrogenase (U/L)

4.4-11.37.0 (5.5-9.2)Leukocyte count (10-3/µL)

20-4818.4 (12.1-25.5)Lymphocytes (%)

1.2-3.41.2 (0.9-1.6)Lymphocyte count (10-3/µL)

28-3329.7 (28.6-30.8)Mean corpuscular hemoglobin (pg)

33-3633.5 (32.7-34.2)Mean corpuscular hemoglobin concentration (g/dL)

80-9588.4 (85.5-91.5)Mean corpuscular volume (fL)

7.4-10.410.3 (9.7-11.0)Mean platelet volume (fL)

1-118.1 (6.0-10.5)Monocytes (%)

0.1-10.6 (0.4-0.7)Monocyte count (10-3/µL)

40-7571.0 (62.5-80.1)Neutrophils (%)

1.5-7.54.9 (3.6-7.1)Neutrophil count (10-3/µL)

150-450250 (195-317)Platelet count (10-3/µL)

3.5-5.14.3 (4.0-4.6)Potassium (mmol/L)

4.1-5.94.5 (4.1-4.9)Erythrocyte count (10-6/µL)

135-145138 (136-140)Sodium (mmol/L)

5-5038 (29-54)Urea (mg/dL)

aIQR: Q1-Q3 values.

Model Performance
In the initial evaluation of XGBoost's performance, a comparison
with several well-known classifiers was carried out. Table 3
shows the results of this comparison. XGBoost yielded the best
results for 3 measures and the second-best results for the F1.

These results reaffirm the choice of XGBoost as the predictive
method for this study. Figure 2 displays the resulting receiver
operator characteristic and precision-recall curves for XGBoost,
and Multimedia Appendix 1 shows the corresponding ones for
the other methods.
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Table 3. Comparison of the outcomes of methods after bootstrap validation.

F1c, mean (95% CI)Accuracy, mean (95% CI)AUPRCb, mean (95% CI)AUROCa, mean (95% CI)Method

0.60 (0.52-0.68)0.89 (0.85-0.92)0.67 (0.58-0.74)0.89 (0.84-0.92)Decision tree

0.41 (0.29-0.50)0.88 (0.86-0.90)0.55 (0.46-0.64)0.87 (0.85-0.90)K-nearest neighbors

0.75 (0.70-0.82)0.94 (0.92-0.95)0.85 (0.80-0.90)0.96 (0.94-0.97)Linear discriminant analysis

0.76 (0.70-0.82)0.94 (0.92-0.95)0.84 (0.79-0.89)0.96 (0.94-0.98)Logit

0.73 (0.65-0.79)0.93 (0.91-0.94)0.79 (0.71-0.86)0.95 (0.93-0.97)Multilayer perceptron

0.68 (0.62-0.76)0.91 (0.89-0.92)0.74 (0.66-0.82)0.94 (0.91-0.96)Naive Bayes

0.73 (0.67-0.79)0.93 (0.91-0.95)0.84 (0.76-0.90)0.96 (0.95-0.98)Random forest

0.21 (0.11-0.31)0.87 (0.85-0.88)0.62 (0.53-0.71)0.91 (0.88-0.94)Support vector machines

0.76 (0.71-0.81)0.94 (0.92-0.95)0.85 (0.79-0.91)0.97 (0.96-0.98)XGBoost

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cF1: F-score.

Figure 2. The receiver operator characteristic curve (left) and precision-recall curve (right) in the XGBoost model after bootstrap validation. AUROC:
area under the receiver operator characteristic curve, AUPRC: area under the precision-recall curve, XGBoost: extreme gradient boosting.

In an attempt to improve XGBoost's performance, the final
model parameters were adjusted through a more exhaustive
tuning procedure using the Python hyperopt library. Setting the
number of iterations (max_eval) at 8000 yielded the

hyperparameter values presented in Table 4. The remaining
hyperparameters retained their default values. The model used
110 decision trees, with a maximum depth of 3.

Table 4. Final values of the tuned hyperparameters in the extreme gradient boosting model.

ValueHyperparameter

110Number of gradient-boosted trees

3Maximum tree depth

5Minimum sum of instance weight needed in a child

0.094Boosting learning rate

0.928Subsample ratio of the training instances

0.474Subsample ratio of columns
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With these hyperparameter values, bootstrap validation was
again used to obtain model results for the performance metrics,
after 300 bootstrap iterations. Through this process, the values
obtained were 0.97 (95% CI 0.96- 0.98) for AUROC, 0.86 (95%
CI 0.80- 0.91) for AUPRC, 0.94 (95% CI 0.92-0.95) for
accuracy, and 0.77 (95% CI 0.72- 0.83) for the F1. We observed
a slight improvement owing to more processing in the
hyperparameter search process (8000 vs 1000 iterations).
Furthermore, the associated sensitivity and specificity values
were calculated using the receiver operator characteristic curve
values to determine the cut-point that maximizes the Youden
index. These calculations yielded a value of 0.85 (95% CI
0.80-0.90) for the Youden index, 0.93 (95% CI 0.89-0.98) for
sensitivity, and 0.91 (95% CI 0.86-0.96) for specificity.

Feature Importance
After applying the tuned XGBoost model to the total data set,
the SHAP values associated with this model were calculated.
Each feature’s overall performance can be determined on the
basis of these SHAP values in accordance with their average
impact on model output. Figure 3 shows SHAP summary plots
for the 16 most important features. Based on the mean absolute
SHAP values, 5 features, including lactate dehydrogenase,
C-reactive protein, neutrophil (%), urea, and age, had a greater
average impact on model output. Among these, the feature’s
highest values (red) are generally associated with a higher SHAP
value and, by extension, to a greater likelihood of the “Death”
outcome. In other cases, for example eosinophil (%) and alanine
aminotransferase, the feature’s lowest values (blue) are
associated with a greater risk of the “Death” outcome.

Figure 3. SHAP summary plots for the 16 most important features in accordance with their mean absolute values. Beeswarm plot (left), where each
dot corresponds to an individual patient, showing the impact of the feature on the model’s prediction for that patient. The graph on the right shows the
average impact on model output. ALT: alanine transaminase, AST: aspartate transaminase, CRP: C-reactive protein, LDH: lactate dehydrogenase,
MCHC: mean corpuscular hemoglobin concentration, SHAP: Shapley Additive Explanations.

Plots developed using SHAP values are displayed in Multimedia
Appendix 1; these highlight the relationship between these
features and the mortality risk. Every dot represents an
individual patient. Furthermore, Multimedia Appendix 1
contains boxplots that describe value distribution between
recovered and dead patients for the same features.

Discussion

Principal Findings
COVID-19 mortality is strongly linked to 2 events. There are
patients who develop a severe inflammatory syndrome, which
results in uncontrolled activation of the immune system and a
massive release of proinflammatory cytokines, which translates
into an increase in acute-phase reactants such as C-reactive
protein, interleukin-6, ferritin, cell destruction markers such as
lactate dehydrogenase, and an increase in proinflammatory cells
such as neutrophils. This severe inflammatory syndrome has
been described as a cause of mortality in most patients with
complications arising from a SARS-CoV-2 infection. In such

patients, lactate dehydrogenase is associated with an increase
in cell destruction, which results in a reduction in lymphocytes,
rupture of the lung parenchyma due to inflammation, cell
damage, cell remodeling, and lung fibrosis [19,20]. Our study
data are concurrent with this trend, with lactate dehydrogenase,
C-reactive protein, and neutrophils having the greatest impact
on mortality among these patients. Another important
complication described in these patients is acute renal failure
[21]; our data show that the laboratory parameter that most
influences mortality in relation to renal function is urea, a marker
of renal function at the prerenal level, which indicates whether
renal filtering is effective. Urea levels tend to increase when
patients are dehydrated or experience excessive fluid loss [3].

From among clinical laboratory findings, it is essential to
establish a biochemical panel of acute-phase reactants that
facilitate the identification of patients susceptible to an acute
inflammatory syndrome. In this case, we propose lactate
dehydrogenase and C-reactive protein as the best candidates
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according to the data obtained, to which interleukin-6 ferritin
should be added, at the very least.

Another complication that results in high mortality in these
patients is coagulation disorders. COVID-19 results in a
systemic hypercoagulation state, producing pulmonary
thromboembolisms, ischemic strokes, and other disorders, and
a markedly large number patients experience severe
complications. This complication can be assessed on the basis
of 2 laboratory parameters: D-Dimer and platelets. As a
degradation product of a previously formed clot, the increase
in this parameter will thus be proportional to the number of
previously formed clots. In the first step of the coagulation
process, a reduction in the number of platelets would indicate
that clots are being formed. Accordingly, a risk factor would
be an increase in D-dimer levels and a reduction in the platelet
count [22].

Approximately 30% of patients with COVID-19 complications
have hypercoagulation disorders; hence, it is important to be

able to predict these complications in order to establish
prophylactic anticoagulant treatment as early as possible in
patients in whom this blood disorder is identified. Some studies
have compared the hypercoagulation status resulting from
COVID-19 to that appearing in patients with an antiphospholipid
syndrome, who present with the same complications and in
whom the treatment is identical [23]. Of note, we have
established a strong relationship between coagulation parameters
and mortality in the predictive model we developed in this study.

Figure 4 shows the most interesting parameters—from the
clinical point of view—and their relation to mortality. The 3
graphs have a common relationship; that is, from a certain value,
the curve that relates the value of the variable to mortality
increases significantly. At this point, the medical intervention
could change the clinical course of patients since, as seen in the
graph, very high values in these tests represent a higher mortality
risk, while low levels relate to a more favorable prognosis.

Figure 4. Plots developed using SHAP values, displaying the relationship between laboratory values—including LDH, CRP, and D-Dimer—and
mortality risk. Every dot represents an individual patient. Higher values of these features indicate an increase in the mortality risk, and lower ones are
associated with a more favorable prognosis. CRP: C-reactive protein, LDH: lactate dehydrogenase, SHAP: Shapley Additive Explanations.

At the beginning of the pandemic, one of the main risk factors
by which patients were classified was age; as expected, higher
morbidity and mortality rates prevail among older individuals.
In our predictive model, age ranks in fifth position, which is
important, but mortality is still more prominent among those
patients who develop a severe inflammatory syndrome.
Therefore, if we relate age as an independent variable to the

main biochemical markers of severe inflammation, we can
estimate patient mortality on the basis of their age and a clinical
laboratory value (Figure 5). On the other hand, Figure 6 shows
the difference in different clinical laboratory values from among
patients who die or are discharged from hospital. We observed
a clear difference between different laboratory values depending
on each group.

Figure 5. Partial dependence plots representing the model output associated with age and other features (LDH, CRP, and urea). Red zones indicate a
greater influence on mortality risk. CRP: C-reactive protein, LDH: lactate dehydrogenase.
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Figure 6. Boxplots describing value distribution between recovered and dead patients on the basis of the laboratory values of LDH, CRP, Urea, and
D-Dimer. CRP: C-reactive protein, LDH: lactate dehydrogenase.

It is not easy to establish strict criteria for mortality in patients
with COVID-19, as they are influenced by other unquantified
variables and environmental factors. The comorbidities in these
patients prior to them contracting COVID-19 are very important
when managing these patients and predicting complications
[24]. Patients with chronic pathologies such as hypertension or
diabetes have a higher number of complications and rate of
mortality than those who do not; however, the underlying reason
remains unclear. It has been hypothesized that these patients
have higher expression levels of angiotensin-converting enzyme
2 receptors through which the virus penetrates the cells to
replicate; such patients are candidates for a stronger and more
severe disease. Furthermore, Fang et al [25] reported that
polymorphisms in the gene that encodes this receptor increases
the severity of the disease.

Carrasco-Sánchez et al [26] collected data from approximately
20,000 patients in Spain and reported that mortality can be
predicted among those patients who arrive at an emergency
department and are then found to have high blood glucose levels,
during their hospital stay, provided they are not in a critical
condition. Blood glucose is thus one of the most prominent
predictors of patient mortality, which is concurrent with our
hypothesis. Therefore, glycemic control among patients before

and during their hospital stay is essential to increase their
survival.

Limitations
Clinically, this study has a series of limitations. First, this study
has a small patient cohort; previous similar studies have included
a markedly larger patient cohort [21,26]. Second, we did not
record the comorbidities of these patients; therefore, we cannot
assess their role in relation to other variables and their potential
to predict a patient's mortality. Finally, it is very important to
perform a battery of laboratory tests, which facilitates the
evaluation of an inflammatory syndrome with more parameters,
such as interleukin-6 and ferritin.

Conclusions
This study aimed to develop a model to predict the mortality of
patients with COVID-19, which can assess mortality from
laboratory values with a high degree of accuracy. The use of
machine learning techniques, in this case the XGBoost predictive
method, has yielded excellent results for several performance
metrics. The analysis of the resulting model enables us to
identify a set of features with a markedly high prediction
potential, which can be useful for improving care decisions and
increasing patient survival.
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