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Abstract

Background: In the face of the current COVID-19 pandemic, the timely prediction of upcoming medical needs for infected
individuals enables better and quicker care provision when necessary and management decisions within health care systems.

Objective: This work aims to predict the medical needs (hospitalizations, intensive care unit admissions, and respiratory
assistance) and survivability of individuals testing positive for SARS-CoV-2 infection in Portugal.

Methods: A retrospective cohort of 38,545 infected individuals during 2020 was used. Predictions of medical needs were
performed using state-of-the-art machine learning approaches at various stages of a patient's cycle, namely, at testing
(prehospitalization), at posthospitalization, and during postintensive care. A thorough optimization of state-of-the-art predictors
was undertaken to assess the ability to anticipate medical needs and infection outcomes using demographic and comorbidity
variables, as well as dates associated with symptom onset, testing, and hospitalization.

Results: For thetarget cohort, 75% of hospitalization needs could be identified at the time of testing for SARS-CoV-2 infection.
Over 60% of respiratory needs could be identified at the time of hospitalization. Both predictions had >50% precision.

Conclusions: The conducted study pinpoints the relevance of the proposed predictive models as good candidates to support
medical decisions in the Portuguese population, including both monitoring and in-hospital care decisions. A clinical decision
support system is further provided to this end.

(J Med Internet Res 2021;23(4):€26075) doi: 10.2196/26075
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Introduction

Background

COVID-19 is a disease caused by the novel coronavirus
SARS-CoV-2, transmissible from person to person and
associated with acute respiratory complicationsin severe cases
[1,2]. The main symptoms of patientsinfected are fever, cough,
and fatigue; others are asymptomatic [3]. The COVID-19
pandemic presents a substantial threat to global health and has
been directly responsible for many deaths. Since the first
outbreak in December 2019 in Wuhan, China, the number of
confirmed infected patientsworldwide has exceeded 55 million
cases, and nearly 1.3 million people have died from COVID-19
[4]. Current literature has shown that infected patients with
specific comorbidities or preconditions (eg, hypertension,
respiratory problems, diabetes) and of old age are expected to
develop a more severe response to the infection and may
consequently need longer hospitalizations and intensive care
[5-7]. Strict socid confinement measures have been
implemented to decrease the COVID-19 R, vaue (average
number of individuals infected by each infected person) and
guarantee the optimal use of equipment and beds at normal,
continuous, and intensive care units (1CUs). However, although
public health responses aim to delay the spread of the infection,
several countries such as the United States, Brazil, Italy, and
India have faced severe health care crises.

Without effective antiviral drugs and avaccine, prognostic tools
related to COVID-19 arerequired. Statistical and computational
models could assist clinical staff intriaging patientsat high risk
for respiratory failure to better guide the allocation of medical
resources. Recently, several predictive models ranging from
statistical and score-based systems to more recent machine
learning model s have been proposed in response to COVID-19.
Guan et d [8] proposed a Cox regression model to infer potential
risk factors associated with serious adverse outcomesin patients
with COVID-19. Univariate and multivariate logistic regression
models have been used to determinerisk factors associated with
mortality [9]. Scoring systems have been proposed to predict
COVID-19 patient mortality but are limited by small sample
sizes, with apoor discriminatory ability [10-12]. Other statistical
approaches have al so been emerging to aid prognostics[13,14].
Complementarily, machinelearning methods offer the possibility
to model more complex data relationships, generally yielding
powerful capabilities to predict outcomes of infectious and
noninfectious diseasesin medical practice[15-17]. To thisend,
classification and regression models have been proposed for
risk stratification of patients and to screen the spread of
COVID-19 [18-20]. Despite the inherent potentialities of
ongoing efforts, studiesin the context of COVID-19 arelimited
by either the size of available cohortsor the lack of asystematic
comparison of different models [21-24], and generally neglect
the predictability of medical needs (instead the focus is
commonly placed on measurable disease factors, early detection
of infection, and mortality risk prediction [25-28]). None of
these studies have comprehensively targeted the Portuguese
population at the present time.
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This Study

This study provides a structured view on the predictability of
hospitalizations, | CU admissions, respiratory assi stance needs,
and survivability outcomes using a retrospective cohort
encompassing individuals with a SARS-CoV-2—positive result
in Portugal as of June 30, 2020.

To this end, and considering demographic, comorbidity, and
care provision variables collected for the infected individuals,
an assessment methodology was conducted, whereby
state-of -the-art predictive model swere hyperparameterized and
robustly evaluated in order to assess the upper bounds on the
predictive performance for each one of the targeted variables.
In addition, whenever applicable, this analysis was extended
toward the various stages of apatient’s cycle: prehospitalization
(at the time of testing), after hospitalization, and after ICU
admission.

Thisstudy offersasolid methodol ogy for the robust assessment
of the predictability guarantees of future care needs of infected
individuals, contrasting with the dominant correlation-based
guarantees in literature. As comparable studies demonstrated
in other populations, it lays a solid ground to compare type-|
and type-ll predictive errors and assess population-wise
differences.

Methods

Overview

Complete subpopulationsfrom the target cohort were identified
for each output (Figure 1), guaranteeing the presence of all
individual s undertaking the target forms of care (hospitalization,
ICU admission, respiratory support) with a recovery-or-death
outcome.

After the sampling and data curation steps (Figure 1), we
proceeded to the optimization of data preprocessing optionsand
classifiers parameterization for each of the target variables
separately. To this end, we applied a nested 10-fold
cross-validation assessment methodology, whereby we first
create train-test partitions (outer cross-validation) to assess the
performance of an optimized classification method, and within
each training fold we further create train-test partitions (inner
cross-validation) for hyperparameterizing the predictive model
under assessment. This methodology guarantees that all
observations are used to assess the fina performance and
prevents biases as hyperparameterization takes place within
each training folds.

Within each inner train-test fold, Bayesian optimization [29]
was applied to find the hyperparametersthat best fit the pipeline.
The optimization measures are:

« F1 score and 0.7 x recall + 0.3 x precision for binary
classes. These two views generate two sets of classifiers:
one that equally weights recall-and-precision views, and
other that, similar to the F2 score (Fg, where B=2),
prioritizesthe optimization of thetrue-positiverate (recall)
at the cost of alower positive predictive value (precision);

«  Cohen kappa and average class recall for target variables
with more than 2 classes (respiratory support).
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Figure 1. Exclusion and inclusion criteria for composing the outcome-conditional cohorts: hospitalization, respiratory assistance support, intensive
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care unit (ICU) admission, and survivahility. Blank/unknown cellsin the Direcgdo-Geral da Salde data set are classified as missing values.
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Hospitalization, UCI admission, respiratory support, and
recovery-or-death outcomes for SARS-CoV-2-infected
individuals are considerably imbalanced, hence, the relevance
of the placed recall-precision and multiclass recall views. In
particular, considering both a baanced recall-precision
optimization and recall-oriented optimization is relevant for
clinical decisions. When the allocated teams have capacity to
remotely monitor SARS-CoV-2-infected patients, the predictive
models optimized with a schema that prioritizes recall should
be pursued to guarantee that no vulnerable patient is |eft out.
Nevertheless, when monitoring capacity is limited, greater
attention to precision is necessary, and only more vulnerable
patients (as suggested by the predictive models optimized with
balanced recall-precision views) should be attemptively
monitored.

The allowed preprocessing options are as follows: imputation
of missing values using median-modeimputation, KNNImputer,
or none; class balancing using subsampling, oversampling,
SMOTE (Synthetic Minority Oversampling Technique), or
none; and normalization of real-valued variables using
standardization, scaling, or none. The selected classifiersare as
follows: Bernoulli naive Bayes, Gaussian naive Bayes, k-nearest
neighbors (KNN), decision tree (DT), random forest, X GBoost
(XGB), logistic regression, Light Gradient Boosting Machine
(LightGBM), Super Learner, and multilayer perceptron (MLP).
Super Learner uses folding to hyperparameterize models and
selects predictors for out-of-fold predictions from individual
performance estimates per fold. Inthis context, Super Learner’s
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performance is generaly coincident with the best predictive
model and thus not always disclosed in the Results section to
allow the identification of the best underlying predictors. We
considered the implementations provided in the scikit-learn
[30] and xghoost [31] packages in Python (Python Software
Foundation). For each classifier, all supported parameters in
scikit-learn were subjected to hyperparameterization. Regarding
the MLP, we placed upper limitson the number of hidden layers
(3) and nodes per layer (20) given thelow-dimensionality nature
of the target data set. The hyperparameters were subjected to a
total of 50 iterations. Multimedia Appendix 1 displays the
optimized parametersfor the best-performing predictive models
per outcome.

Differences in performance from the paired-error estimates
collected per fold were statistically tested using t tests when
estimates passed the Shapiro-Wilk normality test. When this
condition was not satisfied, Wilcoxon signed-rank tests were

applied.

In addition to the conducted analysis, the best predictorstrained
on the whole data set were made available within a clinica
decision support system built using flask technology and dash
facilities in Python [32], which can run as an offline web
application.

Data Source

A retrospective cohort (from March 1 to June 30, 2020) of
patientswith confirmed COVI1D-19in Portugal wasused in this
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study. The anonymized data set was provided by the Directorate
General of Hedth (Direccdo-Gera da Saide, DGS), the
Portuguese health authority. The gathered data, called the
covid19-DGS database, contains information pertaining to the
demographic and clinical patient characteristics as well as
preexisting conditions.

Data are available upon reasonabl e request.

Ethical Consider ations

The COVID-19 data set is provided by the DGS under the
collaborative scoredCOVID research project proposal. Thetasks
conducted in the scoredCOVID project were further validated
by the Ethical Committee of the NOVA School of Science and
Technology.

Results

Results on the predictability of hospitalization needs, ICU
admissions, respiratory assistance, and outcome of infected
individualsliving in Portugal, as of June 30, 2020, are discussed
below.

Cohort Characteristics

The target cohort comprised 38,545 individuals who were
SARS-CoV-2 positive: 17,046 recoveries (SARS-CoV-2

https://www.jmir.org/2021/4/e26075
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negative after positive testing) and 1155 deaths. Four individuals
were excluded from the data set due to inconsistent recordings
related to age and pregnancy-gender variables. Table 1 provides
essential statistics. Figure 2 further describes sex and age
distributions in deaths, hospitalizations, ICU admissions, and
average number of days from symptom onset (traced by the
public health line for COVID-19) to a positive test result and
hospitalization.

Within the target population, there were 4326 hospitalizations
(11.2% of population base) and 253 admissions to the ICU
(5.8% of hospitalizations). Among | CU internments, there were
82 recoveries and 61 deaths. In terms of respiratory support, a
total of 180 individuals undertook assisted ventilation, 292
submitted to oxygen therapy, and 9 underwent alternative modes
of respiratory support such as extracorporeal membrane
oxygenation.

The major classes of comorbidities monitored were neoplasm,
diabetes, asthma, pulmonary, hepatic, hematological, rena,
neurological, neuromuscular, and immune deficiency conditions.
The representativity of individuals with one or more
comorbidities, as well as their impact on survivability, is
depicted in Figure 3.
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Table 1. Characteristics of SARS-CoV-2-infected patients in the target cohort.
Characteristic Vaue
Numeric variables, mean (SD); range
Age at notification (years) 48.3 (22.1); 0-105
Onset to hospitalization (days) 1.1(5.1); 0-169
Categoric variables, n (%)
Gender
Female 11,252 (54.64)
Male 9340 (45.36)
Hospitalization
Yes 16,651 (84.00)
No 3172 (16.00)
ICU? admission
Yes 209 (7.75)
No 2488 (92.25)
Respiratory support
Oxygen therapy 276 (11.04)
Assisted ventilation 172 (6.88)
No support 2052 (82.08)
Comor bidities
Cancer 940 (4.56)
Cardiac disease 3025 (14.69)
Diabetes 2134 (10.36)
Immune deficiency 222 (1.08)
Renal disease 718 (3.49)
Liver disease 206 (1.00)
Lung disease 794 (3.86)
Chronic neurological disease 1087 (5.28)
Mortality
Yes 728 (7.45)
No 9050 (92.55)
& CU: intensive care unit.
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Figure 2. Cohort statistics: (A-C) demographic distribution of infected individuals with known outcome (death and recovery) and stage in the carelife
cycle (hospitalization and intensive care unit [ICU] admission); (D) average number of days between care stages (the plotted negative bin [ie, negative

occurrences] corresponds to hospitalizations before SARS-CoV-2 testing).
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Figure 3. Cohort statistics: (A) distribution of individuals with one or more comorbidities among deaths, recovered cases, and hospitaizations; and
(B) association between individual comorbidities and survivability outcomes.
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Hospitalization
Figure 4 and Table 2 provide results pertaining to the models
ability to predict the need for individualsto be hospitalized once  with the presence or absence of kidney, asthma, lung, cancer,
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(B) comorbidity impact on survivability

they are tested as SARS-CoV-2 positive given their (1)
demographic group (age and gender) and (2) comorbidity
factors. Comorbidity factors were categorized in accordance
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neuromuscular, diabetes, HIV, cardiac, and pregnancy
conditions. Nonhospitalized individual swithout a clear outcome
(recovery or death) were excluded from this analysis. Figure 5
providesthe receiver operating characteristic curve per predictor
for each optimization setting.

Generally, we observed that nearly 90% of hospitalization needs
could be identified at the time of SARS-CoV-2 testing. This
level of recall/sensitivity was observed at the expense of an

Patricio et al

approximate 55% precision, meaning that more than half of the
predicted hospitalization needs were in fact observed. Logistic
regression and MLP were the best-performing classification
models according to F1-score and recall, respectively. Statistical
superiority was verified for logistic regression but not MLP
against peer models (at  =.05). These results provide empirical
evidence toward the role of these predictors in supporting
individual remote monitoring decisions.

Figure 4. Predictability of hospitalizations for individuals testing SARS-CoV-2 positive. Recall, precision, and F1 for the best predictorsin F1 (left)
and recall-oriented (right) scores on the validation set after nested cross-validation. MPL: multilayer perceptron.
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Table 2. Predictability of hospitalizations per predictive model.

Patricio et d

Model F1 optimization, mean (SD) Recall-oriented (FB:2) optimization, mean (SD)
F1-score Recall F1-score Recall

KNN2 0.544 (0.007) 0.883 (0.020) 0.545 (0.005) 0.890 (0.017)
DTP 0.562 (0.030) 0.837 (0.069) 0.548 (0.004) 0.897 (0.007)
REC 0.535 (0.010) 0.878 (0.016) 0.541 (0.005) 0.874 (0.029)
XGB! 0.546 (0.004) 0.897 (0.012)° 0.545 (0.004) 0.895 (0.011)

LR 0.582 (0.006)° 0.878 (0.015) 0.583 (0.010)° 0.879 (0.015)
MLPY 0.549 (0.006) 0.892 (0.010) 0.551 (0.003) 0.897 (0.012)°
LaamP 0.545 (0.005) 0.893 (0.013) 0.545 (0.005) 0.893 (0.016)

3 NN: k-nearest neighbors.
PDT: decision tree.

°RF: random forest.

9X GB: XGBoost.
®Best-performing models
LR: logistic regression.
IMLP: multilayer perceptron.
PLGBM: LightGBM.

Figure 5. Receiver operating characteristic curves with the predictive behavior of the selected classifiersin asserting hospitalization needs at the time

of SARS-CoV-2 testing. XGB: XGBoost, MLP: multilayer perceptron, LGBM: LightGBM.
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Figure 6. Predictability of intensive care unit admission. Results for the best F1 predictor (left) and recall-oriented predictor (right). XGB: XGBoost.
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Figure 7. Receiver operating characteristic curves with the predictive behavior of the selected classifiers in predicting intensive care unit admission
needs at the time of hospitalization. XGB: XGBoost, MLP: multilayer perceptron, LGBM: LightGBM.
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Table 3. Predictability of intensive care unit admissions per predictive model.

Model F1 optimization, mean (SD) Fp=2 (recall-oriented) optimization, mean (SD)
F1-score Recall Fi1-score Recall

At the time of hospitalization
KNN2 0.428 (0.039) 0.574 (0.156) 0.369 (0.037) 0.741 (0.088)
DT? 0.461 (0.016) 0.651 (0.056) 0.309 (0.083) 0.904 (0.033)°
RF 0.454 (0.027) 0.713 (0.088)° 0.382(0.103) 0.794 (0.128)
XGBE 0.505 (0.040)° 0541 (0.074) 0.431 (0.040) 0.766 (0.084)
LR 0.250 (0.015) 0.622 (0.041) 0.248 (0.013) 0.651 (0.074)
MLPY 0.449 (0.060) 0.703 (0.145) 0.410 (0.039) 0.818 (0.050)
LeBMD 0.480 (0.023) 0.536 (0.048) 0.435 (0.025)° 0.770 (0.051)

At thetime of SARS-CoV-2 testing
KNN 0.195 (0.016) 0.818 (0.090) 0.198 (0.007) 0.852 (0.039)
DT 0.209 (0.012) 0.752 (0.135) 0.201 (0.007) 0.890 (0.036)
RF 0.200 (0.008) 0.880 (0.038) 0.200 (0.008) 0.880 (0.044)
XGB 0.205 (0.009) 0.857 (0.058) 0.203 (0.004) 0.914 (0.032)
LR 0.200 (0.008) 0.847 (0.054) 0.201 (0.007) 0.880 (0.034)
MLP 0.202 (0.006) 0.871 (0.049) 0.200 (0.008) 0.880 (0.037)
LGBM 0.204 (0.012) 0.871 (0.074) 0.197 (0.012) 0.861 (0.066)

3 NN: k-nearest neighbors.
PDT: decision tree.
Best-performing models.
9RF: random forest.

€XGB: XGBoost.

LR: logistic regression.
IMLP: multilayer perceptron.
PLGBM: LightGBM.

The predictability of ICU needs is less satisfactory than
hospitalization needs, particularly for the prehospitalization
stage. We hypothesize that this difficulty was partially related
to the smaller number of individuals with ICU internments,
together with the presence of missing values associated with
ICU internment needs for most individuals. Even though we
can achieve recall levels over 90% with gradient boosting
(XGBoost) in a posthospitalization setting, it comes at the cost
of a considerably low precision (with one-third of predictions
seen in practice). Still, the best-performing predictive models
are suggested to support monitoring decisions at the hospital
bedside, as their recall and specificity are considerably high.

Respiratory Support

Figure 8 and Table 4 assess respiratory assistance needs for
hospitalized individuals with SARS-CoV-2, considering three
assistance modes: (1) ventilation support, (2) oxygen therapy,
and (3) combined ventilation and oxygen therapies.

https://www.jmir.org/2021/4/e26075

Demographic, comorbidity, and time-to-hospitalization factors
were used asinput variables.

Individuals without a SARS-CoV-2—negative test result after
infection were excluded from this analysis. As respiratory
support is a multiclass variable, we considered a different
performance evaluation by focusing on (1) the recall for each
major class (ventilation, oxygen, and nonrequired support), (2)
the precision of individuals with oxygen or ventilation
assistance, and (3) the Cohen kappa coefficient.

XGBoost, LightGBM, and random forests attained a satisfactory
identification of hospitalized individuals who may require
respiratory support in thefuture, generally providing recallsfor
each assistance mode around 60% at the cost of a40% precision.
According to the conducted methodology, they are thus
pinpointed as good candidates to support in-hospital care
decisions.
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Figure 8. Predictability of respiratory support needs—assisted ventilation, oxygen therapy, and combined support—for hospitalized individuals with
SARS-CoV-2. Performance of the best F1 predictor (right) and recall-oriented predictor (l€ft) is shown. XGB: XGBoost, LGBM: LightGBM.
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Table 4. Predictability of respiratory needs per predictive model.

XGB LGBM

Model Kappa optimization, kappa, mean (SD) Recalls optimization average, kappa, mean (SD)
KNN? 0.324 (0.050) 0.162 (0.022)

DT® 0.708 (0.017)° 0.110(0.126)

RFY 0.518 (0.013) 0.017 (0.014)

XGB® 0.586 (0.022) 0.043 (0.013)

LR 0.080 (0.009) 0.070 (0.009)

MLP? 0.464 (0.046) 0.204 (0.164)

Leem"  0.567(0.037) 0.366 (0.106)°

3 NN: k-nearest neighbors.
PDT: decision tree.
“Best-performing models.
9RF: random forest.

®XGB: XGBoost.

LR logistic regression.
9MLP: multilayer perceptron.
RLGBM: LightGBM.
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Survivability (Outcome)

Finally, Figures 9 and 10 and Table 5 provide an analysis of
the ability of the modelsto predict recovery-or-death outcomes
for individualswith SARS-CoV-2 infection at three time points:
(1) before hospitalization (at the time of testing), (2) after
hospitalization, and (3) after ICU admission when applicable.
To this end, we preserved the input variables and validation
methodology (see Methods section) considered in previous

scenarios.

Patricio et al

Our results showed a high ability to identify death outcomes.
However, at the SARS-CoV-2 testing stage, thiscomes at acost
of incorrectly classifying two-thirds of individuals susceptible
to death. In the posthospitalization scenario, we achieved more
balanced results, with both precision and recall around 75%
using gradient boosting (XGBoost and LightGBM). The
introduction of the intensive care variable hampered the results
sinceit restricted the analysis of deathsto individual s with acute
needs and dependent on continuous care instruments.

Figure 9. Predictability of the survivability (outcome) of infected individuals at 3 stages. Results for the best F1 predictor (left) and recall-optimized

predictor (right) per stage are shown. XGB: XGBoost, LGBM: LightGBM.
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Figure 10. Receiver operating characteristic curves with the predictive behavior of the selected classifiersin asserting patient survivability at the time
of hospitalization. XGB: XGBoost, MLP: multilayer perceptron, LGBM: LightGBM.
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Table5. Predictability of survivability per predictive model.

Patricio et d

Model F1 optimization, mean (SD) Fp=2 (recall-oriented) optimization, mean (SD)
F1-score Recall Fi1-score Recall

At the time of hospitalization
KNN2 0.616 (0.035) 0.735 (0.048) 0.546 (0.021) 0.901 (0.030)
DT? 0.707 (0.013) 0.864 (0.011) 0.673 (0.022) 0.908 (0.017)
REC 0.696 (0.030) 0.901 (0.030) 0.666 (0.021) 0.666 (0.021)
xGBY 0.765 (0.025) 0.834 (0.042) 0.726 (0.008) 0.920 (0.022)
LR® 0.492 (0.012) 0.909 (0.019) 0.476 (0.035) 0.916 (0.022)
MLP 0.681 (0.024) 0.824 (0.027) 0.569 (0.020) 0.922 (0.023)
LGBMY 0.761 (0.017) 0.874 (0.016) 0.717 (0.036) 0.922 (0.021)

At thetime of intensive care unit admission
KNN 0.582 (0.040) 0.740 (0.053) 0.527 (0.030) 0.885 (0.049)
DT 0.652 (0.045) 0.879 (0.035) 0.638 (0.032) 0.922 (0.023)
RF 0.630 (0.018) 0.908 (0.039) 0.587 (0.035) 0.941 (0.016)
XGB 0.703 (0.035) 0.838 (0.068) 0.672 (0.021) 0.918 (0.051)
LR 0.497 (0.018) 0.908 (0.031) 0.470 (0.049) 0.920 (0.028)
MLP 0.633 (0.044) 0.790 (0.094) 0.529 (0.019) 0.935 (0.020)
LGBM 0.701 (0.025) 0.886 (0.034) 0.672 (0.024) 0.915 (0.027)

3 NN: k-nearest neighbors.
PDT: decision tree.

°RF: random forest.

IXGB: XGBoost.

€L R: logistic regression.
"MLP: multilayer perceptron.
9.GBM: LightGBM.

Deter minants of Predictability

To assess the determinant factors underlying the achieved
predictability levels, we first statistically tested the correlation
between input and output variables using chi-square tests,
ANOVA (anadysis of variance), and their nonparametric
counterparts, yielding results similar to those by Nogueiraet al
[33]. For amorein-depth understanding of the feature relevance

https://www.jmir.org/2021/4/e26075

for the assessed predictive models, Figures 11 and 12 illustrate
the importance of the top features. To this end, we considered
relevance outputs from gradient boosting (XGBoost) dueto its
competitively high performance acrossall outcomes, aswell as
the logistic regression for the hospitalization outcome by
computing the Wald statistic to assess the significance of the
coefficients for predictions.

JMed Internet Res 2021 | vol. 23 | iss. 4 | €26075 | p. 13
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Patricio et al

Figure 11. Top features and their importance for each target variable at the time of SARS-CoV-2 testing (prehospitalization). ICU: intensive care unit,

LR: logistic regression.
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We can observe that XGBoost distinguishes the relevance of
different comorbiditiesfor the target variables along each stage
of the care process. In addition to the age variable, the onset
period to hospitalization in days was also found to be acritical
factor affecting the decisions (Figure 12). The high relevance

e -

Lung disease
Pregnant 3rd trim -
Chronic neurological disease

Diabetes

Variable

Kidney disease

Cancer

Gender

Chronic hematelogic disease

B Hospitalization
et}
- Outcome

L —
L—
=3
=
r
K
¥
r
=

Postparturn (<6 weeks)

po 05 10 15 20 25 30
Importance

(B) LR importance (Wald statistic)

of this variable consistently had top rank among associative
models—XGBoost, random forests, and  decision
trees—pinpointing the importance of its collection for
computer-aided predictions of ICU internment and respiratory
needs.

Figure 12. XGBoost top features and their importance for the different outcomes at posthospitalization. ICU: intensive care unit.
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Complementarily, Figure 13 offers additional insights into the
target predictive tasks by plotting some of the characteristics
of the correctly classified individuals against incorrectly
classified individual swith X GBoost. Particular attention should
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be paid to the differences between true positives and false
negatives, that is, to the individuals requiring care, in order to
guarantee their timely and proper assistance. The susceptibility
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to false negativesis higher for individual s within the 40-60-year

Patricio et al

age category and without comorbidities.

Figure 13. The characteristics of incorrectly predicted individuals with XGBoost. Particular attention should be paid to the differences between
true-positive and fal se-negative individuals given their clinical relevance. ICU: intensive care unit.
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Clinical Decision Support System

Thelearned predictive model s based on simple variables (stage,
age, gender, and comorbidities) have been made available to
health care providers within a recommendation system with
graphical facilities. The serialized predictive models are used
for the efficient testing of individuals at the different stages of

https://www.jmir.org/2021/4/e26075

RenderX

the care cycle (testing, hospitalization, ICU admission) for the
different outcome variabl es (care needs) after inserting essential
demographic and comorbidity features. The output provides a
bounded statistic based on the estimation returned by the
predictive models achieving better recall and F1-measure for
each outcome variable. Figure 14 provides a visualization of
the graphical interface.
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Figure 14. Snapshot of the provided clinical decision support system.
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The variables required for each outcome score calculation are
usualy available at hospitals, and the tool is easy to use.
Although recommendations are provided within a statistical
frame, the tool does not categorizetherisk into low- or high-risk
patients as clinical experts are more informed to approximate
thisrisk. In addition, we advise caution for clinicianswho intend
to usethistool asapredictive guide, especially for survivability
analysis. Clinicians must bal ance the predictions from this tool
against their practical experience.

In collaboration with DGS, our predictors are expected to be
provided within public hospitals and care contact centers of the
Portuguese Hedlth Service (Servico Naciona de Salde),
particularly to support remote care monitoring decisions.

The decision support system is available as a software tool on
GitHub [34].

Discussion

Principal Findings

This work offers a discussion on the predictability of
hospitalization needs, ICU admissions, respiratory assistance,
and survivability outcome in individuals infected with
SARS-CoV-2 in Portugal as of June 30, 2020. A retrospective
cohort with all confirmed COVID-19 cases since March,
encompassing demographic and comorbidity variables, was
considered as the target population in this study.

The results for the given cohort reveal that (1) over 75% of
hospitalization needs can be identified at the time of
SARS-CoV-2 testing (with >50% precision); (2) ICU needsare
generally less predictable at both the pre- and posthospitalization
stages in the given cohort; (3) respiratory assistance needs
(including ventilation support, oxygen therapy, and combined
ventilation-oxygen support) achieved recall levels above 60%

https://www.jmir.org/2021/4/e26075

(with >50% precision); (4) death risk along different stages
(testing time, after hospitalization, and after ICU admission)
had the highest degree of predictability.

The predictive models yielding better accuracy performance
were associative classifiers, particularly XGBoost and
RandomForests, neural networks with hyperparameterized
architectures, and logistic regressors, with the optimal choice
varying in accordance with the target variable and evaluation
measure.

Publications on COVID-19 using machine learning models for
different outcomes have been rapidly increasing. Gao et al [35]
developed a model that includes the mortality risk prediction
and reported an F1 ranging from 0.65 to 0.69 (x=0.61-0.65), in
line with our findings. Alternative studies [28,36,37] offer
additional results for generaizing results and identifying
population-specific differences. Yet, most of these studies do
not comprehensively assess models’ performance or the cohort
characteristics, impeding solid cross-population findings.

Limitations

This study has someinherent shortcomingsthat should be noted:
(2) the number of clinical variablesfor the outcomes of interest
were limited (eg, BMI and clinica symptoms were missing);
(2) further external validation of the sel ected modelsisrequired;
and (3) athough some inconsistencies (listed in the Cohort
Description section) and missing/unknown entriesin the original
DGS data set were excluded, data acquisition problems may
still persist and influence the outcomes of this work. The fully
autonomous and parameter-free nature of the proposed
computational approach/models alows it to be dynamically
retrained with updated data.
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Concluding Remarks Portuguese population, including both remote monitoring and
in-hospital care decisions. Predicting the most probable

tool without biological variables as input that can be used by ~ outcomes aong the life cycle of a SARS-CoV-2-infected
clinicians. The conducted work pinpoints the relevance of the Individud can identify patients who are expected to develop

proposed predictive models to aid medical decisions for the SVere illness, thus optimizing the allocation of health care
resources and supporting more vulnerable patients.

Inthiswork, we devel oped aweb-based clinical decision support
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