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Abstract

Background: In a previous study, we examined the use of deep learning models to classify the invasion depth (mucosa-confined
versus submucosa-invaded) of gastric neoplasms using endoscopic images. The external test accuracy reached 77.3%. However,
model establishment is labor intense, requiring high performance. Automated deep learning (AutoDL) models, which enable fast
searching of optimal neural architectures and hyperparameters without complex coding, have been developed.

Objective: The objective of this study was to establish AutoDL models to classify the invasion depth of gastric neoplasms.
Additionally, endoscopist–artificial intelligence interactions were explored.

Methods: The same 2899 endoscopic images that were employed to establish the previous model were used. A prospective
multicenter validation using 206 and 1597 novel images was conducted. The primary outcome was external test accuracy. Neuro-T,
Create ML Image Classifier, and AutoML Vision were used in establishing the models. Three doctors with different levels of
endoscopy expertise were asked to classify the invasion depth of gastric neoplasms for each image without AutoDL support, with
faulty AutoDL support, and with best performance AutoDL support in sequence.

Results: The Neuro-T–based model reached 89.3% (95% CI 85.1%-93.5%) external test accuracy. For the model establishment
time, Create ML Image Classifier showed the fastest time of 13 minutes while reaching 82.0% (95% CI 76.8%-87.2%) external
test accuracy. While the expert endoscopist's decisions were not influenced by AutoDL, the faulty AutoDL misled the endoscopy
trainee and the general physician. However, this was corrected by the support of the best performance AutoDL model. The trainee
gained the most benefit from the AutoDL support.

Conclusions: AutoDL is deemed useful for the on-site establishment of customized deep learning models. An inexperienced
endoscopist with at least a certain level of expertise can benefit from AutoDL support.
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Introduction

Artificial intelligence (AI) using deep learning (DL), which
mimics the intellectual function of humans, has been
increasingly adopted in clinical medicine, especially for
cognitive function in computer vision [1-3], including automated
image recognition, classification, and segmentation tasks [4-6].
Application of AI to endoscopic examination is noninvasive
and can further help in detecting hidden or hard-to-detect lesions
in real time. Moreover, automated determination of the optimum
classification—providing delineation of the lesions—may be
helpful to endoscopists, especially for inexperienced physicians.
Optimizing classification facilitates the appropriate selection
of high-risk patients who need additional workup or treatment
[4,7]. Current established AI models are in the research-based
format, which tend to have limited value in real-world clinical
practice. However, AI models can potentially be used as add-on
testing as a secondary assistant observer for endoscopists.

The accurate prediction of invasion depth for gastric neoplasms
is an essential skill of endoscopists [8,9]. Gastric neoplasms
confined to the mucosa or superficial submucosa are potential
candidates for endoscopic resection [9]. Thus, precisely
predicting the invasion depth is essential for determining the
therapeutic strategy. Prediction of the invasion depth is based
on the gross morphology of the lesions, and there are no standard
criteria for classifying invasion depth. Therefore, current practice
is limited by the inevitable interobserver variability and
inaccurate determination of the invasion depth in gastric
neoplasms [9].

The authors previously established DL models for classifying
the invasion depth (mucosa-confined versus submucosa-invaded)
of gastric neoplasms from endoscopic images using transfer
learning of pretrained convolutional neural networks (CNNs)
based on the PyTorch platform [10]. The external test accuracy
was able to reach 77.3% [9]. However, the establishment of a
DL model requires substantial time, and high performance is
needed before applying these models to real-world clinical
practice.

Automated deep learning (AutoDL) techniques, which enable
fast searching of optimal neural architectures and
hyperparameters without complex coding, have been widely
developed. This “off-the-shelf” software or platform can be
used without professional AI expertise and can easily be applied
to clinical practice with simple inference structures [11].

However, the performance of AI models established by data
scientists in the traditional manner and AutoDL models
established by health care researchers for the gastrointestinal
endoscopy field have not been directly compared. Moreover,
there are scarce data in terms of human-AI interactions. For
example, the reaction of endoscopists (ie, approval, indolence,
or disregard) to diagnoses made using an AI model remains
unknown [12]. This study aimed to establish AutoDL models
classifying invasion depth of gastric neoplasms using endoscopic
images and compare the diagnostic performance of the AutoDL
models with previous CNN models established in the traditional
way. Additionally, endoscopist-AI interactions using the newly
established model were further examined.

Methods

Construction of the Data Set
This study extends the previous research on this topic [9] by
constructing (Figure 1) and evaluating (Figure 2) experimental
DL models with AutoDL tools. In order to compare the
diagnostic performance of AutoDL–based models to the
previous CNN models, the same input images (2899 white-light
imaging endoscopic images) that were used to establish the
previous model were used again. The detailed data collection
process was described previously [9]. Briefly, between 2010
and 2017 in the Chuncheon Sacred Heart Hospital (Republic
of Korea), we enrolled consecutive patients with any type of
gastric neoplasms discovered during upper gastrointestinal
endoscopy and histologically confirmed. Endoscopic images
were collected from the in-hospital database in JPEG format,
with a minimum resolution of 640×480 pixels [9]. The same
previously used external test data set (206 white-light imaging
endoscopic images) was also used in classifying the performance
of the AutoDL models. This external test data set was
constructed by collecting images from consecutive patients who
underwent upper gastrointestinal endoscopy between 2019 and
2020, and all the images were mutually exclusive from those
of the training and internal validation data set (Table 1) [9].

To guarantee the generalizability of the performance of the
newly developed AutoDL model, an additional performance
verification (prospective validation) test with another external
test data set was conducted. This second external test data set,
including 1597 images, was collected from consecutive patients
who underwent upper gastrointestinal endoscopy at the Hallym
University Sacred Heart Hospital from 2018 to 2020 (Table 1).
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Figure 1. Schematic flow for the establishment of automated deep learning models in data construction.

Figure 2. Schematic flow for the establishment of automated deep learning models in performance evaluation.

Table 1. Summary of images in each data set.

Number of images

External test data set 2External test data set 1Training and internal validation data setInvasion depth of gastric neoplasms

15972062899Overall

13441261900Mucosa-confined lesions

73468727Low-grade dysplasia

11021421High-grade dysplasia

50037752Early gastric cancer

25380999Submucosa-invaded lesions

15523282Early gastric cancer

9857717Advanced gastric cancer

AutoDL Tools Used in the Study
AutoDL tools including Neuro-T (version 2.0.2; Neurocle Inc),
Create ML Image Classifier (Apple Inc), and Google Cloud
AutoML Vision (Google LLC) were used in this study.

Neuro-T has been defined as an AutoDL software that can
establish DL algorithms on its own for image recognition and
classification based on a graphical user interface (GUI). The
software’s algorithm analyzes the features of the data set and
self-discovers optimal hyperparameters, thus making it easy for
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non-AI experts to build the best models. Neuro-T also offers a
platform to establish anomaly detection models (supervised
anomaly detection based on the clustering algorithm with deep
neural networks). Anomaly detection is the identification of
observations that raise suspicions by differing significantly from
the majority of the training data. The neural network clustering
algorithm clusters each training sample and makes its own
cluster decision boundary for classifying the test sample into
normal class or abnormal class. Meanwhile, Create ML is
defined as a framework used to establish customized DL models
on the Mac operating system (Apple Inc); Image Classifier can
be accessed by GUI or Swift language code. DL models can be
established using image data sets through the self-learning
process of specific features. Google Cloud AutoML Vision is
a web-based service to build customized DL models with
automatic neural architecture searching and feature extraction.
These 3 AutoDL tools were used based on the manner of the
GUI (ie, no coding tool required) to build the DL models.

Preprocessing of Images
The authors used data augmentation methods—such as rotation,
and horizontal or vertical flipping of included images—and
image normalization with linear transformation in terms of 3
RGB channels in order to build the previous DL model [9].
However, AutoDL tools are determined to have data
preprocessing functions. Neuro-T has an automated image
normalization process with a resizing function for input images.
All of the included images were resized with a resolution of
512×480 pixels while building the Neuro-T–based models.
Create ML Image Classifier offers GUI–based data
augmentation options. These include 6 image data augmentation
methods, such as “add noise,” “blur,” “crop,” “expose,” “flip,”
or “rotate” functions. In order to identify the best models, we
conducted multiple experiments (with or without data
augmentation and single or combination data augmentation
options) in Create ML. In terms of AutoML Vision, no
GUI-based data augmentation option was determined.
Developers can add image augmentation codes using a Python
application programming interface. However, considering that
the aim of this study was to develop AutoDL models without
complex coding or AI expertise, we only selected the GUI-based
function without data augmentation while building the AutoML
Vision–based models.

Training of AutoDL Models
The 2899 input images were uploaded to each AutoDL tool.
Neuro-T and Create ML were considered on-premise software;
however, AutoML Vision is a cloud-based service. The input
images were uploaded to Neuro-T and Create ML, and a bucket
in Google Cloud Storage system was used for data uploading
in the AutoML Vision. After selecting data preprocessing
options (as described above, including resizing/normalization
in Neuro-T and image augmentation in Create ML), AutoDL
models were trained in each specified way of self-learning.

Images were then randomly split into training and internal
validation sets. The Neuro-T variable options—such as 9:1, 8:2,
or 7:3—were set as per the user’s preference. Multiple
experiments were further conducted to determine the model
with the best performance with variable splitting ratios.
However, Create ML Image Classifier automatically sets an
internal validation set using approximately 5.1% of the images;
thus, 149 images were allocated in the internal validation data
set. In AutoML Vision, the ratio of training, internal validation,
and internal test sets was 8:1:1. For the training of the anomaly
detection model in Neuro-T, only images with mucosa-confined
lesions could be used. Therefore, 1714 mucosa-confined images
were used for training, and 186 mucosa-confined images and
999 submucosa-invaded images were used for the internal
validation set. The number of iterations in training can be set
for Create ML. Experiments for the different iteration numbers
were conducted to prevent overfitting (ie, model learns too much
about training images, and predictions are not well generalized
to new images) [3].

The hardware system used for the training included NVIDIA
GeForce RTX 2080 Ti graphics processing units (GPUs), dual
Intel Xeon central processing units (CPUs), and 256 GB RAM
for the Neuro-T–based AutoDL models. Create ML–based
models were established on both the MacBook Pro laptop (2019
version, AMD Radeon Pro 5500M GPU, Intel Core i9 CPU,
and 32 GB RAM) and the Mac Pro workstation (2019 version,
AMD Radeon Pro Vega II GPU, Intel Xeon W CPU, and 192
GB RAM) environments in order to compare the training time
according to the hardware system.

Endoscopist-AI Interactions
Three doctors with different levels of endoscopy expertise were
asked to classify the invasion depth of gastric neoplasms for
each endoscopic image without AutoDL support, with faulty
AutoDL support, and with the support of the best performance
AutoDL in sequence (Figure 3). A board-certified endoscopist
with more than 7 years of endoscopic submucosal dissection
experience, an endoscopy trainee, and a general physician with
minimal endoscopy expertise participated in the blind test.
Endoscopic images (206 images from the external test data set)
without information about invasion depth were used. The first
test was conducted without AI support. To find the interaction
between endoscopists and poor-quality AI, blind testing was
conducted while providing the poor-quality model’s (faulty AI)
answers with only 50.0% external test accuracy. Another round
of blind testing was performed while providing the answers
from the best performance AutoDL model (89.3% external test
accuracy). The confidence of the raters in their answers was
recorded for each test.

A detailed description of the primary outcome and statistics are
described in Multimedia Appendix 1.
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Figure 3. Schematic flow for the establishment of automated deep learning (AutoDL) models in endoscopist–artificial intelligence interaction test.

Results

Characteristics of the Included Images
The detailed characteristics of the images included in this study
were described in the previous report [9]. In brief, 65.5% of the
images were mucosa-confined lesions and 34.5% were
determined to be submucosa-invaded lesions (2899 images for
the training and internal validation set). For the first external
test (206 images), 61.2% and 38.8% of the images were
determined to be mucosa-confined lesions and
submucosa-invaded lesions, respectively. For the second
external test (1597 images), 84.2% and 15.8% were identified
to be mucosa-confined lesions and submucosa-invaded lesions,
respectively. Table 1 shows a summary of the images used in
this study.

Diagnostic Performance of AutoDL Models for the
First External Test
The Neuro-T–based classification model reached 89.3% (95%
CI 85.1%-93.5%) accuracy, 89.1% (95% CI 84.8%-93.4%)
average precision, 88.4% (95% CI 84.0%-92.8%) average recall,
and 88.7% (95% CI 84.4%-93.0%) F1 score in the external test.
The total training time was approximately 13 hours. The external
test accuracy of the Neuro-T–based model was significantly
higher than that of the previous CNN model with the best
performance (ie, 77.3%, 95% CI 75.4%-79.3%; P=.005). The
confusion matrix for the Neuro-T–based model in the external
test is illustrated in Multimedia Appendix 2A. The detailed
information of the established model is as follows: batch size,

80; epochs, 84; number of layers, 53; optimizer, Adam; and
input height and width, 480×512 pixels. All images were resized
with interlinear interpolation, and the initial learning rate was
0.002.

The anomaly detection model established by Neuro-T was able
to reach 49.5% (95% CI 42.7%-56.3%) accuracy, 51.0% (95%
CI 44.2%-57.8%) average precision, 51.0% (95% CI
44.2%-57.8%) average recall, and 51.0% (95% CI
44.2%-57.8%) F1 score in the external test. The training time
was approximately 20 minutes. The confusion matrix for the
anomaly detection model is illustrated in Multimedia Appendix
2B.

For the Create ML Image Classifier, data augmentation options
combining “blur” and “rotate” provided the best performance
after 25 iterations. The external test accuracy reached 83.5%
(95% CI 78.4%-88.6%). The training time was approximately
76 minutes in the laptop environment, which was determined
to be not significantly different from the training time in the
workstation environment. Furthermore, the external test
accuracy of the Create ML–based model was not statistically
different from that of the previous model (P=.26). The confusion
matrix for the Create ML–based AutoDL model with the best
performance is presented in Multimedia Appendix 2C.

The fastest model establishment with high performance was
achieved by data augmentation options combining “add noise”
and “blur” after 25 iterations. The external test accuracy reached
82.0% (95% CI 76.8%-87.2%). The training time was
determined to be only about 13 minutes in the laptop
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environment, which was not different from the training time in
the workstation environment. Also, the external test accuracy
of the Create ML–based model was not statistically different
from that of the previously established CNN model (P=.45).
The confusion matrix for the Create ML–based AutoDL model
with the fastest building time and high performance is illustrated
in Multimedia Appendix 2D.

For the Google Cloud AutoML Vision model, external test
accuracy reached 83.0% (95% CI 77.9%-88.1%). The training

time was only 25 minutes (web cloud–based environment). The
external test accuracy for the AutoML Vision–based model was
not statistically different from that of the previous CNN model
(P=.31). The confusion matrix for the AutoML Vision–based
model is illustrated in Multimedia Appendix 2E.

The summary statistics of external test accuracy with internal
validation accuracy are shown in Table 2.

Table 2. Summary of external test accuracy with internal validation accuracy for each automated deep learning (AutoDL) model.

Training time
(minutes)

F1 score, % (95%
CI)

Recall, % (95% CI)Precision, % (95%
CI)

Accuracy, % (95%
CI)

AutoDL model

826Neuro-T–based model

M: 94.4 (91.1-
97.7); SM: 88.4
(82.1-94.7)

M: 96.8 (94.3-99.3);
SM: 84 (76.8-91.2)

Ma: 92.0 (88.1-

95.9); SMb: 93.3
(88.4-98.2)

92.4 (89.3-95.5)Internal validation performance
(n=290)

M: 91.3 (86.4-
96.2); SM: 86.1
(78.6-93.6)

M: 92.8 (88.3-97.3);
SM: 84.0 (76.0-
92.0)

M: 89.9 (84.6-95.2);
SM: 88.3 (81.3-
95.3)

89.3 (85.1-93.5)External test performance (n=290)

20Neuro-T–based anomaly detection model

M: 27.7 (21.3-
34.1); SM: 88.6
(86.6-90.6)

M: 23.7 (17.7-29.7);
SM: 91.0 (89.2-
92.8)

M: 33.3 (26.6-40.0);
SM: 86.2 (84.1-
88.3)

80.2 (77.9-82.5)Internal validation performance
(n=1185)

M: 51.4 (42.6-
60.2); SM: 47.5
(36.6-58.4)

M: 44.0 (35.3-52.7);
SM: 58.0 (47.3-
68.7)

M: 61.8 (53.3-70.3);
SM: 40.2 (29.5-
50.9)

49.5 (42.7-56.3)External test performance (n=206)

76Create ML–based model 1

M: 84.7 (77.0-
92.4); SM: 77.7
(67.6-87.8)

M: 89.3 (82.7-95.9);
SM: 72.3 (61.4-
83.2)

M: 80.6 (72.2-89.0);
SM: 83.9 (75.0-
92.8)

81.9 (75.7-88.1)Internal validation performance
(n=149)

M: 87.2 (81.3-
93.1); SM: 76.7
(67.5-85.9)

M: 92.8 (88.3-97.3);
SM: 69.1 (59.0-
79.2)

M: 82.3 (75.6-89.0);
SM: 86.2 (78.7-
93.7)

83.5 (78.4-88.6)External test performance (n=206)

13Create ML–based model 2

M: 84.4 (76.6-
92.2); SM: 78.4
(68.4-88.4)

M: 86.9 (79.7-94.1);
SM: 75.4 (64.9-
85.9)

M: 82.0 (73.8-90.2);
SM: 81.7 (72.3-
91.1)

81.9 (75.7-88.1)Internal validation performance
(n=149)

M: 86.1 (80.0-
92.2); SM: 73.4
(63.8-83.0)

M: 94.4 (90.4-98.4);
SM: 63.0 (52.5-
73.5)

M: 79.7 (72.6-86.8);
SM: 87.9 (80.8-
95.0)

82.0 (76.8-87.2)External test performance (n=206)

25AutoML Vision–based model

M: 88.6 (84.0-
93.1); SM: 77.2
(69.1-85.3)

M: 90.2 (86.0-94.4);
SM: 74.5 (66.0-
83.0)

M: 87.0 (82.3-91.7);
SM: 80 (72.2-87.8)

84.7 (80.6-88.8)Internal validation performance
(n=295)

M: 87.3 (81.5-
93.1); SM: 74.5
(65.0-84.0)

M: 96.0 (92.6-99.4);
SM: 63.0 (52.9-
73.1)

M: 80.0 (73.0-87.0);
SM: 91.1 (84.9-
97.3)

83.0 (77.9-88.1)External test performance (n=206)

aM: mucosa-confined lesions.
bSM: submucosa-invaded lesions.
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Additional Performance Verification to Gain
Generalization Potential in the Second External Test
For the 1597 images in the second external test, the AutoDL
model was determined to perform the best (Neuro-T–based),
reaching 88.6% (95% CI 87.0%-90.2%) accuracy, 83.7% (95%
CI 81.9%-85.5%) average precision, 68.5% (95% CI
66.2%-70.8%) average recall, and 75.4% (95% CI
73.3%-77.5%) F1 score.

Hypothetical Application of AutoDL Model
Hypothetical clinical application of the established AutoDL
model with the best performance was conducted using the first
external test data set, assuming that the AutoDL was applied in
order to determine the treatment (ie, endoscopic resection or
surgical resection), based on the invasion depth of the lesion.
Among the lesions with endoscopic resection (n=117), 2 lesions
(1.7%) were found to invade the submucosa and were resected
with additional surgery after endoscopic resection. The AutoDL
model correctly determined that these were submucosa-invaded
lesions. Thus, the model has the potential to prevent unnecessary
endoscopic procedures. Among the lesions with surgical
resection (n=89), 11 lesions (12.4%) were identified to be
mucosa-confined, having the potential for endoscopic resection.

The AutoDL model correctly determined the mucosa-confined
lesions in 7 of the 11 patients (7.9%). Thus, the model has the
potential to prevent unnecessary surgeries (Multimedia
Appendix 3).

Endoscopist-AI Interactions
Figure 4 and Table 3 show the external test accuracy of the 3
raters. The expert endoscopist’s decision was determined to
have not been influenced by the support of the AutoDL in the
consecutive tests. The faulty AutoDL model misled the decisions
of the endoscopy trainee and general physician, but the
difference was not statistically significant. However, support
from the best performance AutoDL model corrected this
misdirection. The endoscopy trainee benefited the most from
the support of the AutoDL model (P=.002). In the analysis of
whether the raters were sure of their answers, confident answers
showed a similar pattern to that of the overall results. In the
“unconfident answers” subgroup, the expert endoscopist’s
decisions were not influenced, and the trainee gained a
statistically significant benefit, even with the support of the
poor performance AutoDL model (P<.05). However, the general
physician did not benefit from the support of the AutoDL
models.

Figure 4. Endoscopist–artificial intelligence interactions. AutoDL: automated deep learning.
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Table 3. Summary of external test accuracy in endoscopist–artificial intelligence (AI) interactions.

P valuesExternal test accuracy, % (95% CI)

First test vs
third test

First test vs
second test

Third test: endoscopist with
best performance AI

Second test: endoscopist with
faulty AI

First test: endoscopist aloneRater

Expert endoscopist

.87.8790.3 (86.3-94.3), (186/206)90.3 (86.3-94.3), (186/206)90.8 (86.8-94.8), (187/206)All answers

.24.2390.6 (86.6-94.6), (184/203)90.6 (86.6-94.6), (182/201)93.8 (91.7-95.9), (181/193)Confident answer

.52.2066.7 (13.4-99.9), (2/3)80.0 (44.9-99.9), (4/5)46.2 (19.1-73.3), (6/13)Unconfident answer

Endoscopy trainee

.002.6781.6 (76.3-86.9), (168/206)66.5 (60.1-72.9), (137/206)68.4 (62.1-74.7), (141/206)All answers

.004.0692.2 (87.8-96.6), (130/141)71.1 (63.2-79.0), (91/128)80.6 (74.4-86.8), (125/155)Confident answer

.004.00258.5 (46.5-70.5), (38/65)59.0 (48.1-69.9), (46/78)31.4 (18.7-44.1), (16/51)Unconfident answer

General physician

.84.3864.1 (57.5-70.7), (132/206)62.1 (55.5-68.7), (128/206)65.0 (58.5-71.5), (134/206)All answers

.53.2774.2 (67.5-80.9), (121/163)71.6 (64.5-78.7), (111/155)77.4 (70.0-84.8), (96/124)Confident answer

.02.1425.6 (12.6-38.6), (11/43)33.3 (20.4-46.2), (17/51)46.3 (35.5-57.1), (38/82)Unconfident answer

Attention Map for Explainability
A class activation map to localize the discriminative regions
used by the AutoDL model to determine a specific class in the

image is presented for the Neuro-T model. Figure 5 shows the
correctly and incorrectly determined samples in the external
test using the Neuro-T–based AutoDL model.

Figure 5. Representative samples of the attention map (Neuro-T–based model). AutoDL: automated deep learning.

Discussion

AutoDL models were established using only GUI-based systems,
which surpassed or had a similar accuracy to that of the previous
model for the determination of the invasion depth of gastric
neoplasms using endoscopic images. The best performance
model showed an external test accuracy of 89.3%, which is

deemed much higher than the previous CNN model built in the
traditional manner. Furthermore, the authors performed an
external test to determine the generalizability, and the external
test was found to exhibit robust performance. As far as the
authors know, this is the highest performance achieved by an
AutoDL model in the context of gastric neoplasms. In previous
studies, the internal validation accuracy was 64.7% to 94.5%
for the discrimination of invasion depth in gastric cancers
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[13-16]. However, these models can only be applied after a
definite diagnosis of gastric cancer, which has limited value
due to various types of gastric neoplasms in real-world clinical
practice [9]. Moreover, no single study evaluated the external
test accuracy; thus, the previous tests lacked generalizability.

Creating a classification model using medical images through
transfer learning based on high performance CNNs is a
representative establishment method for AI models. However,
health care researchers often lack the AI expertise to directly
apply the models to clinical data to create the AI model [17].
Data scientists and endoscopists can collaborate to create AI
models. However, this process usually takes a substantial
amount of time and does not immediately reflect the unmet
needs of clinical practice.

AutoDL technology makes it possible for nonexperts to create
high-quality DL models even without AI expertise. These tools
are easy-to-use and only require data uploading to the
on-premise software or web cloud platform and simple labeling
for the correct classification [18]. After self-learning and model
fitting, AutoDL tools provide models ready for direct inference
or deployment in real-world practice. Establishing a model
requires considerably less time than traditional platform-based
model generation. In this study, the fastest establishment time
was only 13 minutes and provided an external test accuracy
(82.0%) that was similar to that of the previous CNN models
based on the laptop environment. In addition, Apple’s Create
ML and Google Cloud AutoML Vision are publicly available
platforms that anyone can download from the App Store or
access from the web cloud platform.

Endoscopists produce an enormous amount of image data in
their daily practice; often, they are forced to make instantaneous
medical judgments even during endoscopic procedures.
However, the burnout phenomenon of endoscopists is a serious
concern that needs to be addressed, as it affects concentration
and, possibly, medical judgment [19]. A previous study on
human-AI interactions suggested that applying a high-quality
DL model to clinical decision making improves diagnostic
performance compared with either DL models or physicians
alone; thus, it was deemed particularly beneficial for
less-experienced doctors [7].

Although AI is potentially efficacious in clinical practice, data
regarding endoscopist-AI interactions remain to be scarce. Based
on the findings in this study, inexperienced endoscopists with
at least a certain level of expertise can benefit from AutoDL
support. The endoscopy trainee—but not the general physician
or expert endoscopist—benefited from AI support in this study.
Most of the answers by the expert endoscopist were rated as
confident and were not influenced by the AI support (ie, possible
disagreement with or disregard for the AI answers). The
proportion of unconfident answers in the first test was the
highest for the general physician, and this proportion was
markedly decreased with the support of the faulty AI in the

second test. In the third test, the general physician appeared to
be confused by changes in the AI answers (from the faulty AI
answers to the best performance AI answers). The sequential
support by the faulty AI and then the best performance AI
confused the general physicians because of their minimal
endoscopy expertise. This highlights not only the importance
of robust answers provided by the AI but also the importance
of the baseline level of experience of AI users. Therefore, the
conclusion from the previous study [6] that inexperienced
doctors would benefit the most from AI support was not
reproduced in this study. Rather, endoscopists having at least
a certain level of expertise benefited from AI support.

Although this study established a high performance AutoDL
model and rigorously validated the model's performance, this
analysis has several inevitable limitations originating from
potential bias in data sets. First, the training images were
retrieved from a single institution, which might infer a selection
or spectrum bias. Because of the unique characteristics of
patients in each institution, medical AI models developed from
a single institution usually have limitations for widespread
implementation, indicating the importance of the external test
[5]. To compensate for this pitfall, we performed two rounds
of prospective validations and included images from another
institution. Second, the efficacy of inference for each established
model was not measured in clinical practice. Each established
AutoDL model employs a specified inference method, such as
website-based inference or edge computing–based application
inference. The efficacy of inference includes inference speed,
accuracy, easy applicability, simple control flow, energy
efficiency, and model size. Because inference is a different field
from that of this study, another comparative study will have to
be conducted for the best inference AutoDL model. Recently
developed machine learning or DL models in gastrointestinal
endoscopy are focused on improving the effectiveness rather
than the interpretability or efficiency. The most accurate model
in our study also showed longer establishment time than the
other models. There have been efficiency-effectiveness
trade-offs in the field of DL models. Although real-world
clinical application or inference time was not the primary
outcome in this study, efficiency-effectiveness trade-offs should
be considered in the context of real-world settings. Third, a
relatively small number of raters were included in the
endoscopist-AI interaction test. We only included one
representative physician in each endoscopy expertise level.
Large-scale studies evaluating more discrete expertise levels
would elucidate the future perspectives for the implementation
of AutoDL models in the clinical setting.

AutoDL has been considered as a useful tool for the on-site
establishment of customized DL models, and anyone can create
an AI model with the help of AutoDL. An inexperienced
endoscopist with at least a certain level of expertise can benefit
from AutoDL support.
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