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Abstract

Background: With the prevalence of cardiovascular diseases increasing worldwide, early prediction and accurate assessment
of heart failure (HF) risk are crucial to meet the clinical demand.

Objective: Our study objective was to develop machine learning (ML) models based on real-world electronic health records to
predict 1-year in-hospital mortality, use of positive inotropic agents, and 1-year all-cause readmission rate.

Methods: For this single-center study, we recruited patients with newly diagnosed HF hospitalized between December 2010
and August 2018 at the First Affiliated Hospital of Dalian Medical University (Liaoning Province, China). The models were
constructed for a population set (90:10 split of data set into training and test sets) using 79 variables during the first hospitalization.
Logistic regression, support vector machine, artificial neural network, random forest, and extreme gradient boosting models were
investigated for outcome predictions.

Results: Of the 13,602 patients with HF enrolled in the study, 537 (3.95%) died within 1 year and 2779 patients (20.43%) had
a history of use of positive inotropic agents. ML algorithms improved the performance of predictive models for 1-year in-hospital
mortality (areas under the curve [AUCs] 0.92-1.00), use of positive inotropic medication (AUCs 0.85-0.96), and 1-year readmission
rates (AUCs 0.63-0.96). A decision tree of mortality risk was created and stratified by single variables at levels of high-sensitivity

cardiac troponin I (<0.068 μg/L), followed by percentage of lymphocytes (<14.688%) and neutrophil count (4.870×109/L).

Conclusions: ML techniques based on a large scale of clinical variables can improve outcome predictions for patients with HF.
The mortality decision tree may contribute to guiding better clinical risk assessment and decision making.

(J Med Internet Res 2021;23(4):e24996) doi: 10.2196/24996
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Introduction

Heart failure (HF) syndrome is a life-threatening chronic
disorder with a global prevalence that has been rising
consistently over recent decades because of population aging,
shifts in disease spectrums, and improved survival rates among
patients with various cardiovascular diseases [1,2]. HF is
characterized by complex therapeutic regimens, frequent
hospitalizations, and a poor prognosis, resulting in a tremendous
health care burden [3]. In certain instances, these issues are also
fundamental targets of a strategy for HF prevention and
treatment [4,5]. It is crucial to discriminate accurately among
patients with HF to identify those who have a high risk of
in-hospital mortality and readmission, as well as to guide the
use of different therapies based on patients' features.

A prediction model was developed as an important risk
assessment tool and used in various health care areas over the
past decades. It has been recognized to facilitate early
identification of patients at disease or event risk and enables
effective interventions for those who might benefit most from
identifying specific risk factors [6,7]. Previous studies in the
field of cardiology, generally based on different populations
with HF, have constructed models that are relevant to prognosis
prediction, including the Seattle Heart Failure Model (SHFM)
[8], Munich score [9], Enhanced Feedback for Effective Cardiac
Treatment (EFFECT) scale [10], and Acute Decompensated
Heart Failure National Registry (ADHERE) [11]. Moreover,
several available parameters related to increased mortality have
been identified as well, such as age [10,12,13], concentration
of B-type natriuretic peptide (BNP) [14,15], urea nitrogen level
[10,12], and systolic blood pressure (SBP) [9,13]. Although the
model’s construction from such cohorts or databases provides
a level of concrete evidence, it is typically limited to large
volumes of clinical resources and unstructured data [16]. Given
the growing popularity of big data use and mining, data derived
from electronic health records (EHRs) are becoming more
available and accessible for clinical research.

Besides this, predictive models have been constructed in various
health care domains with a certain degree of success by
automated mining of EHRs, combined with machine learning
(ML) approaches [17], specifically for the prediction of HF
outcomes [18-20]. In contrast to previous studies of predictive
models for HF outcomes that apply traditional methods, recent
research is adopting ML techniques for predicting HF mortality,
readmission, and medication adherence, which might
demonstrate better performance in their predictions because of
their consideration of higher order and nonlinear relationships
between multidimensional variables [21].

In our study, we explored the use of the traditional
method—logistic regression (LR)—and the four novel ML
approaches—support vector machine (SVM), artificial neural
network (ANN), random forest (RF), and extreme gradient
boosting (XGBoost)—to predict prognostic outcomes for
subjects with HF in real-world settings. We demonstrated the
development of EHR-based models to predict the 1-year
in-hospital mortality, use of positive inotropic agents, and
all-cause readmissions in a single year.

Methods

Patients and Data Source
We collected the EHR data from hospitalized patients diagnosed
with HF at the First Affiliated Hospital of Dalian Medical
University (Liaoning Province, China) over 7 years between
December 2010 and August 2018. All patients with HF were
diagnosed and treated according to institutional guidelines.
Because the diagnostic terminologies of EHRs have been
structured and normalized according to the International
Statistical Classification of Diseases and Related Health
Problems, 10th Revision (ICD-10 [22]), newly diagnosed
patients with HF (aged >18 years) were screened by a
dynamically updated big data intelligence platform developed
by an artificial intelligence technology company in collaboration
with hospitals (Yidu Cloud Technology Co., Ltd). Each patient’s
data were extracted from various EHR systems integrated into
a single platform, including the hospital information system,
electronic medical record, radiation information system,
laboratory information system, ultrasound system, and
electrocardiogram system. The study was finally approved by
the ethics committee of the First Affiliated Hospital of Dalian
Medical University. Written informed consent was waived due
to the retrospective design.

Selection of Variables
The platform incorporates comprehensive and detailed data on
patients’ routine health care. Common and
cardiovascular-specific variables were structured and normalized
by natural language processing, ML techniques, and
well-defined logical rules. Considering the large scale of EHR
data and the advantages of ML techniques, candidate variables
with known clinical significance and inaccessible through
traditional medical records were collected in our study. We
excluded variables with missing values greater than 20%.
Finally, a total of 79 variables related to the first hospitalization
were extracted from a big data intelligence platform. The
features were as follows: demographics (age and sex), personal
history (smoking and drinking), history (comorbidities and
surgery), etiology, vital signs, routine laboratory examinations,
interventions, and medication use on admission (Multimedia
Appendix 1). Repeated measurements of vital signs and
laboratory tests from patients with HF were taken over different
periods to ensure data accuracy.

Outcomes
We established models using 5 algorithms separately to predict
the primary outcome: all-cause in-hospital mortality within 1
year. The secondary outcomes were (1) use of positive inotropic
agents for patients with HF and (2) all-cause readmission.
Mortality was defined as a clear record of death of an inpatient
within 1 year of hospitalization. The following commonly used
positive inotropic agents in clinical practice were selected for
our study: dopamine, dobutamine, milrinone, levosimendan,
and deslanoside. Readmission was defined as any patient with
an interval of more than 1 day from the last discharge until the
next admission; no readmitted patients died within 1 year of
hospitalization. Therefore, enrolled patients were labeled as
“deceased” or “survivors.”
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ML Model Development and Performance Evaluation
The synthetic minority oversampling technique was first
employed to address the imbalance in the data set, with a ratio
of 1:1 between deceased patients and survivors. It is common
for a minority to be oversampled by deriving new, “synthetic”
samples to alleviate imbalance [23].

The hold-out method was used to divide the data set into a
training/validation data set (90%) and a hold-out test set (10%).
Five approaches were explored with 10-fold cross-validation
for building models and adjusting parameters: LR, RF, SVM,
ANN, and XGBoost. The hold-out test set was used to evaluate
the best-performing models created with the training set. The
area under the curve (AUC) of the receiver operating
characteristic (ROC) curve was chosen as the primary evaluation
metric for our models, including accuracy, precision, and recall.
The Brier score (range of 0 to 1)—the average squared error
between the predicted and the actual value—was also commonly
represented as a “calibration” for overall measurement. Shapley
additive explanation (SHAP) values were used to evaluate
feature importance.

LR Method
LR is the most basic dichotomous linear method of model
selection that makes classification decisions. LR is superior in
measuring the probability between “0” and “1” based on the
relationships of binary classifications in continuous or
categorical variables [24]. We used the sklearn.linear module
to develop the LR models.

RF Method
RF is an algorithm that integrates multiple decision tree
classifiers. Each node of the decision tree represents a predictive
variable to separate the outcome classes by setting the optimal
threshold. The importance of features can also be obtained with
the sum of weights of the classifier’s nodes [25]. The RF method
is generally used to deal with thousands of input variables
without dimension reduction. We used the RF classifier from
the sklearn.ensemble module to develop the models. The related
parameters (n_estimators, max_features, max_depth, and
min_samples_split) were adjusted to prevent poor results and
overfitting.

SVM Method
As a dichotomous supervised algorithm, SVM can be used in
high-dimensional feature space. The best hyperplane can be
achieved using a kernel-based function for separating two
classes at maximum intervals [26].

ANN Method
A multilayer perceptron (MLP) classifier was implemented
using the sklearn.neural_network module to develop models
[27]. MLP is a popular ANN method that generally consists of
neurons from the input, hidden, and output layers. The data
were processed through weighted connections and activation
functions in the hidden layers [28]. In our study, the two hidden

layers had 40 and 20 neurons. The rectified linear unit was
chosen as their activation function.

XGBoost Method
XGBoost is one of the boosting methods; this algorithm aims
to integrate weak classifiers into a single robust classifier in an
iterative fashion [29]. This algorithm constructs a scalable
classification and regression tree in a boosting ensemble manner
on a gradient boosting decision tree basis, which can learn
nonlinear relationships among variables and outcomes flexibly
and accurately [30]. The small learning rate (0.1) indicates better
generalization. The tree number and maximum depth were
limited to 80 (estimators) and 3, respectively.

Statistical Analysis
All ML algorithms were performed using the scikit-learn
(version 0.21.1) package in Python (version 3.6.5; Python
Software Foundation), and statistical analysis was conducted
using an open-source Scipy (version 1.3.0) database from Python
(version 3.6.3). All categorical data were presented as
percentages. All continuous data performing a normal
distribution were presented as mean (SD); otherwise, they were
expressed as median (IQR). Student t tests or chi-square tests
were applied for group comparisons. P values <.05 were
considered statistically significant.

Results

Baseline Characteristics
A total of 13,602 hospitalized patients with newly diagnosed
HF were enrolled in this study, of whom 3.95% (n=537) died
in hospital within 1 year. The usage rate of positive inotropic
agents was 20.43% (n=2779). The overall all-cause readmission
rates of 30 days, 60 days, and 1 year for patients with HF were
4.83%, 14.77%, and 21.16%, respectively (n=657, n=2009, and
n=2878, respectively, of 13,602 cases). The eligible population’s
baseline characteristics were compared between 2 groups
according to survival status (Table 1). Patients in the deceased
group were older than those in the survivor group (77 years,
IQR 66.5-83.0 years versus 72 years, IQR 63.0-80.0 years,
respectively). The proportion of male patients in both groups
was 52.5% (282/537 and 6860/13,065 in the deceased group
and survivor group, respectively). The number of patients with
comorbid diagnoses of diabetes, hypertension, and tumors was
remarkably different between the 2 groups (all P<.001).
Concerning the etiology of HF, the number of patients with
cardiomyopathy and cardiac arrhythmia was found to be
different between the deceased and survivor groups (both
P<.001). There was a significant difference in the vital signs
(heart rate and blood pressure) of patients with HF between the
2 groups (all P<.001). In-hospital medication use
(angiotensin-converting enzyme inhibitors [ACEIs] and
aldosterone receptor antagonists [ARBs]) was higher among
subjects who survived in the hospital (P<.001).
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Table 1. Demographic and clinical variables of the deceased and survivor groups (N=13,602).

P valueSurvivor groupDeceased groupVariables

13,065 (96.1)537 (3.9)Total patients, n (%)

Demographic information

.00372.0 (63.0-80.0)77.0 (66.5-83.0)Age (years), median (IQR)

.9976860 (52.5)282 (52.5)Gender (male), n (%)

.053282 (25.1)115 (21.4)Smoking history, n (%)

.191820 (13.9)64 (11.9)Drinking history, n (%)

Comorbidities, n (%)

<.0013593 (27.5)202 (37.6)Diabetes mellitus

<.0017073 (54.1)338 (62.9)Hypertension

.0038449 (64.7)313 (58.2)Dyslipidemia

.4750 (0.4)3 (0.5)COPDa

.005144 (1.1)13 (2.4)Chronic renal disease

<.001534 (4.1)46 (8.6)Tumors

Etiology of heart failure, n (%)

.027810 (59.8)349 (65.0)Coronary heart disease

<.0011207 (9.2)22 (4.1)Cardiomyopathy

.432389 (18.3)91 (16.9)Valvular heart disease

<.0015780 (44.2)193 (35.9)Cardiac arrhythmia

.222519 (19.3)115 (21.4)History of cardiovascular surgery

Vital signs, median (IQR)

Blood pressure (mmHg)

<.00180.0 (70.0-90.0)77.0 (68.0-84.0)Diastolic

<.001140.0 (120.0-152.0)130.0 (115.0-150.0)Systolic

<.00176.0 (68.0-90.0)84.0 (72.0-99.0)Heart rate (beats/min)

.6618.0 (17.0-19.0)19.0 (18.0-20.0)Respiratory rate (breaths/min)

.00336.2 (36.0-36.4)36.2 (36.0-36.5)Temperature

<.001NYHAb classification, n (%)

1424 (10.9)113 (21.0)IV

4006 (30.7)96 (17.9)III

1738 (13.3)22 (4.1)II

12 (0.1)0 (0)I

5291 (40.5)297 (55.3)None

Laboratory indicators at admission, median (IQR)

<.001322.9 (106.6-845.0)1053.5 (399.5-2383.3)BNPc

<.0010.03 (0.01-0.11)0.4 (0.1-5.2)hs-cTnld

<.0011.5 (0.8-2.6)2.8 (1.4-8.0)Creatine kinase MB (U/L)

<.001131.0 (117.0-144.0)115.0 (94.0-133.0)Hemoglobin (g/L)

.001193.0 (155.0-235.0)180.5 (125.8-242.0)Platelets

<.0016.6 (5.3-8.2)9.5 (6.4-14.0)White blood cells (×109/L)

<.0014.3 (3.9-4.8)3.9 (3.2-4.4)Red blood cells

.591.6 (1.1-2.1)1.1 (0.7-1.7)Lymphocytes
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P valueSurvivor groupDeceased groupVariables

<.0014.1 (3.1-5.5)7.1 (4.5-11.3)Neutrophils

.00410.7 (10.0-11.4)10.8 (10.0-11.7)Mean platelet volume (fL)

<.00138.7 (33.2-42.7)34.1 (26.1-39.7)Hematocrit

.550.02 (0.01-0.04)0.02 (0.01-0.03)Basophils (×109/L)

<.0010.5 (0.4-0.7)0.6 (0.4-0.9)Monocytes (×109/L)

<.0017.9 (6.4-9.7)6.7 (4.5-9.0)Monocytes (%)

.6291.0 (87.9-94.2)91.1 (87.8-94.2)Mean corpuscular volume (fL)

.200.1 (0.1-0.3)0.4 (0.1-1.9)Procalcitonin

<.00163.1 (55.5-71.1)78.3 (67.6-87.2)Neutrophils (%)

<.0010.4 (0.2-0.5)0.2 (0.1-0.4)Basophils (%)

<.0011.7 (0.9-2.9)0.8 (0.2-1.9)Eosinophils (%)

.0020.1 (0.1-0.2)0.1 (0.03-0.2)Eosinophils (×109/L)

<.00125.6 (18.2-32.7)12.7 (6.7-21.4)Lymphocytes (%)

<.00114.5 (10.5-20.5)16.3 (11.2-27.3)Total bilirubin (µmol/L)

<.0014.6 (3.2-6.9)5.4 (3.4-9.4)Direct bilirubin (µmol/L)

<.0015.5 (4.9-6.8)6.5 (5.1-9.3)Glucose (mmol/L)

.08152.1 (83.0-277.0)165.3 (84.7-307.5)Lipoprotein(a) (mg/L)

.011.5 (1.0-39.0)1.3 (0.9-34.0)High-density lipoprotein cholesterol (mmol/L)

.083.5 (2.3-90.0)3.2 (2.2-80.0)Low-density lipoprotein cholesterol (mmol/L)

.035.8 (4.2-155.0)5.3 (3.9-137.3)Total cholesterol (mmol/L)

.012.1 (1.1-91.0)1.8 (1.0-80.0)Triglycerides (mmol/L)

<.00120.0 (13.0-33.0)27.0 (14.0-61.0)Alanine aminotransferase (U/L)

<.00121.0 (16.0-30.0)36.0 (20.0-101.0)Aspartate aminotransferase (U/L)

<.00135.0 (22.0-63.0)46.0 (25.0-87.0)Gamma-glutamyl transferase (U/L)

<.00139.3 (36.2-41.9)35.0 (30.6-38.6)Albumin (g/L)

<.00126.7 (23.6-30.3)28.6 (24.4-32.9)Globulin (g/L)

<.0011.5 (1.3-1.7)1.2 (1.0-1.5)Albumin/globulin ratio

<.00165.9 (61.5-70.4)63.1 (58.1-69.3)Total protein (g/L)

<.00177.0 (62.0-98.0)110.0 (77.0-201.0)Creatinine (μmol/L)

<.001141.0 (138.8-143.0)138.5 (135.0-142.0)Sodium (mmol/L)

<.0014.0 (3.7-4.3)4.0 (3.7-4.5)Potassium (mmol/L)

<.0012.2 (2.1-2.3)2.1 (2.0-2.2)Calcium (mmol/L)

<.001390.0 (311.0-489.0)446.0 (321.8-611.3)Uric acid (μmol/L)

<.0017.1 (5.6-9.5)11.4 (7.4-19.3)Urea (mmol/L)

<.00174.0 (62.0-92.0)84.0 (69.0-116.0)Alkaline phosphatase (U/L)

<.001292.0 (229.0-363.0)210.5 (148.0-281.0)Acetylcholinesterase (U/L)

<.0011.1 (1.0-1.21)1.2 (1.1-1.4)International normalized ratio

<.00111.9 (11.0-13.2)13.2 (11.9-15.8)Prothrombin time (s)

<.0013.0 (2.5-3.7)3.6 (2.7-4.5)Fasting blood glucose (g/L)

<.00126.8 (23.9-30.8)31.7 (26.5-41.8)Activated partial thromboplastin time (s)

Use of devices during hospitalization, n (%)

.6942 (0.3)2 (0.4)Cardiac resynchronization therapy
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P valueSurvivor groupDeceased groupVariables

.6432 (0.2)0 (0)ICDe implantation

.002350 (2.7)3 (0.6)Permanent pacemaker

>.9915 (0.1)0 (0)Temporary pacemaker

Medication use during hospitalization, n (%)

<.0017967 (61.0)207 (38.5)ACEIf/ARBg

.2510,199 (78.1)408 (76.0)β-blocker

<.0018364 (64.0)266 (49.5)Aldosterone antagonist

.0028399 (64.3)310 (57.7)Statin

.478255 (63.2)331 (61.6)Aspirin

<.00110,927 (83.6)508 (94.6)Diuretic

.0042424 (18.6)73 (13.6)Digoxin

Outcome, n (%)

Positive inotropic agents use

<.0011407 (10.8)319 (59.4)Dopamine

<.001225 (1.7)39 (7.3)Dobutamine hydrochloride

<.001325 (2.5)52 (9.7)Milrinone

.00237 (0.3)7 (1.3)Levosimendan

<.0011132 (8.7)129 (24.0)Lanatoside C

Readmissions

<.001604 (4.6)53 (9.9)30 days

<.0011880 (14.4)129 (24.0)180 days

<.0012716 (20.8)162 (30.2)1 year

aCOPD: chronic obstructive pulmonary disease.
bNYHA: New York Heart Association.
cBNP: B-type natriuretic peptide.
dhs-cTnI: high-sensitivity cardiac troponin I.
eICD: implantable cardioverter defibrillator.
fACEI: angiotensin-converting enzyme inhibitor.
gARB: angiotensin receptor blocker.

1-Year In-Hospital Mortality Models
Predictive models for 1-year in-hospital mortality risk
assessment were conducted using 5 algorithms. Figure 1A shows
the performances of models in the form of AUC. The AUC
values for LR, RF, SVM, ANN, and XGBoost were 0.91, 1.00,
0.99, 0.99, and 0.99, respectively. RF had relatively higher AUC

than the other algorithms. The calibration plots of our 5 methods
are presented in Figure 2A. Four ML models had an accuracy
of higher than 95%. Regarding precision, the RF and ANN
algorithms emerged as the best, achieving the highest precision
(0.96), followed by the SVM (0.93) and XGBoost (0.91)
algorithms. The Brier score for RF and ANN was the lowest
(0.03) (Table 2).
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Figure 1. Receiver operating characteristic (ROC) curves using the synthetic minority oversampling technique for the logistic regression, random
forest, support vector machine, artificial neural network (ANN), and extreme gradient boosting (XGBoost) models in predicting (A) 1-year in-hospital
mortality, (B) use of positive inotropic agents, and (C) 1-year all-cause readmission. AUC: area under the curve.
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Figure 2. Calibration plots using the synthetic minority oversampling technique for the logistic regression, random forest, support vector machine,
artificial neural network (ANN), and extreme gradient boosting (XGBoost) models in predicting (A) 1-year in-hospital mortality, (B) use of positive
inotropic agents, and (C) 1-year all-cause readmission.

Table 2. Performance of the machine learning approaches for the estimation of 1-year in-hospital all-cause mortality.

Brier scoreF1RecallPrecisionAccuracyAUCaModel

0.120.830.800.860.830.91LRb

0.030.970.980.960.971.00RFc

0.160.940.960.930.940.99SVMd

0.030.970.980.960.970.99ANNe

0.050.940.980.910.940.99XGBoostf

aAUC: area under the curve.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
eANN: artificial neural network.
fXGBoost: extreme gradient boosting.

Furthermore, we explored the importance of the features that
affect mortality prediction by applying RF and XGBoost
approaches (Figure 3), with the weight assignment of each
feature expressed as a SHAP value based on whether it favored
judgment in survival. As shown in Figure 3A and 3B, blood
urea, high-sensitivity cardiac troponin I (hs-cTnI), creatinine,

aspartate aminotransferase (AST), and percentage of
lymphocytes were the top 5 related variables in mortality
prediction. In contrast, hs-cTnI was the most crucial marker
identified using the XGBoost algorithm, followed by urea,
respiration rate, percentage of basophils, and percentage of
neutrophils.
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Figure 3. Shapley additive explanation (SHAP) plots for the machine learning models in predicting (A) 1-year in-hospital mortality using the random
forest (RF) method, (B) 1-year in-hospital mortality using the extreme gradient boosting (XGBoost) method, (C) use of positive inotropic agents using
the RF method, (D) use of positive inotropic agents using the XGBoost method, (E) 1-year all-cause readmission using the support vector machine
(SVM) method, and (F) 1-year all-cause readmission using the XGBoost method. ALB: albumin; ALP: alkaline phosphatase; APTT: activated partial
thromboplastin time; AST: aspartate aminotransferase; Baso: basophils; BNP: B-type natriuretic peptide; ChE: cholinesterase: CK-MB: creatine kinase
MB; COPD: chronic obstructive pulmonary disease; Crea: creatinine; DBIL: direct bilirubin; Fbg: fibrinogen; GGT: gamma-glutamyl transferase; GLO:
globulin; Glu: glucose; Hct: hematocrit; HDL-C: high-density lipoprotein cholesterol; HGB: hemoglobin; hs-cTnI: high-sensitivity cardiac troponin I;
INR: international normalized ratio; LDL-C: low-density lipoprotein cholesterol; Lymph(%): percentage of lymphocytes; Mono: monocytes; MPV:
mean platelet volume; Na: sodium; Neut: neutrophils; NYHA: New York Heart Association; PT: prothrombin time; TC: total cholesterol; Systolic:
systolic blood pressure; TG: triglycerides; TP: total protein; UA: uric acid; WBC: white blood cells.
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Positive Inotropic Agent Use Models
Figure 1B demonstrates the ROC of the predictive models in
patients' use of positive inotropic agents. In comparing AUCs
among the 5 models, the XGBoost and RF models had the
highest AUC value (0.96), followed by the SVM model (0.91),

ANN model (0.90), and LR model (0.85). In consideration of
precision (0.85) and recall (0.91) values, RF was determined to
be the best method for prediction (Table 3). As shown in
calibration curves (Figure 2B), a nonparametric plot of the RF
algorithm was close along the ideal diagonal line and had the
lowest Brier score (0.10).

Table 3. Performance of the machine learning approaches for the estimation of use of positive inotropic agents.

Brier scoreF1RecallPrecisionAccuracyAUCaModel

0.160.780.790.770.780.85LRb

0.100.880.910.850.870.96RFc

0.170.840.880.830.850.91SVMd

0.120.840.940.780.830.90ANNe

0.110.860.940.790.840.96XGBoostf

aAUC: area under the curve.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
eANN: artificial neural network.
fXGBoost: extreme gradient boosting.

Interestingly, BNP, international normalized ratio (INR), pulse
rate, hs-cTnI, and AST were the top 5 markers predicting use
of positive inotropic agents by the RF approach. BNP was also
identified as a critical marker for forecasting positive inotropic
agent use in the XGBoost model, followed by basophil counts,
pulse rate, INR, and hs-cTnI (Figure 3C and 3D).

1-Year All-Cause Readmission Models
The discrimination of different models for 1-year all-cause
readmissions represented by AUCs is shown in Figure 1C. The
SVM method achieved the best performance in terms of 1-year
readmission prediction (AUC 0.96). XGBoost showed the lowest
Brier score for calibration plots (0.12), followed by RF (0.13),
SVM (0.16), ANN (0.18), and LR (0.24) (Figure 2C and Table
4).

Table 4. Performance of the machine learning approaches for the estimation of 1-year all-cause readmission.

Brier scoreF1RecallPrecisionAccuracyAUCaModel

0.240.580.590.570.570.63LRb

0.130.820.810.830.820.91RFc

0.160.910.960.860.900.96SVMd

0.180.740.750.740.740.82ANNe

0.120.830.840.820.830.92XGBoostf

aAUC: area under the curve.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
eANN: artificial neural network.
fXGBoost: extreme gradient boosting.

Of the 79 variables analyzed, the presence of diabetes was
identified as the most important marker for prediction of 1-year
all-cause readmission using the SVM method, whereas basophil
count was a significant predictor of readmission using the
XGBoost algorithm. There appeared to be a certain discrepancy

in the ranking of other features derived by the two methods
(Figure 3E and 3F).

Mortality Risk Assessment Model
The patients were divided into subgroups of high-, intermediate-,
and low-risk in-hospital mortality according to the cutoff value
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of various variables obtained using the XGBoost algorithm
(Figure 4). Of the 79 variables, the hs-cTnI level (<0.068 μg/L)
was identified as the first single predictor to discriminate
between deceased and surviving patients. The next discriminator
in the left node of hs-cTnI was the percentage of lymphocytes
at a discrimination level of <14.688%; conversely, the next
discriminator in the right node of hs-cTnI was neutrophil count

at a cutoff value of less than 4.870×109/L. Subsequently, the

patients with HF were stratified by these branch points: high
risk (hs-cTnI <0.068 μg/L, percentage of lymphocytes
<14.688%, and cholinesterase <187.916 U/L); low risk (hs-cTnI
<0.068 μg/L, percentage of lymphocytes ≥14.688%, and urea
<10.113 mmol/L); intermediate risk 1 (hs-cTnI ≥0.068 μg/L,

neutrophil count ≥4.870×109/L, and AST <29.003 U/L); and
intermediate risk 2 (hs-cTnI ≥0.068 μg/L, neutrophil count

<4.870×109/L, and respiratory rate <18.003 breaths/min).

Figure 4. Predictors of 1-year in-hospital mortality and risk stratification using an extreme gradient boosting (XGBoost) algorithm. AST: aspartate
transaminase; ChE: cholinesterase; HF: heart failure; hs-cTnI: high-sensitivity cardiac troponin I; Lymph%: percentage of lymphocytes; neut: neutrophil
count; RR: respiration rate.

Discussion

Principal Findings
In our study, the EHR data–driven prognostic models based on
5 different ML algorithms were developed for predicting 1-year
in-hospital mortality, use of positive inotropic agents, and
all-cause readmissions within 1 year for patients with HF in a
single Chinese class A tertiary comprehensive hospital. These
ML models produced better predictive values for prognostic
outcomes by growing interpretability than traditional linear
methods. Besides, the novel ML techniques could take
advantage of a large scale of complex, high-dimensional
variables to widen the scope of HF predictive indicators
concerning prognostic outcomes.

An integrated EHR system comprises various data resources,
including patients’ demographic data, diagnostic information,
laboratory test results, and prescriptions. However, many experts
revealed that the availability of EHR-derived data is a
prerequisite for promoting real-world studies [31,32]. In our
study, the structured EHR data from over 10,000 patients in
different years can be used directly for analysis without bias of
data collection and clinical definitions. A total of 79 variables
were applied from EHRs, including demographic information
(n=4), current and previous disease history (n=8), HF diagnosis
(n=3), vital signs (n=5), laboratory measurements (n=48),
interventions (n=4), and medications (n=7). In general, the final
target of using rich data derived from mature EHR systems is
also patient outcome predictions. With the advancement of data
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science, different kinds of ML techniques have been broadly
employed for model training because of their deep data
processing and decision-making capabilities [33]. Compared
with previous studies using the traditional LR method [11,20],
our results provide better discrimination of risk for prognostic
outcomes in a population of patients hospitalized for HF by
using ML approaches. The strength of the algorithm could
establish complex models and make accurate decisions in
relevant big data sets. Besides, far more variables were allowed
for modeling by using ML algorithms. Given the 5 methods in
the present study, LR was considered the commonly used
method in various fields of medicine [12,18]. The RF algorithm
involves multiple decision tree creations that identify important
predictive features with better accuracy in processing large
numbers of highly nonlinear data [20,34]. ANN is a complex
network method connected by a large number of simple neurons
and simulates the human brain in parallel processing and
nonlinear transformation [35]. The SVM approach is designed
to build a good classifier using a nonlinear decision boundary
between classes of variables that enables the labels from one or
more feature vectors [36]. From the perspective of AUC values,
it is important to mention that XGBoost performed better than
the other 4 methods in predicting 1-year in-hospital mortality,
use of positive inotropic agents, and 1-year all-cause readmission
in patients with HF. The method’s dominant advantages are its
ability to deal with missing values and integrate the power of
weaker classifiers by creating combined and weighted variables.
Relevant parameters were set to particular values.

Several traditional prognostic models have been established to
estimate mortality in hospitalized patients with HF. Our results
are consistent with the previous studies of 1-year mortality
prediction while demonstrating a better predictive capability.
Our study, which predicted outcomes for 13,602 patients with
HF using 79 predictive variables, indicated that the ML
approaches are superior to the EFFECT method (AUC 0.77) in
predicting mortality, with an average AUC of 0.81 [10]. The
classic SHFM study showed mortality prediction results within
1 year with AUCs of 0.729-0.76 [37], although the AUC value
can be enhanced to 0.78 by combining the SHFM with the BNP
level [38]. Furthermore, variables known to be associated with
mortality in patients with HF were demonstrated in various
previous models. Age, SBP, and level of blood urea nitrogen
(BUN) were confirmed as the strongest independent predictors
by the EFFECT model [10]. In the landmark Randomized
Evaluation of Mechanical Assistance for the Treatment of
Congestive Heart Failure (REMATCH) trial model [39], platelet
counts, albumin, INR, and AST were associated with 1-year
mortality in the HF population with implantable devices. The
New York Heart Association class; use of beta-blockers, ACEIs,
or ARBs; and presence of heart valve disease or atrial fibrillation
remarkably influenced all-cause mortality in the Cardiac and
Comorbid Conditions Heart Failure (3C-HF) score [40]. Our
study obtained similar findings, demonstrating that in addition
to specific biomarkers of HF or myocardial damage, renal
function, coagulation indicators, and inflammation indicators
are also critical factors regarding prognosis. Therefore, perhaps
adopting a large scale of EHR-derived data could enhance
discrimination and the predictive range of prognostic outcomes.

Readmission rate is a common index used to assess the quality
of health care services for patient populations. Currently, most
hospitals and institutions still implement traditional readmission
risk models and certain variables to infer readmission probability
[41]. Like previous prediction models, we found that the
accuracy of mortality prediction was moderate, but the model
was relatively poor at predicting readmission rates. Golas et al
[42] suggested that the overall 30-day readmission rate was not
improved by various ML algorithms, with AUC values around
0.66. Even compared with the established models for HF
readmission (AUCs 0.6-0.7), our best ML model is still
encouraging [43]. The variables that influenced mortality in the
ML models were different from those of readmission among
patients with HF. We believe that conventional diagnostic
biomarkers (BNP) and vital signs (respiration rate and
temperature) could dominate readmission prediction. However,
diabetes, coronary heart disease, and gender were the top 3
significant features for predicting readmission using the SVM
method. At an interpretable level, a high model AUC does not
necessarily indicate that it best fits the scenario.

Positive inotropic agents are a kind of drug that can increase
myocardial contractility and cardiac output and are often used
to treat patients with HF. Among the drugs included in our
study, dopamine and dobutamine have mainly inotropic effects,
whereas milrinone, lanatoside C, and levosimendan have extra
vasodilation functions [44]. However, they have been gradually
limited because of poorer outcomes of patients after accepting
inotropic therapy. Thus, controversy still exists regarding their
reasonable use in clinical practice. Our study was found to have
better performance than two other prognostic models in
predicting the use of positive inotropic agents (AUCs in the
range of 0.87 to 0.96). Furthermore, this study’s findings are
consistent with Aljundi et al [45], who reported that the
conventional cardiac biomarker BNP was predictive of inotropic
agent use. Many studies have confirmed that
comorbidities—such as dyslipidemia, chronic renal and liver
impairment, and hyperglycemia—are associated with a higher
likelihood of accepting inotropic treatment. Other critically
associated variables (INR, AST, and basophil count) were
obtained from our models and showed consistent results with
common clinical thought. Our models provided good
discrimination among patients at high risk for mortality, use of
positive inotropic agents, and readmission. Incorporating more
variables based on traditional models is of great significance to
public health transformation for early identification and
individualized intervention of people at high risk of HF
outcomes.

The study’s strength was that we also developed a stratified risk
assessment tool for the prediction of 1-year in-hospital mortality
using the XGBoost algorithm. Far more features—including
hs-cTnl, percentage of lymphocytes, percentage of neutrophils,
cholinesterase, urea, respiratory rate, and AST—were identified
for the first time using an ML approach for mortality prediction.
Neutrophilia was reported to be associated with an increased
incidence of acute decompensated HF (ADHF) in patients with
acute myocardial infarction, and lymphopenia is related to poor
prognosis in patients with HF [46,47]. Results from Seo et al
[48] showed that cholinesterase was a simple marker for
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predicting adverse outcomes in patients with ADHF and tended
to provide more accurate prognostic information than other
objective nutritional features. These results can be attributed to
the dimensionality and breadth of EHR-based data, facilitating
the real-world study of HF in risk stratification, decision making,
and disease management from multiple perspectives. Various
HF risk models for predicting mortality have been developed
abroad. The ADHERE risk tree by regression analysis [12] has
demonstrated that patients with ADHF at low, intermediate,
and high risk for in-hospital mortality can be easily identified
using BUN, SBP, and creatinine obtained on hospital admission.
The MUSIC risk model [49] showed that risk markers including
atrial fibrillation, hyponatremia ≤138 mEq/L, N-terminal
pro-brain natriuretic peptide >1.000 ng/L, and troponin positive
were associated with cardiac mortality in a real-life setting.
However, a limitation of the previous model is that it was based
on a specific population of patients with HF (ie, symptomatic
chronic HF). It should be noted that the etiology, clinical
characteristics, and treatments of different phenotypes of HF
are quite distinct. Therefore, we compiled all types of patients
with HF in this study; it follows that the risk factors predicting
mortality are likely to have been more comprehensive and
provide new insights for further studies in specific subgroups.
These markers possibly provide a more accurate risk evaluation
of patients with HF, allowing early implementation of the

appropriate intervention in daily public health practice, which
leads to better outcomes in patients with HF.

There are several limitations to our study that are worth
mentioning. First, this was an in-hospital outcome prediction
study based on retrospective use of EHR-derived data. Although
our models’ performances were considerable on their own, the
predictive power could be further adjusted and compared with
the established reference tools. Second, the number of patients
who died was small compared with the number of surviving
subjects; although rich in terms of clinical variables, the
imbalance problem remained. Third, validation in an external
cohort was not done in the present study but is planned for
subsequent analysis. Fourth, different phenotypes of patients
with HF should be taken into account in further model
developments.

Conclusion
EHR-driven models, using novel ML algorithms, were
developed to predict 1-year in-hospital mortality, use of positive
inotropic agents, and 1-year all-cause readmission in patients
hospitalized with HF. The discrimination and performance of
our models also outperformed the existing tools constructed
using traditional techniques. Besides, identifying a greater range
of variables can further improve decisions regarding risk
assessment for patients with HF.
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