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Abstract

Background: Lifestyle diseases, because of adverse health behavior, are the foremost cause of death worldwide. An eCoach
system may encourage individuals to lead a healthy lifestyle with early health risk prediction, personalized recommendation
generation, and goal evaluation. Such an eCoach system needs to collect and transform distributed heterogenous health and
wellness data into meaningful information to train an artificially intelligent health risk prediction model. However, it may produce
a data compatibility dilemma. Our proposed eHealth ontology can increase interoperability between different heterogeneous
networks, provide situation awareness, help in data integration, and discover inferred knowledge. This “proof-of-concept” study
will help sensor, questionnaire, and interview data to be more organized for health risk prediction and personalized recommendation
generation targeting obesity as a study case.

Objective: The aim of this study is to develop an OWL-based ontology (UiA eHealth Ontology/UiAeHo) model to annotate
personal, physiological, behavioral, and contextual data from heterogeneous sources (sensor, questionnaire, and interview),
followed by structuring and standardizing of diverse descriptions to generate meaningful, practical, personalized, and contextual
lifestyle recommendations based on the defined rules.

Methods: We have developed a simulator to collect dummy personal, physiological, behavioral, and contextual data related to
artificial participants involved in health monitoring. We have integrated the concepts of “Semantic Sensor Network Ontology”
and “Systematized Nomenclature of Medicine—Clinical Terms” to develop our proposed eHealth ontology. The ontology has
been created using Protégé (version 5.x). We have used the Java-based “Jena Framework” (version 3.16) for building a semantic
web application that includes resource description framework (RDF) application programming interface (API), OWL API, native
tuple store (tuple database), and the SPARQL (Simple Protocol and RDF Query Language) query engine. The logical and structural
consistency of the proposed ontology has been evaluated with the “HermiT 1.4.3.x” ontology reasoner available in Protégé 5.x.

Results: The proposed ontology has been implemented for the study case “obesity.” However, it can be extended further to
other lifestyle diseases. “UiA eHealth Ontology” has been constructed using logical axioms, declaration axioms, classes, object
properties, and data properties. The ontology can be visualized with “Owl Viz,” and the formal representation has been used to
infer a participant’s health status using the “HermiT” reasoner. We have also developed a module for ontology verification that
behaves like a rule-based decision support system to predict the probability for health risk, based on the evaluation of the results
obtained from SPARQL queries. Furthermore, we discussed the potential lifestyle recommendation generation plan against
adverse behavioral risks.

Conclusions: This study has led to the creation of a meaningful, context-specific ontology to model massive, unintuitive, raw,
unstructured observations for health and wellness data (eg, sensors, interviews, questionnaires) and to annotate them with semantic
metadata to create a compact, intelligible abstraction for health risk predictions for individualized recommendation generation.
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Introduction

Overview
Lifestyle diseases are an economic burden to an individual,
household, employer, and government, and lead to financial
and productivity risks for poor and rich countries alike [1-3].
The key risk factors behind lifestyle diseases are the excessive
use of alcohol, inappropriate food plan, physical inactivity,
excessive salt intake, saturated fat consumption, and tobacco
use [1-3]. These result in excess weight gain, elevated blood
glucose, high blood pressure (BP), elevated total cholesterol in
the blood, and social isolation. Obesity is one of the foremost
lifestyle diseases that lead to other noncommunicable diseases
such as cardiovascular diseases, chronic obstructive pulmonary
disease, cancer, diabetes type II, hypertension, and depression
[1-3]. eHealth monitoring has become increasingly popular,
providing information and communications technology
(ICT)–based remote, timely care support to patients and health
care providers [1-3]. An eHealth virtual coaching
recommendation system can guide people and convey the
appropriate recommendations in context with enough time to
prevent and improve living with lifestyle diseases. It requires
capturing physiological (vital signs such as BP, pulse, lipid
profile, glycemic response, BMI), behavioral (sleep, diet,
exercise), and contextual data (position, and weather) from
secure wearable sensors, manual interactions, feedback, and
customized questionnaires over time, to train an artificial
intelligence (AI) model for behavior analysis and early
prediction of wellness trends and risks [4-6]. However, data
collection from heterogenous sources may lead to data
interoperability, annotation, and semantization problem.

Background and Problem Description
Health and wellness data collected from heterogeneous sources
(eg, multimodal sensors, interviews, questionnaires) are of
different format and lead to well-known problems in health
informatics, which are related to logical data representation,
aggregation, data analysis, data standardization, and data
interoperability [7,8]. Targeted personal, habitual, physiological,
activity, and nutrition data are generally collected via secure
wearable sensors, manual interactions, interviews, web-based
interactions, smartphone apps, customized questionnaires, and
feedback forms over time. Weather application programming
interfaces (APIs) and external weather sensors are useful for
the collection of contextual weather data over time. The
wearable activity monitors need to connect to a personal
smartphone via Bluetooth nearfield communication technology
(Bluetooth low energy [BLE]) [9,10]. The device can seamlessly
measure and transfer high-resolution raw acceleration data and
multiple activity parameters to a secure storage to process the
data further with a machine intelligence module [11]. High-end,
time-dependent activity data collection with wearable BLE
devices has become accessible and feasible for ubiquitous

monitoring. Some of the activity data, such as nonwear time or
intensive activity details, are questionnaire dependent.

Physiological data are collected either invasively (eg, glycemic
response, cholesterol level) or noninvasively (eg, weight, BP,
heart rate, body assessment data). The questionnaire-dependent
nutrition data are collected either daily or on an alternate day
or on a weekly basis. The assessment of nutrition data helps to
determine the type of food, amount of food, conceptual
information (temporal/spatial), dietary pattern, and intake of
alcohol or energy drinks. Some baseline data (medical history,
habit, preference, personal details, initial weight and height,
initial BP, and initial body assessment data) are collected during
the initial recruitment of the participant or every month for
either demographic statistics or population clustering or
individual goal assessment. Each data have their unit and range
following a standard guideline based on the context and domain
(eg, data on temperature are applicable for both health and
environment domain with a different range, meaning, and
context). Therefore, each measurement process owns separate
challenges related to logical or semantic data representation,
proper usage of data, and improving data reusability. The data
usability involves the transformation of data into an
understandable computer format. It creates a challenge to
systematically and syntactically analyze health and wellness
data in aggregation with other clinical data. Incorporation of
physical activity, diet as a care procedure, or investigating how
it afflicts healthy outcomes involves a more detailed and diverse
representation of participant’s behavioral level and physiological
condition [7,8,12,13].

Furthermore, the challenges of reusing the existing physiological
and behavioral data of a participant within the electronic health
record remain and include concerns related to opacity and
semantic inconsistency [7,8]. Besides, these health and wellness
data are still mostly hidden in clinical narratives with highly
variable forms of expression. In this regard, ontology can
provide a framework to allow the mentioned heterogeneous
health and wellness data to be organized, compact, structured,
consistent, machine understandable, and queried through
high-level specifications. Ontology helps to annotate diverse
health and wellness data with semantic metadata to increase
interoperability among heterogeneous networks, data integration,
discovery, and situation awareness. An eHealth ontology can
reuse the concept of existing, proven, well-accepted ontologies
(eg, semantic sensor network [SSN] ontology [14], Systematized
Nomenclature of Medicine—Clinical Terms [SNOMED CT]
ontology [15]) to enhance its vocabularies and better semantic
representation.

A rule-based decision support system (DSS) can use such an
eHealth ontology model to measure and predict health risks,
and to generate useful personalized recommendations following
proven clinical rules. If the collected health and wellness data
are not annotated accurately with semantic metadata in the
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medical domain, then the DSS may fail to deliver accurate
decisions to both physicians and patients or participants in the
form of incorrect recommendation plan, goal setting, and goal
evaluation. DSS decision inaccuracy may appear primarily due
to the following effects—improper design of knowledge base
(KB), the inadequacy of tools or technologies applied in the
execution of DSS, problems related to the ontology reasoning
engine, and issues associated with inferring new knowledge.

Aim of the Study
After studying existing ontology models, we found that many
ontologies and regulated terminologies cover aspects of obesity
and related chronic illness domains, but concept analysis remains
incomplete. After reviewing relevant ontologies, we proposed
a freshly created OWL-based ontology to deal with different
data inputs (internet of things [IoT] sensors, interviews, and
questionnaires) and annotate them with semantic data. The
proposed ontology will support data interoperability, logical
representation of collected health and wellness data in context,
and to build a rule-based DSS for health risk prediction related
to obesity and afterward generation of lifestyle recommendations
for a healthy lifestyle.

We have not evaluated the impact of the suggested
recommendations on participants as we executed the complete
scenario under a simulated environment. Still, we evaluated the
performance of the proposed ontology model. In the proposed
ontology, we annotated every participant’s data with semantic
web language rules and stored the generated OWL file in a
triple-store format for better readability (Multimedia Appendix
1). The proposed ontology model allows automatic inferencing,
efficient knowledge representation, balancing a trade-off
between complexity and eloquence, and reasoning about formal
knowledge. The entire study is divided into the following 2
segments: (1) ontology design and development and (2) its
verification. This study addresses the following identified
research questions:

(RQ-1) How to annotate distributed, heterogenous health and
wellness data received from sensors, questionnaires, and
interviews into meaningful information to build a future machine
learning model for health risk prediction for obesity?

(RQ-2) How to integrate existing IoT and medical ontologies
to design and develop proposed eHealth ontology for obesity
study case?

(RQ-3) How to verify the proposed ontology with rule-based
behavioral recommendation generation?

For this set of semantic data, which will be considered as
asserted true facts, the primary goal of the paper is to trigger
logical rules of the shape (A IMPLIES B) or trigger rules in a
logically equivalent way, that is, (NOT(A) OR B). If some
specific variables are inferred to be true, then some
recommendations shall be provided to the user from whom the
semantic data are originating.

Related Work
This section offers existing background knowledge applicable
for this research. It includes (1) a discussion of existing, relevant
eHealth ontology models for chronic illness, health monitoring,

and ontology-based DSS, (2) ontologies in the IoT domain for
modeling sensor data, and (3) ontologies in the medical domain.

Existing eHealth Ontology Models
Different research groups have conducted different studies on
eHealth ontology modeling for chronic illness, health
monitoring, and ontology-based clinical decision support system
(CDSS). For example, Kim et al [16] developed an ontology
model for obesity management with the nursing process in the
mobile device domain for spontaneous participant engagement
and continuous weight monitoring. The scope of the obesity
management included behavioral interventions, dietary
recommendations, and physical activity, and for this purpose,
the study included assessment data (BMI, sex, and hip-to-waist
circumference), inferred data for representing diagnosis results,
evaluations (cause of obesity, success, or failure of behavioral
modifications), and implementation (education, suggestion,
intervention). Sojic et al [17] modeled an obesity
domain–specific ontology with OWL to design inference
patterns to individualize health condition assessment as age and
gender specific. The ontology helped classify personal profiles
based on the changes of personal behavior or feature over time
and infer personal health status automatically, which are
important for obesity evaluation and prevention. The ontology
rules were written in semantic web rule language (SWRL). Kim
et al [18] proposed an ontology model for physical activity
(PACO) to support physical activity data interoperability. The
ontology was developed in Protégé (version 4.x), and the
FaCT++ reasoner verified its structural consistency. Lasierra
et al [19] developed an automatic ontology–based approach to
manage information in home-based scenarios for telemonitoring
services based on the automatic computing paradigm, namely,
MAPE (monitor, analyze, plan, and execute). They proposed
another 3-stage ontology-driven solution [20] (stage 1: ontology
design and implementation; stage 2: ontology application to
study personalization issues; and stage 3: software prototype
implementation) for giving personalized care to chronic patients
at home. The proposed ontology was designed in OWL DL
language in Protégé-OWL version 4.0.2 ontology editor and
was verified using FACT++ reasoner. The ontology
development involved data from heterogeneous sources, such
as clinical knowledge, data from medical devices, and patient’s
contextual data. Yao and Kumar [21] proposed a novel
CONFlexFlow (Clinical cONtext based Flexible workFlow)
approach using ontology modeling for incorporating flexible
and adaptive clinical pathways into CDSS. They developed 18
SWRL rules for practical explanation of heart failure. The model
was verified with the Pellet Reasoner Plug-in for Protégé version
3.4. Additionally, they developed a “proof-of-concept” prototype
of the proposed approach using the Drools framework. Chi et
al [22] constructed a chronic disease dietary consultation system
using web ontology language (OWL) and SWRL. The KB
involved heterogeneous sources of data and interaction of
factors, such as the illness stage, the physical condition of the
patient, the activity level, the quantity of food intake, and the
critical nutrient constraints. Rhayem et al [23] proposed an
ontology-based system (HealthIoT) for patient monitoring with
sensors, radiofrequency identification devices, and actuators.
They claimed that data obtained from medically connected
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devices are enormous, and thereby lack repressibility and
understandability, and are manipulated by other systems and
devices. Therefore, they proposed an ontology model to
represent both the connected medical devices and their data
based on a semantic rule, followed by model evaluation with
the proposed IoT Medicare system that supports decision making
after analyzing the vital signs of the patients. Galopin et al [24]
proposed an ontology-based prototype CDSS to manage patients
with multiple chronic disorders following clinical practice
guidelines. The KB decision rules were based on the “if–then”
rules following clinical practice guidelines and patient
observation data. Sherimon et al [25] proposed an ontology
system (OntoDiabetic) using OWL2 language to support a CDSS
for patients with cardiovascular disease, diabetic nephropathy,
and hypertension following clinical guidelines and “if–then”
decision rules. Hristoskova et al [26] proposed another
ontology-driven ambient intelligence framework to support
personalized medical detection and alert generation based on
the analysis of vital signs collected from the patients diagnosed
with congestive heart failure. The DSS system can classify
personalized congestive heart failure risk stages, and thereby,
notify patients through ambient intelligence’s inference engine.
Riaño et al [27] proposed an ontology-based CDSS for
monitoring and intervening chronically ill patients to prevent
critical conditions, such as incorrect diagnoses, undetected
comorbidities, missing information, and unobserved related
diseases. Jin and Kim [7] designed and implemented an eHealth
system using the IETF YANG ontology based on the SSN
concept. The approach assisted in the autoconfiguration of
eHealth sensors (responsible for collecting body temperature,
BP, electromyography, and galvanic skin response) with the
help of internet and communication technologies and querying
the sensor network with semantic interoperability support for
the proposed eHealth system. The proposed eHealth system
consisted of 3 main components: SSN (eHealth sensors, patient,
unified resource identifier [URI]), internet (eHealth server, KB),
and eHealth clients (patient, and professionals). The proposed
semantic model used a “YANG to JSON translator” to convert
YANG semantic model data to JSON semantic model data for
semantic interoperability before storing them in the database
(KB). Ganguly et al [28] proposed an ontology-based model to
manage semantic interoperability problems in eHealth in the
context of diet management for diabetes. The development of
the framework included rules of dialogue games, DSS with KB
(rule base and database), a dialogue model based on decision
mechanism, the syntax of dialogue game, decision mechanism,
and translational rules.

Ontologies in the Internet of Things Domain
Ontology [29] provides a framework for describing sensors.
SSN-XG (W3C Semantic Sensor Network Incubator Group)
developed the SSN ontology to model sensor devices, systems,
processes, and observations. SSN annotates sensor data with
semantic metadata (semantic sensor web) to increase
interoperability among diverse networks, data integration,
discovery, and situation awareness. The Sensor Model Language
(SensorML) was developed by the Open Geospatial Consortium
(OGC), which provides syntactic descriptions using XML to
describe sensors, observations, and measurements. While

SensorML provides an XML schema for defining sensors, it
lacks the repressibility provided by ontology languages such as
OWL [30-32]. Semantic sensor web, a combination of sensor
and semantic web technologies, helps to annotate spatial,
temporal, and thematic semantic metadata for the more artistic
representation of sensor data, advanced access, formal analysis
of sensor resources, and data standardization. SSN ontology is
used to describe sensor devices; sensing; sensor measurement
capabilities; and sensor observations, process, and systems
[30-32]. SSN allows its network, sensor devices, and data to be
installed, structured, managed, queried, and controlled through
high-level specifications. Sensors Annotation and Semantic
Mapping Language offers XML schema to transfer sensor data
and sources into the instances of SSN ontology based on a
predefined XML-based document (resource description
framework [RDF]), which is achieved automatically with sensor
data to RDF mapping algorithm [33]. “M3 Ontology”
(machine-to-machine) was developed based on the “SenML”
protocol (designed for simple sensor measurement), which is
an extension of SSN, to enable the interoperable design of
domain-specific or cross-domain-specific applications which
are termed as Semantic Web of Things [13]. AeroDAML, KIM,
M3 Semantic Annotator, MnM, and SemTag are different
available semantic annotators for sensor observations for their
corresponding semantic models (DAML, KIMO, M3, Kmi, and
TAP) [34]. Like SSN, there are other IoT-based contextual
ontologies, such as IoT-Ontology, IoT-Lite, and IoT-O [35].
SCUPA, CoBrA-Ont, CoDAMoS, PalSPOT, the delivery
context ontology, and Fuzzy-Onto are different IoT-based
ontologies for activity recognition [34]. URI, HTTP, HTML5,
REST, SOAP, Web Socket, Web feed, MQTT, CoAP, and
AMQP are some standard IoT protocols applicable to Web of
Things [14,34,36,37]. In this study, we integrated the concept
of SSN ontology to model sensor observations.

Ontologies in Medical Domain
SNOMED CT, 11th edition of the International Classification
of Diseases (ICD-11), Unified Medical Lexicon System (UMLS
semantic network), Foundational Model of Anatomy, OpenEHR,
Gene Ontology, DOLCE, Basic Formal Ontology, Cyc’s upper
ontology, Sowa’s top-level ontology, the top level of GALEN,
and Logical Observation Identifiers Names and Codes (LOINC)
are biomedical ontologies introduced to deliver semantic
interoperability and complete knowledge related to the specific
biological and medical domains [38]. Most laboratory and
clinical systems send out data using the HL7 (version 2) protocol
and in an HL7 message, the LOINC codes represent the
“question” for a laboratory test or experiment and the SNOMED
CT code represents the “answer.” In this study, we have reused
the SNOMED CT ontology for modeling the health condition
based on health and wellness data, and recommendation
generation [8]. SNOMED CT was designed in 1965 as a
controlled medical vocabulary licensed and supported by the
International Health Terminology SDO. It is an organized list
of a wide variety of clinical terminology defined with unique
codes (ICD). It covers a wide range of medical terminologies
for disorders and findings (what were observed!), procedures
(what was done!), events (what happened!),
substance/medication (what was consumed or administered!),
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and anything related to medical data. It offers a shared language
that enables a reliable way of indexing, storing, reclaiming, and
accumulating clinical data across fields and care sites. It is a
complete, multilingual clinical terminology that gives clinical
content and clarity for clinical documentation and reporting
[8,38,39].

As described above, most studies have developed ontologies
using OWL to solve the data interoperability problem. Still,
integration among the electronic health data, semantic rules,
semantic annotation, clinical guidelines, health risk prediction,
and personalized recommendation generation remains an issue
in eHealth. This study addresses it and proposes a prototype
ontology model for obesity as a case study, to integrate data
from heterogeneous sources (eg, sensor, questionnaire, and
interview) in order to enable data interoperability, information
search and recovery, and automatic interference. We integrated
SSN and SNOMED CT ontologies into our proposed eHealth
ontology because of their vast vocabularies, appropriateness,
and semantic capabilities as discussed above [40-43].

Methods

Basics of Ontology
Ontology commenced as a philosophical discipline studying
the existence and being and expanded into information
technologies. Ontology is a formalized model for specific

domains with the following essential elements:
individuals/objects, classes, attributes, relations, and axioms.
A class diagram of a program written in object-oriented
programming [44] is a visual representation of an ontology.
Ontology is a philosophy that has been around for thousands
of years, and it allows for design flexibility by reusing existing
ontologies [45]. It follows the open world assumption knowledge
representation style using OWL, RDF, and RDF schema (RDFS)
syntaxes. It can be optimized with ontology patterns, and its
logical and structural consistency is verified with ontology
reasoners.

Overview
The proposed eHealth ontology encompasses the following
steps: (1) ontology design approaches and used vocabularies;
(2) ontology modeling in Protégé; (3) defining the scope; (4)
integrating existing IoT and medical ontologies in the proposed
ontology to annotate sensor and clinical observations; (5)
ontology implementation (mapping the concepts to the proposed
ontology classes and their properties in Protégé); and (6) rule
expression (rule base) and basic SPARQL queries as a part of
ontology verification. We further discuss how rule-based
lifestyle recommendation messages (regarding activity and
nutrition) could be delivered to the participants following an
asserted hierarchy in the proposed eHealth ontology model, as
depicted in Figure 1.

Figure 1. Asserted hierarchy for lifestyle recommendation for obesity management.

Ontology Design Approaches and Used Terminologies
Ontology design approaches can be classified into the following
5 categories: inspirational, inductive, deductive, synthetic, and
collaborative [46]. We adopted a combination of inspirational
and deductive approaches in our ontology design and
development. The inspirational approach helped us identify the
need for the ontology (what to design?) and obtain expert views
to create the ontology (how to design?). The deductive approach
helped us to adopt and adapt general principles to create the
intended ontology tailored toward obesity as a study case. It
includes the general notions being filtered and refined to be
personalized to a specific domain subset (obesity). The overall
approaches are divided into 5 phases as follows: in phase 1, we
performed a systematic literature review to understand the need
for an ontology to support the logical representation of
observable and measurable data for healthy lifestyle
management targeting obesity as a case study. In phase 2, we
consulted experts with a research background in ICT, eHealth,
nursing, and nutrition for designing the ontology. In phase 3,
we developed the ontology to model and annotate health and
wellness data observations with semantic metadata to create a

lightweight, intelligible abstraction for health risk predictions
for the personalized generation of recommendations based on
rule-based decision making. In phase 4, we created rules for
SPARQL queries and personalized recommendation generation
(rule-based deduction). In phase 5, we verified the ontology
with simulated data based on rule-based decision support.

The semantic web is W3C recommended, and it allows the
specification of metadata that permit automatic reasoning
[47,48]. The W3C-maintained specifications related to this study
are XML, URI, RDF, turtle, RDFS, ontology web language
(OWL), SPARQL Protocol and RDF Query Language
(SPARQL), and SWRL. The following terminologies are
relevant for our eHealth ontology representation and processing:
propositional variable (an atomic name of a truth value that may
change from one model to another), constant (the unique
propositional variables TRUE and FALSE such that their truth
value cannot be changed), and operators (the set of logical
connectors in each logic). Besides, in this case, we use the
operators (NOT, AND, OR, IMPLIES, and EQUIV); quantifiers
(the set of logical quantifiers in a given logic; FORALL for the
universal quantifier and EXISTS for the existential quantifier);
quantified clause (a set of propositional variables linked together
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by operators and quantifiers); clause (a quantified clause without
any quantifiers); formula (a collection of clauses and quantified
clauses related together by logical operators); and model of the
procedure (a group of assignments for each propositional
variable, such that when simplified, it leads the procedure to
the constant TRUE).

Protégé, TopBraid Composer ($), NeOn Toolkit, FOAF editor,
WebOnto, OntoEdit, Ontolingua Server, Ontosaurus, and
WebODE are some popular ontology editors [49]. These
ontology editors are open-source ontology development tools
with OWL support. A reasoner is a crucial component for
working with OWL ontologies. It derives new truths about the
concepts that are being modeled with OWL ontology. Practically
all querying of an OWL ontology (and its import closure) can
be done using a reasoner [50,51]. That is why knowledge in an
ontology might not be explicit, and a reasoner is required to
deduce implicit knowledge so that the correct query results are
obtained. The OWL API includes various interfaces for
accessing OWL reasoners. For accessing reasoner via the API,
a reasoner implementation is necessary. Reasoners can be
classified into the following groups: OWL DL (Pellet 2.0*,
HermiT, FaCT++, RacerPro), OWL EL [CEL, SHER, snorocket
($), ELLY], OWL RL [OWLIM, Jena, Oracle OWL Reasoner
($)], and OWL QL (Owlgres, QuOnto, Quill) [50-57]. In this
study, we utilized Protégé ontology editor and HermiT reasoner
to create and validate the structure of the ontology.

Apache Jena is a Java-based framework used for building
semantic web applications. It provides an API to extract data
from and write to RDF graphs. A Jena framework includes the
following: (1) RDF API to parse, create, and search RDF models
in XML, N-triple, N3, and Turtle formats. Triples can be stored
in memory or database; (2) ARQ Engine/SPARQL API, which
is a query engine for querying and updating RDF models using
the SPARQL standards; (3) tuple database engine as a
high-performance RDF store on a single machine; (4) ontology
API for handling OWL and RDFS ontologies; and (5) Apache
Jena Fuseki, which is the SPARQL server for supporting query
and update. It is tightly integrated with tuple database to deliver
a robust, transactional persistent storage layer. The framework
has internal reasoners and an OWL API [58,59]. In this study,

we used Apache Jena Fuseki for SPARQL processing with triple
database.

Knowledge representation in computer-understandable form is
well accepted among AI communities. Knowledge
representation with symbols facilitates inferencing and the
creation of new elements of knowledge. By contrast, the KB is
a database for knowledge management. It provides a means for
information to be collected, organized, shared, queried, and
utilized for inferring new information. Knowledge engineering
helps to obtain specific knowledge about some subject and
represents it in a quantifiable form. KB consists of terminology
models or TBox (atomic and complex) and assertions model
instance or ABox (asserted and inferred). Inferred statements
come as a logical outcome of the asserted statements and logical
rules [35,60,61]. A KB is a pair (T, A) where T is a TBox and
A is an ABox. The idea behind this paper is that the TBox
concepts and relations are coming from the freshly created
ontology and the ABox is a list of clauses assigning truth values
to some variables. The TBox is coming from integration with
the SSN Ontology and the SNOMED CT ontology plus
additional concepts specific to the recommendation test case
considered. The ABox is the semantic data, coming from the
different data inputs (IoT sensors, interviews, and
questionnaires). The satisfiability of the KB, and thus the model
output, is obtained by using the hyper-tableau-based [62]
reasoning solver HermiT [55]. The whole approach has been
tested with 4 generated test cases to ensure that the whole
mechanism can indeed set the propositional variables to true
and thus send the corresponding recommendation message when
needed.

Ontology Modeling
An ontology can be modeled with the following 2 ways in
Protégé: frame based and OWL based. The Protégé frame editor
ensures ontology development following the Open Knowledge
Base Connectivity Protocol with the help of classes, properties,
relationships, and instances of classes (objects). By contrast,
the Protégé OWL editor (applied in this study) enables ontology
development for the Semantic Web with the help of classes,
properties, instances, and reasoning. We have used the steps
detailed in Textbox 1 to model our proposed OWL-based
eHealth ontology using the Protégé OWL editor.
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Textbox 1. Steps to model the proposed OWL-based eHealth ontology.

Step 1

Create a new empty OWL project in Protégé and save it as a local file with “owl” or “ttl” extension (“ttl” signifies the turtle resource description
framework [RDF] format).

Step 2

Create named classes under the “owl:Thing” super class following consistency

• Create a group of meaningful and required classes

• Define disjoint classes

• Define subclasses and disjoint subclasses

Step 3

Create OWL properties

• Object properties (associates object to object)

• Data properties (relates object to XML schema datatype or rdf:literal)

• Annotation properties (to add annotation information to classes, individuals, and properties)

Step 4

Define object properties if they are subproperties, inverse properties, functional properties, inverse functional properties, transitive properties, symmetric
properties, and reflexive properties.

Step 5

Define property domain and ranges for both object and data properties (it is used as axioms in reasoning).

Step 6

Define property restrictions as follows:

• Quantifier restrictions (existential and universal)

• Cardinality restrictions (one or many)

• hasValue restrictions (eg,, string/integer/double)

Step 7

Ontology processing with a reasoner to check consistency in OWL DL, and to compute the inferred ontology class hierarchy.

• Blue color class in the inferred hierarchy signifies that the class has been reclassified.

• Red color class in the inferred hierarchy signifies an inconsistent class.

Step 8

Remove inconsistencies before importing the ontology file in Apache Jena for further processing, querying (Simple Protocol and RDF Query Language
[SPARQL]), and storing it into tuple database for persistence. Tuple database supports the full range of Jena application programming interfaces. It
can be used as a high-performance RDF store on a single machine.

Scope of the Proposed Ontology
We have planned to integrate the proposed eHealth ontology
into a simulated eCoach system used for automatic rule-based
recommendation generation to inspire individuals to manage
healthy lifestyles with early health risk predictions. The planned

system will have 2 main modules, as depicted in Figure 2: a
data collection module and a data annotation module. The data
collection module will collect identified fabricated set of habit,
baseline, nutrition, personal, contextual, activity, and
physiological data over time via a simulator, as depicted in
Figure 3.
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Figure 2. Proposed eCoach system architecture for data semantization.
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Figure 3. Types of data to be collected from participants.

The accumulated data were annotated with semantic metadata
(RDF triple store graph) and stored in tuple database in turtle
format. The DSS, rule base, SPARQL, risk prediction, and
recommendation generation modules are not the core, and they
are used for ontology verification as a test engine. The scopes
of DSS are as follows: (1) periodic querying of the ontology
with Jena framework using preset SPARQL queries [63-65] to
assess the health condition; and (2) mapping the query result to
preset clinical rules in “rule base” to generate lifestyle
recommendations. This study involves 4 different user types:
administrator, researcher, participants, and health professionals
(eg, nurses; Figure 4). The ontology is protected from personal
identity disclosure as no unique identifiers (eg, national
identifiers) of participants were collected and stored in the

simulated environment in accordance with the Norwegian Centre
for Research Data guidelines [66]. Core eCoach and DSS
concepts, AI integration for health and wellness data (activity
and nutrition) analysis, real-world data collection from actual
participants through web applications/mobile apps, real-life
personalized recommendation generation, goal evaluation,
pregnancy, genetics, child obesity, and obesity in older adults
are beyond the scope of this study. This study’s primary focus
is to design and develop an eHealth ontology for the obesity
case and to verify it with artificial data and behavioral
recommendation generation with a rule-based DSS. Defined
rules for test setup may vary with change in the context and is
not the key focus of this paper.
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Figure 4. Different types of users involved in the eCoach System.

We simulated habit, nutrition, contextual, activity, and
physiological data for 4 dummy participants (2 healthy weight
[N] and 2 overweight [O] participants aged between 18 and 40)
for the very first day (day-n; n>0); see Multimedia Appendix
2. We assumed all the dummy participants are from the same
region, so the contextual information is the same. Rule-based
recommendations based on data analysis on “day-n” will be
carried out by targeted participants on “day-(n+1).”
Recommendations inform individual participants about their
daily activity (sedentary or not), dietary intake, and
activity/dietary plans. For dietary assessment, we have relied
on the daily self-reported questionnaire, rather than on direct
calorie calculation for basal metabolic rate. Baseline data help
to compare (at the end of each month until the process ends)
whether any improvement or deterioration occurred as a result
of behavior change based on lifestyle recommendations. For
example, reduction in BMI and BP for a person who is

obese/overweight, and maintaining safe BMI and BP for a
person with healthy weight upon following the behavioral
recommendations is a good indication of maintaining a healthy
lifestyle. We consulted with 5 experts with a research
background in ICT, eHealth, nursing, and nutrition for
simulating activity and nutrition data. Obesity-related
information and guidelines were obtained from the World Health
Organization (WHO) [67], the National Institute for Health and
Care Excellence (NICE) [68], and the Norwegian Dietary
Guidelines [69].

Integration With SSN Ontology and SNOMED CT
We integrated the SSN ontology [30,36,70-72] into our proposed
eHealth ontology to describe sensors (activity sensors and
external weather sensors), their observations, and methods
adopted for sensing individual activities and context (Figure 5).
Observation data related to activity and external weather are
annotated with SSN ontology concepts and object properties.
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Figure 5. Asserted hierarchy for sensor-based data collection with OWLViz.

Concepts and object properties in the ontology are commented
and connected with “rdfs:label,” “rdfs:isDefinedBy,”
“rdfs:seeAlso,” “rdfs:comment,” “dc:source,” “isProxyFor,”
“has value,” “is produced by,” “has property,” “hasTimeStamp,”
“isRegionFor,” “attached system,” “in deployment,” “has
measurement capability,” “detects,” “hasOutput,” “observes,”
“implements,” “has deployment,” “has operating range,” “has
subsytem,” “has survival range,” “on platform,” “deployment
process part,” “deployed on platform,” “deployed system,” “is
property of,” “feature of interest,” “observation result time,”
“observation sampling time,” “observed property,” “quality of
observation,” “sensing method used,” “includesEvent,” and
“observedBy.” The SSN ontology is constructed on the
foundation of a central ontology design pattern, so-called the
stimulus–sensor–observation pattern to describe relationships
between sensors, stimulus, and observations [30], and the same
concept is reused in our proposed eHealth ontology model. The
perspectives of SSN ontology can be classified as follows [30]:
a sensor perspective, an observation perspective, a system

perspective, and a feature and property perspective. Namespaces
for the SSN and DUL ontologies are reused in our ontology
prefixing concepts and properties as ssn: and dul:, respectively.
“PhysicalDeviceThing” (a class), which behaves as a superclass
of classes related to sensor-based observations, is a subclass of
“owl:Thing,” the universal ontology superclass.

We incorporated selected concepts from SNOMED CT [73]
into our proposed ontology model to define how information
about the participant’s state is to be structured and processed.
The SNOMED CT ontology combines hierarchical “is-a”
relationships and other related relationships for vital signs,
process, body measurements, and observations to describe
clinical attributes as depicted in Figure 6. SNOMED CT
simplifies the search for respective diseases, process, function,
clinical state, measurements, and vital signs, and every concept
is identified with an SCTID or SNOMED CT identifier with an
object property “hasSCTID” (eg, Obese_finding hasSCTID
value “414915002”^^xsd:long) [74].
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Figure 6. Asserted hierarchy of SNOMED_CT concept with OWLViz.

Figures 7-9 describe the class hierarchy to process participant’s
clinical information using the SNOMED CT hierarchy for the
vital signs (eg, BP, pulse) and body measurement (eg, obese or
overweight) based on the observable entities [75-79]. Observable

entities and clinical findings are linked with the objectProperty:
isFoundBy. The proposed ontology model can be extended for
additional clinical findings [73,74].
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Figure 7. SNOMED CT class hierarchy based on selected concepts.
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Figure 8. SNOMED CT ontology visualization with OntoGraf based on selected concepts.

Figure 9. Selected concepts from SNOMED CT Ontology for vital signs, body measurement, and observations.

Ontology Implementation
In Figure 10 we describe how we implemented the proposed
eHealth ontology for our future eCoach system with required
classes, object properties, and data properties to annotate
collected data. The administrator, health professionals,
researchers, and participants are subclasses of the “Human”
class. They have their designated role, password, and userId to
authorize themselves in the system with the following associated
objectProperties: hasRole, hasPassword, and hasUserId,
respectively. Administrator, health professionals, and researchers
have their office address (hasOfficeAddress), and personal data

(hasPersonalData) to describe themselves. Their office address
consists of a phone number, a postcode, and a room number
with the following associated dataProperties: hasOfficePhone,
hasOfficePostCode, and hasRoomNo, respectively. Their
personal data include age, designation, email, first name, last
name, gender, and mobile number with the corresponding
dataProperties hasAge, hasDesignation, hasEmail,
hasFirstName, hasLastName, hasGender, and hasMobile. The
“Participant” is an important class and participants are at the
core of the system. Participants have their health record, personal
data obtained through interview process by trained health
professionals, status (active/inactive), and recommendation with
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the associated objectProperties hasHealthRecord,
hasInterviewPersonalData, hasStatus, and
hasReceivedRecommendation as depicted in Figure 11.
“ActivityData,” “BaselineData,” “HabitData,” “NutritionData,”
“PhysiologicalData” are subclasses of the
“ParticipantHealthRecord” class as depicted in Figure 11.
Activity data are an observable entity and are planned to be
collected via activity sensors (activity bouts, steps, sleep time,
activity duration, sedentary bouts, metabolic rate, nonwear time)
and questionnaire (duration of intensive activity and nonwear
sensor time) daily. Intensive activities are running, weightlifting,
cycling, swimming, and skiing. Based on the activity type,
participants can be classified into the following 4 groups:
sedentary, light active, moderate active, and active. Baseline
data (blood glucose, waist-to-hip ratio, BP, lipid profile, height,
weight, BMI, and physical condition) are planned to be collected

by trained health professionals at the time of recruitment of
participants and on a monthly basis following an interview
process. Habit data (smoking, snus, and alcohol consumption)
and nutrition data (types of foods and drinks with amount) are
planned to be collected daily with a pre-set questionnaire.
Physiological data (pulse, weight, and BMI) are planned to be
collected daily via activity sensors and pre-set questionnaire,
as depicted in Figure 12. Personal data (age, gender, education,
mobile, email, income group, social participation status, habit,
sleep duration, and postcode) of healthy participants are planned
to be collected following an interview process by trained health
professionals during recruitment. Gender, education, income
range, and social participation are essential for demographic
classifications. The data properties related to data collection are
depicted in Figure 13.

Figure 10. Proposed eHealth Ontology implementation in Protégé 5.x.
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Figure 11. The class hierarchy of the proposed eHealth ontology and the description of participant class.
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Figure 12. The asserted class hierarchy of participant’s health record with OWLViz.

Figure 13. Data properties related to data collection.

The asserted class hierarchy of the methods used for
participant’s data collection is depicted in Figure 14. Each
method ensures a collection of simulated data sequences,
maintaining a timestamp as depicted in Figure 15. Contextual
data are observable weather-related data (weather status, current
temperature, rain forecast, snow forecast, storm forecast, sunny

forecast, high and low temperature forecast, fog forecast), which
are planned to be collected daily via sensing devices. The
relationship between data and data collection methods are linked
with the objectProperty: hasBeenCollectedBy and
hasConductedBy (for interview).
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Figure 14. The asserted class hierarchy of participant’s data collection methods with OWLViz.

Figure 15. Ontology for data collection from simulated input.

Behavioral recommendations for a healthy lifestyle can be
classified in the following 2 categories: activity (A) and dietary
(D). Each recommendation is personalized and contextual.
Therefore, the recommendation generation depends on
evaluating participants’ health status (health risk, vital signs,
body measurement data) and contextual information. Each
generated recommendation consists of a message and the
corresponding timestamp (Figure 16). A bad habit (H) has a
significant impact on healthy dietary practice. Activities are
related to the context (C). Contextual data help recommend

participants to plan for indoor/outdoor activities based on the
following day’s external weather conditions. The data properties
of “RecommendationMessages” for activities are
“hasActivityMessages” and “hasContextualMessages,” whereas
those for the diet are “hasDietaryMessages” and
“hasHabitRelatedMessages.” The identified set of
recommendation messages for test setup (ontology verification)
is presented in Multimedia Appendix 3, and is prepared based
on the positive psychology [79] and the persuasion [80] concept.
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Figure 16. Ontology for recommendation generation.

Description logic [35,81] is a formal knowledge representation
of the ontology language that offers a good trade-off between
expressivity, complexity, and efficiency in knowledge
representation and reasoning about structured knowledge. To
ensure that the paper is perfectly understood, we have the
propositional variables with their linked recommendation
messages. Now, we need a set of clauses such that some models
will assign these variables to true and thus trigger the sending
of a recommendation. The description logic SROIQ [82,83],
which is logic providing a formal underpinning of OWL2, has
been used as the formal logic to reason in this paper (Multimedia
Appendix 4).

Rule Creation for Querying, Recommendation
Generation, and Ensuring Satisfiability
A rule consists of a premise (antecedent) and a conclusion
(premise). For every condition mentioned in Multimedia

Appendix 3, DSS executes SPARQL queries daily to determine
what type of recommendation message is to be delivered to
each participant as depicted in the unified modeling language
sequence diagram (Figure 17). The execution of every
predefined semantic rule as specified in Multimedia Appendix
4 relies on the SPARQL query execution, and the rules are
created following clinical guidelines, as stated in Multimedia
Appendix 5 [62,84-92]. In this study, 20 semantic rules are
subdivided into activity-level classification (8), habit-related
classification (3), dietary classification (4), weather-level
classification (1), obesity-level classification (3), and
satisfiability (1) (please also see Multimedia Appendix 4).
Moreover, except for the already-existing ontologies used, to
ensure some consistency regarding what a participant is, what
are the participant health records, etc., the concepts and the rules
added are relatively easy to follow, and therefore they will be
relatively easy to use.
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Figure 17. UML sequence diagram for recommendation generation and delivery.

The observable and measurable parameters associated with
activities, habit, nutrition, and context (as described in
Multimedia Appendix 4) for individual participants on a
timestamp are obtained based on the execution of SPARQL
queries by DSS on a daily scheduled interval as specified in
Multimedia Appendix 6. The rules 17-19 in Multimedia
Appendix 4 assign truth values to variables that ensure
consistency with concepts already existing in the SNOMED
CT ontology, where the body measurement is defined. We have
confirmed with HermiT that for 4 specific cases the correct
recommendation messages are triggered. However, one would
need to ensure that there is not a combination of variables such
that the whole formula is unsatisfiable (ie, no model can satisfy
the procedure). One would also need to ensure that only 1
message can be triggered at a time. In this study, we have a
formal guarantee that 2 “once-a-day” messages can neither be
triggered simultaneously nor for every possible combination of
variables, there is, every time, a model output by HermiT. If
we put the different variables used in the first 19 rules
(Multimedia Appendix 4) into propositional variables, we would
have an exponential number of “possible participants.” One
formal way to ensure a model’s existence is to negate all our
rules and ensure the same. Then, the formula is indeed
unsatisfiable. As 2 messages cannot be triggered at the same
time, and to satisfy the same, we added a rule (rule 20) on the
variables used in the recommendations started “once-a-day.” If

rule 20 is false, then the whole set of rules (considered as a large
conjunction) will be set to false. It will result in “no execution”
of the proposition (see Multimedia Appendix 3) and will help
us to debug our defined semantic rules (rules 1-19) as defined
in Multimedia Appendix 4. If it is set to true, we have a formal
guarantee that no 2 “once-a-day” messages can be triggered at
the same time, no matter the truth values we put into our ABox.

Results

The test setup to verify the proposed eHealth ontology’s
performance and reliability consisted of a DSS module (health
risk prediction and recommendation generation for a healthy
lifestyle), SPARQL, and rule base. As an outcome of ontology
verification, we generated personalized and contextual
recommendations (behavioral) following semantic rules to
balance individual weight change with adopting healthy behavior
to balance a trade-off between physical activity, healthy habit,
and a healthy diet as depicted in Figure 18. We executed all the
semantic rules as stated in Multimedia Appendix 4 in the form
of SPARQL queries using the Jena ARQ engine on each
participant’s simulated data as mentioned in Multimedia
Appendix 2. We then determined what type of recommendation
messages would be required to be delivered for each participant
to manage his/her healthy lifestyle. These findings are detailed
in Table 1.
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Figure 18. Behavioral recommendation generation (pivot) for the management of healthy lifestyle (a trade-off between physical activity, healthy habit,
and healthy diet).

Table 1. Recommendation generation for participants for Day-(n+1) [n>0].

Recommendation(s) for Day-(n+1)Physically active
on Day-n

Healthy diet on
Day-n

Healthy habit on
Day-n

SCTIDProfileParticipant

H-1, D-2, D-3, A-4, C-1YesNoNo43664005Normal weightIndividual_1

H-1, H-2, D-4, A-3, C-1NoYesNo43664005Normal weightIndividual_2

H-2, D-1, D-2, D-3, A-2, A-5, C-1NoNoNo162863004OverweightIndividual_3

D-1, D-2, A-1, C-1NoNoYes162863004OverweightIndividual_4

Discussion

Principal Findings
According to Table 1, “Individual_1” and” Individual_2” are
healthy weight participants, and “Individual_3” and
“Individual_4” are overweight participants as assessed based

on their daily (“Day-n”) BMI (weight/height2) value. According
to Figure 1, a healthy weight is a trade-off between healthy
habits, healthy diet, and physical activity. On “Day-n” (n>0),
“Individual_1” has been physically active, and this is the reason
he has been encouraged to keep up the same activity level (A-4).
By contrast, he has shown some addiction toward “snus,” sweet
beverages, and fried/processed foods, which might grow
negative behavior in the participant and increase his weight.
Therefore, he has been recommended to reduce tobacco
consumptions (H-1) and to refrain from discretionary food items
(D-2 and D-3). The simulated data for “Individual_2” has
demonstrated that she is inclined to a healthy diet (D-4), but
growing some negative behavior with consumption of alcohol
and tobacco (H-1, H-2). She is just one step behind to become
physically active (A-3). Hence, she has been recommended to
take a healthy dietary plan, refrain from tobacco and alcohol,
and increase activity level to become active. “Individual_3” is
neither physically active nor adhered to healthy habits or healthy
dietary plans. He is addicted to alcohol, fried/processed foods,
sweet beverages, sweet food/milk products. His consumed
number of vegetables and fruits is not adequate for a healthy
diet (<400 g). Therefore, he has been recommended to reduce
alcohol consumption (H-1), to follow a healthy dietary habit

(D-1, D-2, D-3), and to become more physically active (A-2)
with adequate sleeping (A-5). The fabricated data for
“Individual_4” has shown that she has an unhealthy diet plan,
and she is mostly leading a sedentary lifestyle. Therefore, she
has been recommended to stay away from discretionary food
items (D-2), to incline on “core-foods” (D-1), and to increase
activity level by one step (A-1). The analysis of contextual data
reveals that the weather on “Day-(n+1)” is suitable for outdoor
activities. The purpose of the individualized recommendation
generation is to guide and encourage individual participants to
keep up a healthy lifestyle by maintaining a balance between
healthy habit, healthy diet, and physical activity. It encourages
people with a normal weight to maintain their healthy weight,
and those with obesity/overweight to reduce their weight.

The rule-based decision support has generated personalized and
contextual recommendations (Table 1) using SPARQL queries,
as depicted in Figure 19, based on the proposed ontology without
any “false-positive” case. The proposed ontology’s reasoning
time has been measured as <30.0 seconds in Protégé with
HermiT reasoner without reporting any inconsistencies. The
reading time of the ontology after loading it in the Jena
workspace was about 2.0-3.5 seconds with the
“OWL_MEM_MICRO_RULE_INF” ontology specification in
the “TTL” format (OWL full), “in-memory” storage, and
“optimized rule-based reasoner with OWL rules.” Then, we
queried ontology classes, ontologies, “predicate, subject, and
object” of every statement using Jena in <1.5 seconds, <0.5
seconds, and <3.5 seconds, respectively. Each ontology model
(complete RDF graph) is related to a document manager (default
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global document manager: “OntDocumentManager”) to assist
with the processing and handling of ontology documents. All
the classes in the ontology API that represent ontology values
have “OntResource” as a common super-class with attributes
(versionInfo, comment, label, seeAlso, isDefinedBy, sameAs,
and differentFrom) and methods (add, set, list, get, has, and
remove). We used the implementation of the RDF interface,
provided by Jena, to store the modeled ontology and its instances
persistently in the tuple database and load it back to process
further. Jena Fuseki is tightly integrated with tuple database to
provide a robust, transactional persistent storage layer (Figure
20).

In the future study, the recommendation process can be
automated with the amalgamation of a hybrid DSS system (rule

based and data driven) and AI algorithms. The scope of the
proposed ontology can be enhanced with the integration of (1)
real sensor activity devices; (2) mood assessment of participants;
(3) collection of nutrition data on a detailed level through
multiple questionnaires (daily, on every alternative day, and
weekly); (4) semantic annotation of the recommended messages;
(5) weekly suggestion generation after evaluating daily
generated recommendations, and followed by a ranking of
participants based on their weekly performances; (6) help-desk
management for technical support; (7) assessment of baseline
data; (8) trend analysis of health risks as a function of habit,
diet, and activity with machine intelligence; and (9) automated
interview management by trained health professionals (nurses).

Figure 19. Sample SPARQL query for recommendation finding (e.g., “Individual_1”).
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Figure 20. Integration of TDB with Jena Fuseki for ontology store in the “ttl” format and querying.

Conclusions
In health care, with the research advancement on the IoT
domain, an increasing number of sensors, actuators, mobile,
and web-based health monitoring devices are deployed into our
daily life for remote health monitoring. It produces enormous
personalized health and wellness observable and measurable
data with hidden patterns. Data collected by multichannel
sensors or devices demonstrate significant differences in data
formats, types, and domains, which might lead to a problem in
machine understandability. Therefore, a semantic representation
of collected health and wellness data from heterogeneous
sources is necessary, and the ontology serves the purpose. In
this pilot study, we have proposed an eHealth ontology model
in association with SSN and SNOMED CT, to support a
semantic representation of collected observable and measurable
data to manage a healthy lifestyle focusing on obesity as a case
study. The ontology represents collected data with OWL-based

web language in RDF triple-store format. The performance of
the proposed ontology has been evaluated with the simulated
data (eg, sensor, interview, and questionnaire) of 4 dummy
participants. The proposed ontology’s structural and logical
consistency has been evaluated with a Protégé reasoner (HermiT
1.4.3.x). The proposed ontology model has been used by a
rule-based DSS to generate personalized and contextual
recommendations with the execution of SPARQL queries against
a preset rule base (with the help of Apache Jena library) to
promote a healthy lifestyle for obesity management. In the future
study, we will recruit real participants following inclusion and
exclusion criteria and provide them real activity devices to
replicate the whole scenario and evaluate the efficacy of the
recommendation generation plan. The proposed ontology can
be extended to annotate observable and measurable data for
other related lifestyle diseases, such as diabetes type II, chronic
obstructive pulmonary diseases, cardiovascular diseases, and
mental health.
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