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Abstract

Background: During the COVID-19 pandemic, health professionals have been directly confronted with the suffering of patients
and their families. By making them main actors in the management of this health crisis, they have been exposed to various
psychosocial risks (stress, trauma, fatigue, etc). Paradoxically, stress-related symptoms are often underreported in this vulnerable
population but are potentially detectable through passive monitoring of changes in speech behavior.

Objective: This study aims to investigate the use of rapid and remote measures of stress levels in health professionals working
during the COVID-19 outbreak. This was done through the analysis of participants’ speech behavior during a short phone call
conversation and, in particular, via positive, negative, and neutral storytelling tasks.

Methods: Speech samples from 89 health care professionals were collected over the phone during positive, negative, and neutral
storytelling tasks; various voice features were extracted and compared with classical stress measures via standard questionnaires.
Additionally, a regression analysis was performed.

Results: Certain speech characteristics correlated with stress levels in both genders; mainly, spectral (ie, formant) features, such
as the mel-frequency cepstral coefficient, and prosodic characteristics, such as the fundamental frequency, appeared to be sensitive
to stress. Overall, for both male and female participants, using vocal features from the positive tasks for regression yielded the
most accurate prediction results of stress scores (mean absolute error 5.31).

Conclusions: Automatic speech analysis could help with early detection of subtle signs of stress in vulnerable populations over
the phone. By combining the use of this technology with timely intervention strategies, it could contribute to the prevention of
burnout and the development of comorbidities, such as depression or anxiety.

(J Med Internet Res 2021;23(4):e24191) doi: 10.2196/24191
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Introduction

In December 2019 in the Chinese city of Wuhan, a new
coronavirus pneumonia, COVID-19, emerged. The pathogen
involved is SARS-CoV-2. Here, we will refer to the pathology
as COVID-19. COVID-19 has spread very rapidly in China but
also in many other countries [1]. On March 11, 2020, the World
Health Organization declared that the COVID-19 outbreak had
become a pandemic [2].

According to previous studies on SARS or Ebola epidemics,
the onset of a sudden and immediately fatal disease could put
extraordinary pressure on health care professionals [3]. Increased
workloads, physical exhaustion, inadequate personal equipment,
nosocomial transmission, and the need to make ethically difficult
decisions about rationing care can have dramatic effects on their
physical and mental well-being. Their resilience may be further
compromised by isolation and loss of social support, risk or
loss of friends and relatives, and radical, often worrying changes
in working methods. Health care workers are, therefore,
particularly vulnerable to mental health problems, including
fear, anxiety, depression, and insomnia [4,5]. Initial results
estimate that 23% and 22% of health care workers experienced
depression and anxiety, respectively, during the COVID-19
pandemic [6].

Paradoxically, health care workers do not tend to seek
professional help, and stress-related symptoms are often not
immediately reported: “burnout, stress, and anxiety will have
to wait.” Most of the time there will not even be a demand for
care. Early implicit stress detection is of great importance in
this population and would allow for timely intervention
strategies in order to prevent escalation and complete
occupational burnout.

To measure stress in clinical practice, various scales and
questionnaires are available, such as the Perceived Stress Scale
(PSS) [7], the Stressful Life Event Questionnaire [8], the Stress
Overload Scale [9], and the Trier Inventory for Chronic Stress
[10]. However, the present health crisis pushed research teams
to investigate the use of new technological tools in this specific
population. One possible avenue is the use of automatic speech
analysis allowing extraction of voice features during standard
consultation or over a simple phone call.

Psychological stress induces multiple effects on the body,
including increased muscle tension, increased breathing rate,
and changes in salivation rate, which may, in turn, affect vocal
production [11,12]. Under psychological stress, voice pitch (ie,
the acoustic correlate of fundamental frequency [F0]) usually
increases, as it is inversely related to the rate of vocal fold
vibration, which stretches under stress and becomes tenser
together with an increase in subglottal pressure and vocal
intensity [13,14]. Indeed, an increase in voice pitch is the most
commonly reported finding in studies examining speech under
stress. However, stress can also affect other voice parameters,
such as an increase in speech prosody [11,13]. In depression,
the analysis of speech characteristics has recently attracted
considerable research attention [15-17]. Studies revealed that
patients show flattened affect, reduced speech variability,
monotonicity in pitch and loudness, increased pause duration,

and reduced speech rate [18-20]. A recent study investigated
the use of speech parameters extracted from audio recordings
to differentiate patients suffering from posttraumatic stress
disorder from healthy controls [21].

Thus, the detection of subtle events in the voice may offer a
window into assessing the impact of stress in situations where
circumstances make it difficult to monitor stress directly but
need to be addressed urgently [22].

In this work, we aim to investigate the use of a rapid and remote
measure of stress levels in health professionals working during
the COVID-19 outbreak, utilizing the automatic analysis of
their speech behavior during a short phone call conversation.

Firstly, speech samples of health care professionals were
collected over the phone during the COVID-19 pandemic, and
various voice features were extracted and compared with
classical stress measures. Secondly, based on the extracted
features, scores from the completed stress scale that were
obtained by participants were predicted. The purpose of this
pilot study was to assess whether this technological method
could be of interest to support early screening of subtle signs
of stress.

Methods

Participants
Health care professionals were recruited through outreach
telephone calls. They worked during the COVID-19 outbreak
in the local university hospital center of Nice, France, in either
private practices or as independent workers in the
Provence-Alpes-Côte d’Azur region. They could occupy any
function in these structures. The only criterion for noninclusion
was the subjects’ refusal to participate in the study. Inclusion
of participants was carried out from May 5 to June 7, 2020.

The study was approved by the Ethical Board for
noninterventional studies of the University Côte d’Azur, France
(approval 2020-58). Participants were given all the information
about the study prior to the call so they could give informed
consent. For those interested, the option for a follow-up call
with a clinician was provided.

Procedure
The telephone calls were made by psychiatrists (n=3) or
psychologists (n=1) belonging to the Cognition Behavior
Technology research team and the memory clinic of the
University Côte d’Azur. Calls lasted about 15 minutes and were
composed of the following:

1. An informative part explaining the reasons for the call and
its structure and how the study is conducted. The
participant’s consent was requested to continue and to
proceed with a recording of his or her voice.

2. The Motivation Stress Affect (MSA) questionnaire. The
MSA questionnaire is a self-administered questionnaire
composed of 11 questions that must be answered by “yes”
or “no.” The first five questions assess motivation [23], the
next two questions assess depression, and the last four
questions assess stress [24].
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3. Three open standardized questions: neutral, positive, and
negative storytelling. In order to capture natural speech,
but within a limited time frame, the participant was asked
to talk about something emotionally neutral (ie, describe
where he or she is), to talk about a negative event in his or
her life, and, finally, to talk about a positive event in his or
her life. Each answer should have lasted about 1 minute
and was recorded in a secure and encrypted way. It was not
specified whether the event had to be experienced during
COVID-19; thus, it was open to the participant to recall
whatever event first came to mind. These free-speech tasks
were used in previous studies [18,25] and allowed for a
greater range of induced emotional effects, potentially
sensitive to signs of stress and depression. The comparison
of speech features between neutral and emotionally loaded
questions may give insight into the affective state of
participants.

4. The PSS. This scale [7] is a hetero-questionnaire composed
of 10 questions to be answered by “never,” “almost never,”
“sometimes,” “quite often,” or “often.”

5. An open listening part aimed at exploring certain points in
greater depth in order to refine the clinical needs.

6. Decision and advice. Following the above steps, the
psychiatrist or psychologist offered or did not offer
psychological follow-up depending on whether he or she
considered that the patient was at risk of developing or had
a mood or anxiety disorder. He or she may also have offered
advice on intervention strategies (eg, relaxation, yoga,
physical activity, and national call platform for
psychological support for caregivers).

Materials
To perform the phone calls for this study, the phone version of
the DELTA application [26] was used. The DELTA solution
allows for the use of a dedicated interface in the form of an iOS
app to make phone calls and locally record these calls on the
internal memory of an iPad. The phone calls were made directly
with the iPad and through its internal microphone.

These recordings were then automatically transmitted—the iPad
had to be connected to the internet—to the DELTA application
programming interface (API) for analysis of acoustic and
semantic parameters. Once the analysis was complete, the results
were displayed directly on the DELTA interface. The recordings
were made locally on the phone, the connection between the
interface and the DELTA API was secure and encrypted, and
the recordings were destroyed from the DELTA servers once
the analysis was complete and the results sent to the
experimenter.

Analysis
Audio features were extracted directly and automatically from
the recorded audio signals of the three open standardized
questions (see item #3 in the Procedure section). Characteristics
were extracted from four main areas:

1. Prosodic characteristics, on long-term variations in
perceived stress and speech rhythm. Prosodic features also
measure alterations in personal speech style (eg, perceived
pitch and speech intonation).

2. Formant characteristics represent the dominant components
of the speech spectrum and convey information about the
acoustic resonance of the vocal tract and its use. These
markers are often indicative of articulatory coordination
problems in motor speech control disorders.

3. Source characteristics that are related to the source of voice
production, the airflow through the glottal speech
production system. These features make operational
irregularities in the movement of the vocal fold (eg, voice
quality measurements).

4. Temporal characteristics include measures of the proportion
of speech (eg, duration of pauses and duration of speech
segments), speech segment connectivity, and overall speech
rate.

Features were extracted using Python 3.7 (Python Software
Foundation) [27] and free and publicly available packages. For
the temporal features, the My-Voice Analysis [28] package was
used. This package was built off of the speech analysis research
tool praat [29]. Temporal features were actualized as the speech
rate, syllable count, rate of articulation, speaking duration, total
duration, and ratio of speaking to nonspeaking. This package
was also used to extract prosodic features, namely the F0 values:
mean, standard deviation, minimum, maximum, and upper and
lower quartiles. The F0 value is the representation of what is
known as the pitch.

Formant features were calculated using the Python Speech
Features library [30]. To characterize this aspect of speech, the
original sound recording was refit according to a series of
transformations commonly used for speech recognition that
yield a better representation of the sound called the
mel-frequency cepstrum (MFC). From this new representation
of the sound form, the first 14 coefficients of the MFC were
extracted. The MFC values were extracted given that they
describe the spectral shape of the audio file, generally with
diminishing returns in terms of how informative they are, which
is why we only considered the first 14 coefficients. If we were
to select a greater number of MFC values, it would result in a
potentially needlessly more complex machine learning model
using less informative features.

From each of these waves, the mean, variance, skewness, and
kurtosis were calculated for the energy (static coefficient),
velocity (first differential), and acceleration (second differential).

The Librosa package [31] was used to calculate the mean,
maximum, minimum, and standard deviation of the root mean
square value, centroid, bandwidth, flatness, zero-crossing rate,
loudness, and flux of the spectrogram, or the visualization of
the recording.

The source characteristics were extracted using the
Signal_Analysis package, version 0.1.26, to extract the
micromovements of the sound wave: harmonics-to-noise ratio
(HNR), jitter, shimmer, and glottal pulses. Jitter and shimmer
are two features of vocal signals that describe the frequency
variation from cycle to cycle of the sound wave and the
waveform amplitude, respectively [32,33]. While jitter rises
with the growing lack of control of vocal cord vibration, higher
shimmer is coupled with increased breathiness. HNR is the ratio
between periodic components and nonperiodic components that
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constitute a voiced speech segment [34]. These components
correspond to the vibration from vocal cords and glottal noise,
respectively.

Speech features vary naturally between males and females due
to differences in the length of the vocal tract. These differences
have been leveraged in gender classification through speech
analysis based on pitch and formant frequencies [35], HNR
[36], linear predictive components, and mel-frequency cepstral
coefficients (MFCCs) [37]. Previous work found differences in
speech depending on gender in the effects of depression and
the effectiveness of classifiers for its detection [38]. This is why
this study considers males and females separately.

Statistical Analysis
The data collected were described using mean and standard
deviation for quantitative variables, and frequency and
percentage for qualitative variables. Demographic
characteristics, such as age and gender, were compared between
different groups of caregivers using a chi-square test for
qualitative variables (eg, gender) and an analysis of variance
performed for quantitative variables (eg, age). Similarly, the
data measured for voice and scores were compared between
different groups of caregivers. The normality of the collected
data was tested using a Shapiro test. In order to test the
relationship between the different voice measures and the
measured scores, Spearman correlations were used. In addition,
to test the link between the voice measures and the therapist’s
decision, Student t tests or Wilcoxon-Mann-Whitney tests were
performed. A P value of less than .05 was considered significant.
The analyses were performed using the free statistical software
RStudio 4.0.0 [39]. Further, regression analyses were performed

with the extracted vocal features to determine the error rate for
predicting the participants’ stress scores.

Results

Participants
In total, 89 French-speaking health professionals, aged between
20 and 74 years, accepted the outreach phone calls and their
speech samples were recorded and analyzed. Their demographic
characteristics are presented in Table 1.

The mean age of the participants was 40.53 years (SD 14.19).
The mean stress score on the PSS was 22.43 (SD 7.16) and on
the MSA questionnaire was 2.92 (SD 2.09). The majority of
the participants scored below 26 on the PSS but above 0 on the
MSA questionnaire. Results on the PSS and on the MSA stress
scale were proportional. We found that 27% (24/89) of the
recorded health professionals experienced intense stress, and
28% (25/89) experienced occasional stress. Only 16% (14/89)
of the participants requested a follow-up. The stress level was
gender dependent, with females reporting higher stress levels.
For males, stress levels tended to drop with age. Figure 1 shows
a distribution of the total stress scores across genders. The total
stress scores in the female group are more dispersed than in the
male group and are generally higher. A total of 14 out of 88
(16%) participants (11/57, 19% of all females; 3/31, 10% of all
males) asked for a follow-up call. Their mean PSS score (mean
31.78, SD 7.40) and mean MSA scale score (mean 5.57, SD
1.34) were significantly higher than for those who did not ask
for a follow-up, whose mean PSS score was 20.60 (SD 5.63)
and mean MSA scale score was 2.38 (SD 1.8).
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Table 1. Descriptive statistics for participant characteristics (N=89).

P valueaParticipants, n (%)Characteristic

Female (n=58)Male (n=31)Total (N=89)

N/Ab58 (65)31 (35)89 (100)Gender

.03Education (years) (n=81)

18/53 (34)1/28 (4)19 (23)<12

35/53 (66)27/28 (96)62 (77)≥12

.03Timing of call

27 (47)7 (23)34 (38)During lockdown

31 (53)24 (77)55 (62)After lockdown

.47Perceived Stress Scale score

24 (41)16 (52)40 (45)Knows how to manage stress (<21)

16 (28)9 (29)25 (28)Generally knows how to cope with stress (21-26)

18 (31)6 (19)24 (27)Life is a constant threat (>26)

.99Motivation Stress Affect (MSA) scale score

15 (26)8 (26)23 (26)0

43 (74)23 (74)66 (74)>0

.47MSA motivation scale score

18 (31)12 (39)30 (34)0

40 (69)19 (61)59 (66)>0

.32MSA depression scale score

35 (60)22 (71)57 (64)0

23 (40)9 (29)32 (36)>0

.36Follow-up request (n=88)

46/57 (81)28 (90)74 (84)No

11/57 (19)3 (10)14 (16)Yes

aChi-square test or Fisher exact test.
bN/A: not applicable; the P value was not calculated for gender.

Figure 1. Stress score distribution across genders.
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Correlations
First, vocal and nonvocal features were analyzed in relation to
the stress level. The data set was quite small and, therefore,
rather than training a classifier, we performed correlation
analysis between the features computed for each speech task
and the reported stress level. Further, only extracted speech
features were considered; a priori, nonmeaningful features, like
ID, were removed.

We performed a selection of the top k features based on their
descriptive power for the target variable total stress score. Vocal
features might be gender dependent. Therefore, we performed
a selection of top features for male and female data sets
separately. We used Spearman correlation, since we had both
ordinal and continuous features: the target total stress score is
ordinal. Since Spearman correlation uses only the ranks of the

variables and not their raw values, we could omit the
normalization step. We considered absolute values of the
correlation coefficient for feature scoring. Results are presented
in Table 2.

The main speech parameters correlating with stress levels in
both genders were spectral (ie, formant) features, namely the
MFCCs. These features characterize the spectrum of speech,
which is the frequency distribution of the speech signal at a
specific time. MFCCs were derived by computing a spectrum
of the log-magnitude mel-spectrum of the audio segment. The
lower coefficients represent the vocal tract filter and the higher
coefficients represent periodic vocal fold sources [18].
Moreover, in males’ prosodic characteristics, such as the F0,
and in females with the positive storytelling, pitch ranges were
associated with stress levels.

Table 2. Correlation between stress levels and speech features.

Spearman correlationTaskTop 10 features for each data set

Female data set

0.49Positive storyMFCCa3 acceleration skewness

0.44Neutral storyMFCC2 mean

0.44Positive storyPitch range

0.43Negative storyMFCC3 acceleration skewness

0.44Positive storyMFCC2 mean

–0.42Negative storyMFCC5 acceleration kurtosis

0.43Negative storyMFCC2 mean

–0.40Negative storyMFCC5 velocity kurtosis

0.39Neutral storyMFCC3 acceleration skewness

0.39Negative storyMFCC5 velocity kurtosis

Male data set

–0.54Neutral storyUpper quartile F0b

–0.50Positive storyPronunciation posteriori probability score percentage

0.52Positive storyEnergy acceleration mean

–0.51Neutral storyMean F0

0.41Positive storyMFCC9 kurtosis

–0.44Positive storyMFCC9 variance

–0.47Negative storyUpper quartile F0

–0.40Positive storyMFCC4 acceleration mean

–0.47Positive storyUpper quartile F0

–0.42Neutral storyMFCC12 acceleration skewness

aMFCC: mel-frequency cepstral coefficient; the numbers following MFCC are part of the feature names presenting their location on a spectrum.
bF0: fundamental frequency.

For female participants, correlation analyses between negative,
positive, and neutral features and the target feature total stress
score were performed. Among the top 5 features, we have
MFCC acceleration skewness, which correlates with the stress
level by 0.45 and 0.37 in the positive and neutral tasks,
respectively. The other features among top 5 features are task

specific. Thus, for each task there is a different set of features
associated with stress level.

For male participants, the selection was performed analogously.
The top features are task specific as well, and they differ from
the features for the female data set. In this sample, we obtained
more negatively correlating features than for the female data
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set; this meant that features, for instance, related to F0 of low
value (mean F0 in the neutral story with –0.51, upper quartile
F0 in the negative and positive story with –0.47, and upper
quartile F0 in the neutral story with –0.54) are associated with
high stress scores. In general, low values represent a smaller
pitch range.

Regression
Stress scores were regressed against measurements for positive,
neutral, and negative tasks. Similarly, the regression for tasks
of different sentiments was performed for groups of female and
male participants to allow for possible impacts of gender on
stress levels. For the regressors, we used linear, support vector
machine (SVM), and random forest regressors to predict the
stress scores.

The first regression approximated the stress score by estimating
coefficients for each feature in the training data, where greater
coefficients indicate a greater influence over the predicted value.
Linear regression models are fast, highly interpretable, and
commonly used for prediction of stress scores from audio
features and speech analysis, according to previous studies
[40-42]. The random forest regressor created a number of
decision trees that were constructed based on random sampling
from the training data; each tree then attempted to determine
the best way to predict the scores given the data it received.
Each decision tree outputted a predicted value and the mode
value was selected. Decision tree methods have shown high
accuracy with good interpretability in similar studies where
vocal and linguistic features were employed for detection of
emotions, social signals, and mental health problems [43-45].
The SVM regressor took each set of features and projected them
as a vector onto a space and attempted to find the optimal way
to separate the data. The stress score was then based on the
distance from that separator. Stress modeling with inputs from

physiological sensors or audio sources using SVM has also been
previously reported to give high model performance [46-48].
In recent studies, both SVM and random forest provided notably
high prediction and classification strength for stress detection
using various speech features [49-51].

The caret package from R, version 3.4.2 (The R Foundation),
was used for data training and validation. A 10-fold
cross-validation was performed and performance was evaluated
using the mean absolute error (MAE): the average of the
absolute difference between the predicted and actual values
from our models for all participants. The score ranges from 0
to infinity, where a score closer to 0 indicates a better-fitting
model.

The prediction of total stress scores using all or a subset of tasks
among male or female subjects was carried out using various
baseline regression models, whose performances were evaluated
by the plots in Figure 2, where the MAE values are presented
on the y-axis. Overall, the prediction strength in males was
better than in females for all sentiments, as shown by a trend
of lower errors (lowest MAE for males was 3.84; lowest MAE
for females was 5.56). It is notable that stress score regression
models based on negative tasks in males and neutral tasks in
females performed relatively poorly compared to other tasks.
For both male and female participants, using positive tasks for
regression yielded equivalent or better results than using all
tasks, suggesting that a subset of tasks could be employed for
accurate and less time-consuming prediction of stress scores.
An overview of the lowest scores for each testing scenario is
presented in Table 3.

All regression models outperformed their respective baseline
MAE values (4.46 and 6.35 in males and females, respectively).
Linear models and the SVM regressor were the most precise
for the prediction of total stress scores in general.
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Figure 2. Performances of different computerized regression models in predicting stress levels based on vocal features. Boosted: boosted linear model;
ElasticNet: mix of L1 and L2 regularized linear regression; MAE: mean absolute error; Poly: support vector machine with polynomial basis function
kernel; Quantile: quantile regression forest; Radial: support vector machine with radial basis function kernel; SVM: support vector machine.

Table 3. The lowest scores for each testing scenario.

Negative tasksNeutral tasksPositive tasksParticipant
group

ModelMAE (SD)ModelMAE (SD)ModelMAEa (SD)

PolySVMd5.34 (0.35)QuantileRFc5.25 (0.28)ElasticNetb5.31 (0.25)All

PolySVM4.37 (0.43)BoostedLMe4.40 (0.37)QuantileRF3.84 (0.43)Male

PolySVM5.68 (0.45)RadialSVMf5.84 (0.42)ElasticNet5.56 (0.41)Female

aMAE: mean absolute error.
bElasticNet: mix of L1 and L2 regularized linear regression.
cQuantileRF: quantile regression forest.
dPolySVM: support vector machine with polynomial basis function kernel.
eBoostedLM: boosted linear model.
fRadialSVM: support vector machine with radial basis function kernel.

J Med Internet Res 2021 | vol. 23 | iss. 4 | e24191 | p. 8https://www.jmir.org/2021/4/e24191
(page number not for citation purposes)

König et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Discussion

Principal Findings
The purpose of this study was to investigate the potential of
using automatic speech analysis for the detection of stress in
health care professionals during the current COVID-19
pandemic. This would potentially lead to earlier and timely
prevention among this high-risk population. Firstly, speech
samples were collected over the phone, and various voice
features were extracted and compared with classical stress
measures. Secondly, based on the extracted features, scores
obtained by participants on the completed stress scale were
predicted.

The main outcome of this study was the demonstration of this
approach’s feasibility under the given context, as all participants
were cooperative and appreciated the initiative of rapidly
applying this existing technology to this specific use case.
Moreover, from phone call recordings, a number of vocal
correlates of stress have been identified, namely in the area of
spectral features (ie, MFCC) as well as prosodic features such
as F0, which seem to be the most commonly reported features
in well-controlled trials [11]. Stress scores could be predicted
based on speech features with relatively small errors.

Spectral features characterize the speech spectrum; the frequency
distribution of the speech signal at a specific time indicates
information in some high-dimensional representation [18]. The
features capture information regarding changes in muscle tension
and control and have consistently been observed to change with
a speaker’s mental state. A few depression studies reported a
relative shift in energy with increasing depression severity
[52,53].

Another result we obtained was that most identified vocal
features were task dependent as well as gender dependent.
Interestingly, in the female group, MFCC features seemed to
be associated with stress levels during all tasks, meaning that
it did not matter what participants were talking about; as long
as sufficient speech was captured, meaningful information could
be extracted and subtle signs of stress level could be detected.
On the other hand, in the male data set, the upper quartile F0
appeared as a task-independent feature sensitive to stress levels.
Overall, in the male data set, we observed more features with
a negative correlation than we did for the female data set.

Voice production can be divided into three processes: breathing,
phonation, and resonance stress [54]. For the second process,
phonation, the vocal folds must close and open again to create
vibration. The frequency rate of these pulses determines the F0
of the vocal source contributing to the perceived pitch of the
sound.

Previous research showed that increased muscle tension tends
to be caused by stress [55,56], resulting in a tensing of the vocal
folds, which, in turn, most likely causes a raising of F0. A recent
review on voice analysis in stress [22] stated that the parameter
F0 has been considered as a “universal stress indicator,” whereas
increased levels of F0 might be linked with acute bottom-up
processes of sympathetic arousal. Similar studies of analysis of
phone call recordings during situational stress situations revealed

an increase in F0 and intensity with presumed levels of stress
[55,57,58]. Our findings seem consistent with the majority of
acoustic studies, pointing to F0 as one important marker of
stress levels.

However, most correlations we found were with resonance (ie,
formant) parameters, which are involved in the quality of sound
shaping and vowel and consonant pronunciation and are
produced by the muscle activity involved in the shaping of the
resonant cavities of the vocal tract system [59]. These
parameters are less documented in regard to stress. The MFCC,
in particular, can be indicative of breathiness in the voice [60].
Interestingly, one study found a circadian pattern in MFCCs
due to sleep deprivation. For this, voice perturbations were
compared with classical sleep measures [61] and correlations
were found between fatigue scores and MFCCs. This might
eventually explain our results, as most participants also reported
signs of fatigue during the interviews.

Another study examined speech in students under exam stress
and a few days later; in this case, heart rate was measured to
control for the actual stress levels. Under stress, students’ heart
rates increased, F0 and F0 SD increased, first formant (F1) and
second formant (F2) frequencies increased, and MFCCs
decreased in relation to baseline levels [62].

It can be hypothesized that given our recorded population who
reported relatively mild to moderate levels of stress, rather subtle
changes in voice parameters were found and, therefore, weaker
correlations were observed. However, it is important to underline
that changes in features that we found to be sensitive to stress
levels were gender dependent but not necessarily task dependent.
They were most likely too small to be detectable by the human
ear but were captured by the automatic speech analysis. We
assume that by applying this technology to regular check-up
calls with people experiencing high stress levels, such as health
care professionals, very early signs of stress can be detected in
their voices, allowing for timely preventive strategies.

Regression models using vocal features performed relatively
well in predicting stress scores, namely in the positive story
task for both genders (MAE of 5.31). It shows that the
technology could capture indicative patterns from even a short
amount of time, possibly even from one task, to recognize
tendencies of stress levels in a fragile but healthy population;
this represents a promising rapid tool for prediction of stress
scores.

Strengths of This Study
This study is a first step into the early identification of stress in
an at-risk population, such as caregivers, who do not directly
express their psychological suffering. We can imagine extending
this technique to other fragile populations for early screening
of stress, such as teenagers who are victims of school harassment
or women who are victims of abuse, where timely management
could potentially prevent the development of comorbidities,
such as depression and anxiety. Moreover, patient populations
who have difficulty expressing their problems, such as those
with autism spectrum disorder or dementia, could benefit from
this technology.
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Generally, remote psychological counseling is controversial.
Nevertheless, it is becoming necessary due to current economic,
social, and health constraints, but has been received by
professionals and patients with mixed feelings. Indeed, the
nonverbal part of communication is lost and the dynamics of
interaction are not the same. However, contrary to these
preconceived ideas, we have noticed during this work that it is
easier for certain participants to open up and speak about
personal issues during these interviews in a liberating manner,
similar to a confessional. Not being in the physical presence of
the listener may facilitate personal expression, with less fear of
being judged. This aspect is very interesting during a screening
because it considerably accelerates the process of detection and
diagnosing of psychological symptoms.

Weaknesses of the Study
This project has been rapidly implemented, initially with an
approach of qualitative and quantitative data analysis, that
should contribute to the early and timely assistance of health
professionals during the COVID-19 pandemic. The staff
members available to participate in the study were limited.
Patient selection was done on a voluntary basis. It is conceivable
that the population studied were more concerned about their
state of psychological suffering and, therefore, potentially had
a selection bias.

Although the voice recordings were made in the middle of the
interview without this time being precisely stated, it is possible
that some patients may have suspected this, which could have
been anxiety provoking and skewed our results. Recording
throughout the interview for parameters not affected by the tasks
would provide more data and more robust results.

Finally, the obtained correlations can be considered as rather
moderate, which makes it difficult to draw any strong
conclusions. A larger data set, ideally of a longitudinal nature,
with more precise characterization of the speakers is needed in
order to verify whether the correlating features represent real
markers of stress.

Future Perspective
For future work, we propose to perform this analysis on a larger
data set and to build a prediction model. In case of an
insufficient number of observations per stress level, the number
of stress levels can be reduced by binning. Binning can also be
carried out on characteristic values.

Further studies with acoustic measurements and stress
questionnaires at regular time intervals would allow for the
analysis of the kinetics of the markers and a better perception
of their sensitivity and specificity. In addition, adding clinical
measurements of psychiatric symptoms, such as the Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edition [63],
would make it possible to perceive whether one of the markers
is predictive of an anxiety or depression disorder. The use of
the tool could be combined with the delivery of preventive
strategies, such as physical exercises, adaptation of diet,
psychotherapy, meditation, or the use of symptomatic
treatments, and it could be employed at the same time for the
evaluation of the obtained effects. However, in order to produce
a real-world application of this technology, larger validation
studies have to be performed to demonstrate clinical
meaningfulness by comparing its performance to standardized
measurement tools.
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