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Abstract

Background: Effectively and efficiently diagnosing patients who have COVID-19 with the accurate clinical type of the disease
is essential to achieve optimal outcomes for the patients as well as to reduce the risk of overloading the health care system.
Currently, severe and nonsevere COVID-19 types are differentiated by only a few features, which do not comprehensively
characterize the complicated pathological, physiological, and immunological responses to SARS-CoV-2 infection in the different
disease types. In addition, these type-defining features may not be readily testable at the time of diagnosis.

Objective: In this study, we aimed to use a machine learning approach to understand COVID-19 more comprehensively,
accurately differentiate severe and nonsevere COVID-19 clinical types based on multiple medical features, and provide reliable
predictions of the clinical type of the disease.

Methods: For this study, we recruited 214 confirmed patients with nonsevere COVID-19 and 148 patients with severe COVID-19.
The clinical characteristics (26 features) and laboratory test results (26 features) upon admission were acquired as two input
modalities. Exploratory analyses demonstrated that these features differed substantially between two clinical types. Machine
learning random forest models based on all the features in each modality as well as on the top 5 features in each modality combined
were developed and validated to differentiate COVID-19 clinical types.

Results: Using clinical and laboratory results independently as input, the random forest models achieved >90% and >95%
predictive accuracy, respectively. The importance scores of the input features were further evaluated, and the top 5 features from
each modality were identified (age, hypertension, cardiovascular disease, gender, and diabetes for the clinical features modality,
and dimerized plasmin fragment D, high sensitivity troponin I, absolute neutrophil count, interleukin 6, and lactate dehydrogenase
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for the laboratory testing modality, in descending order). Using these top 10 multimodal features as the only input instead of all
52 features combined, the random forest model was able to achieve 97% predictive accuracy.

Conclusions: Our findings shed light on how the human body reacts to SARS-CoV-2 infection as a unit and provide insights
on effectively evaluating the disease severity of patients with COVID-19 based on more common medical features when gold
standard features are not available. We suggest that clinical information can be used as an initial screening tool for self-evaluation
and triage, while laboratory test results should be applied when accuracy is the priority.

(J Med Internet Res 2021;23(4):e23948) doi: 10.2196/23948
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Introduction

COVID-19 is a pandemic disease caused by the novel
SARS-CoV-2 virus. As of January 12, 2021, COVID-19 had
spread through at least 220 countries and regions, resulting in
more than 88 million cases and almost 2 million deaths [1]. It
has become the single most severe pandemic in the 21st century,
dwarfing other coronavirus-caused epidemics, such as severe
acute respiratory syndrome (SARS) in 2003 and Middle East
respiratory syndrome (MERS) in 2012. COVID-19 is especially
challenging to health professionals and the general population.
Unlike in the preceding SARS and MERS epidemics, patients
with COVID-19 can be either asymptomatic or symptomatic,
and the virus has been demonstrated to be transmissible in both
states to varying degrees [2-5]. In addition, the distinct clinical
types of COVID-19, nonsevere and severe, require different
treatment and care plans [6]. In current studies, patients with
COVID-19 can be differentiated from patients who do not have
the disease; however, further detection of nonsevere or severe
types of COVID-19 has not been comprehensively explored.
Patients with nonsevere COVID-19 can be accommodated with
less intensive clinical monitoring and intervention, including
treating pre-existing conditions and preventing health
care–associated infections and other comorbidities [7]. In
contrast, patients with severe disease require close monitoring,
usually in the intensive care unit (ICU), by more clinicians [6].
Therefore, effectively and efficiently classifying clinical types
of COVID-19 is essential for triage, resource optimization, and
care planning for frontline clinicians and health care systems
as well as for the patients [6,8].

Currently, nonsevere and severe COVID-19 types are classified
based on only a few clinical features in China, including
shortness of breath, O2 saturation, and PaO2 [9]. Because of the
complexity of the pathological, physiological, and
immunological response of COVID-19, these three features do
not sufficiently characterize the difference between nonsevere
and severe types in patients with COVID-19 [9-11]. Although
shortness of breath can be self-monitored, O2 saturation and
PaO2 cannot be accurately self-evaluated and may not be readily
assessed in clinical settings, especially for socioeconomically
disadvantaged patients. In addition, some patients with severe
disease may not present shortness of breath initially. However,
without proper medical intervention, their clinical course will
worsen abruptly, often resulting in respiratory failure with high
mortality [6]. Therefore, these gold standard features bear the

risk of misclassification and misdiagnosis. Misclassification of
COVID-19 clinical types can result in inappropriate early
treatment decisions; this can place patients at risk of progression
due to insufficiently aggressive supportive therapy or expose
other patients to overly invasive treatment, both of which have
negative clinical consequences. In addition, the three defining
features may not be readily available during initial diagnosis
when resources are inadequate.

It is therefore critical to provide a rapid, accurate, and efficient
method to determine the severity of COVID-19 infection and
identify the clinical type using alternative features. This
determination will enable optimization of treatment plans for
patient care and improve utilization of health care resources and
staff. We suggest that additional readily available medical
features, including the patient's comorbidities (eg, hypertension
and diabetes) and symptoms (eg, fever and chest pain), as well
as laboratory test results, can be used to develop an effective
method to determine the clinical type and severity of COVID-19
[12,13]. Angiotensin-converting enzyme 2 (ACE-2) receptors,
which facilitate SARS-CoV-2 infiltration, are distributed across
multiple organs and systems in the human body [14]. More
recent discoveries have found that in addition to the respiratory
system, SARS-CoV-2 can invade digestive, reproductive, and
even neural systems [15-18]. In other words, all clinical and
laboratory test information of patients with COVID-19 could
be consequences or risk factors of SARS-CoV-2 infection. In
clinical practice to treat COVID-19, clinicians not from
respiratory units or ICUs may rely only on the referenced
features [9] while neglecting diverse and important clinical
features of COVID-19, and they may miss critical signs leading
to undesirable prognosis.

The potential power of clinical and laboratory testing features,
as well as their combinations, to determine COVID-19 clinical
type is currently being explored [19-24]. To use such diverse
multimodality information as alternative evidence to facilitate
accurate classifications, we propose a data mining and machine
learning (ML) framework as an alternative to commonly used
hypothesis-driven parametric models. The goal of this study is
to provide reliable data-driven support for clinicians, even those
who do not have comprehensive experience in diagnosing the
emerging disease COVID-19. We aim to explore and contrast
the distributions of clinical and laboratory testing features
between nonsevere and severe COVID-19 types. We will
identify key features that differ substantially between the two
clinical types. Next, we will investigate whether a single
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modality or specific combination of features across modalities
are able to provide accurate classification models via ML
techniques. Specifically, we aim to identify a small and practical
set of input features that can accurately differentiate COVID-19
clinical types. The insights gained from this study, as well as
the developed end-to-end multimodal data analysis and ML
framework, will enable us to better understand the
comprehensive pathology of COVID-19, further distinguish
COVID-19 from other respiratory infections, and apply the
framework to other diseases with multimodal medical data in
the future.

Methods

Data Source and Clinical Feature Extraction
In this study, we recruited 362 patients with COVID-19 from
January to March 2020, including 148 patients presenting with
severe disease and 214 patients lacking criteria for severe disease
during admission, from Wuhan Union Hospital, China. The
definitions of nonsevere and severe cases were mainly adopted
from the official COVID-19 Diagnosis and Treatment Plan from
the National Health Commission of China, and we also
consulted guidelines from the American Thoracic Society [9-11].
Patients with severe COVID-19 should present any one of the
following features: (1) respiratory rate >30 breaths per minute;
(2) oxygen saturation <93% at rest; or (3) PaO2/fraction of
inspired oxygen <300 mm Hg (40 kPa). Each patient with
COVID-19 was confirmed by two independent quantitative
reverse transcriptase–polymerase chain reaction tests before
being included in this study. All patients or their responsible
surrogates signed informed consent forms prior to study
inclusion. The patients’ symptoms were evaluated and blood
samples were drawn upon admission to perform laboratory
testing. No pediatric patients aged less than 18 years were
included.

The patients’ deidentified medical information include two
major modalities of features, both of which were assessed at
the time of admission. The first modality was a total of 26
pre-existing comorbidities and symptoms, referred to as “clinical
features” hereinafter. These features included gender, age,
hypertension, coughing, and different types of fever. A detailed
description of these 26 features is provided in Table S1 in
Multimedia Appendix 1. All clinical features were coded as 0-1
binary variables (age was dichotomized using 50 years as the
threshold).

In addition, we collected the patients’ laboratory test results.
The laboratory tests were plasma, serum, or whole blood assays
for commonly obtained biochemistry tests, complete blood
counts with differential counts and percentages, immunologic
markers, such as interleukin 6 (IL-6), dimerized plasmin
fragment D (D-dimer) and high-sensitivity C-reactive protein
(hsCRP). After initial screening, several features with too many
missing data, such as calcitonin, were excluded. In addition,
respiratory rate, oxygen saturation, and PaO2 without
supplemental oxygen were excluded because they are
type-defining features according to the official National
Diagnosis and Treatment Plan of China [9]. We used 26
laboratory test features in this study. Detailed descriptions and

units of these features are provided in Table S2 in Multimedia
Appendix 1. All these laboratory testing features were
continuous features, in contrast to the binary features used in
the clinical feature modality.

Patient-specific identifying information (eg, name and address
of residence) was removed from the data collected for this study.
This study was evaluated and approved by the IRB committee
of Union Hospital, Wuhan, China (approval number:
2020-IEC-J-345).

Data Mining on Multimodal Features
Initial data mining on the multimodal COVID-19 data was
conducted. The patients’ clinical data were complete.
Approximately 5% of the laboratory testing data were missing.
Predictive mean matching (PMM) was applied to impute the
missing data. To evaluate the effectiveness of PMM, we used
a subset of the original data set with no data missing, randomly
dropped 5% data to simulate potential data loss, re-extrapolated
the data with PMM, and evaluated the root mean square error
(RMSE) between the original and imputed data sets. The RMSE
was less than 0.05, indicating that the extrapolation was feasible
and reliable. The imputed data were then passed on to successive
data mining and ML steps.

The prevalence of each clinical feature was calculated as the
number of positive test results divided by the number of patients
in the nonsevere and severe groups as defined by the Diagnosis
and Treatment Plan [9]. The z test was applied to detect any
statistically significant differences in the features between the
two types. In addition, a forest plot of the odds ratios (ORs) and
95% confidence intervals of the clinical features between severe
and nonsevere COVID-19 types was graphed.

For the continuous laboratory testing features, we characterized
and contrasted the distribution of each feature between the two
types. Because the values of most features were not normally
distributed, we applied a 2-sided Kolmogorov-Smirnov test
instead of the Student t test to determine whether distributions
of the feature values differed significantly between the two
clinical types.

COVID-19 Clinical Type Classification via ML
Commonly used hypothesis-driven parametric models rely
heavily on human decisions of how features interact with each
other (eg, interaction terms in the logistic regression model),
which may not reflect the underlying medical reality. In addition,
these models have strict prerequisites to perform correctly,
including normality of residuals, homoscedasticity, and
independence of input features. Our initial exploratory analyses
showed the that input features in both the clinical and laboratory
testing modalities had nonnormality and high collinearity among
the features. Another technical challenge to logistic regression
in this study was the mixture of binary clinical and continuous
laboratory testing input features.

Due to these problems, logistic regression would not be a
preferred modeling approach to accurately classify and predict
COVID-19 clinical types. Our exploratory analysis showed that
logistic regression could only achieve average predictive
accuracies of 68% and 77% on an 80-20 training-testing split
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using clinical and laboratory testing feature data sets,
respectively (Table S3, Multimedia Appendix 1). Thus, logistic
regression is less feasible in clinical settings, where high
accuracy, sensitivity, and specificity are required to differentiate
COVID-19 clinical types.

On the other hand, state-of-the-art ML classification models
work directly with data to avoid possible human bias. In
addition, ML models do not have restrictions on how input data
should be distributed or related. Therefore, in this study, we
determined that ML classification would be a more appropriate
modeling approach to predict COVID-19 clinical type with a
complicated data structure. We developed an end-to-end ML
analytical framework to accurately predict the clinical type of
patients with COVID-19 based on clinical and laboratory testing
modality features. We built random forest (RF) classification
models, as RF enables excellent interpretability of the relative
importance of an input variable to provide a more
comprehensive understanding of the pathobiology of COVID-19.
RF is a widely used ML model based on decision theory and
the decision tree approach. Due to the internal validation process
with out-of-bag error measurement, RF is especially accurate
and reliable. Unlike other commonly used ML models (eg,
support vector machine or k-nearest neighbor), which usually
require a separate cross-validation set, the RF model performs
internal validation and is especially suitable when the data set
is not large. In addition, RF is robust against data loss and data
unbalancing (eg, there are more patients with nonsevere than
severe disease in our study [25-29]). Because the major goal of
this study was not to compare the performance of different ML
models, we focused on RF to deliver the most accurate
classification possible.

For the single modality RF model, we used 50% randomly
selected data for both clinical and laboratory testing blood
biochemistry features. In this step, 107 patients with nonsevere
COVID-19 and 74 patients with severe COVID-19 were
randomly chosen, while the other patients’ information was
held to build the multimodal RF model. We assigned severe
cases as “positive” and nonsevere cases as “negative” in the
classification. The goal of ML classification through RF was
to accurately predict the patient’s COVID-19 type, either
positive (severe) or negative (nonsevere), based on features
from different clinical modalities. In this part of the study, we
first used a single modality of features, either clinical or
laboratory testing, as the input. The detailed RF modeling and
validation processes are provided in Multimedia Appendix 2.
We trained the model with 100 independent runs; in each run,
a different set of 80% of the data was randomly selected for
training, while the remaining 20% of the data were held for
testing only. This step was performed to explore whether the
RF model was robust against different input data and to assess
the generalizability of the model. Hyperparameters in this RF
model include using Gini impurity to determine the decision
tree split, a minimum of 2 samples for tree spit, a minimum of
1 sample at any leaf node, and a total of 8 trees for the model
ensemble [26]. Important ML performance metrics, including
accuracy, sensitivity, specificity, F1 score, and area under the
curve (AUC) value based on the receiver operating characteristic
(ROC) curve, were computed for the testing set only.

In addition, RF can evaluate the relative importance of the input
variables based on their Gini importance scores [28]. We further
quantified the Gini impurity importance scores of the input
features in each RF run during the model development stage on
the training set (80% randomly selected data). We then identified
the top contributing features based on the Gini importance scores
in each of the 100 runs, aggregated over 100 runs; identified
the overall top contributing features; and explored the clinical
relevance and interpretability of these features for COVID-19.
Note that the Gini impurity importance was calculated from the
RF model based on the training set only and not on the testing
set. In addition, each run of the RF model was based on a
completely different, randomly sampled, and independent set
of 80% training data, from which the Gini importance was
calculated. Therefore, this approach avoided potential issues of
overfitting and inflated performance [30]. If an RF model is
robust, important input features should be consistent with the
different 80% portions of the data used as the training set to
develop the model. The most important features to differentiate
COVID-19 clinical types were also cross-checked with our
results from exploratory data mining, including the prevalence
of the clinical features and the distribution of the laboratory
testing features.

COVID-19 Clinical Type Classification With
Multimodal ML
More importantly, we explored whether and how combining
features across feature modalities improved classification
performance. We developed another RF model with the same
hyperparameter setting that incorporated features from both
modalities. The modeling process using a single modality was
similar. Instead of putting all 52 features into the model, we
selected only the top 5 features from each of the two modalities
as new inputs to reduce the increase model feasibility in case
certain features in the total 52-feature pool would not be readily
available. These top features were identified from the Gini
importance of the single modality RF models (highlighted in
Table S1 and Table S2 in Multimedia Appendix 1). The data
set for developing the multimodal RF model was a completely
new data set, as in, the other 50% of the original data was based
on 107 additional patients with nonsevere COVID-19 and 74
additional patients with severe COVID-19 whose data were not
used in the development of the single modality RF model.

We explored whether only 10 important features from different
modalities could perform sufficiently well to address the clinical
challenge of differentiating COVID-19 clinical types. This study
can serve as alternative and supplemental tool to the gold
standard features, which may not be readily available at the time
of diagnosis.

All statistical analyses and ML models were built in R 4.0.2 (R
Project) and Python 3.7 with additional supporting packages.
The complete codes and fully deidentified data are freely
available on GitHub [31].
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Results

Clinical Findings in Nonsevere and Severe COVID-19
The prevalence of clinical features in patients with nonsevere
and severe COVID-19 at the time of entry into the study were
calculated and compared (Figure 1). A more detailed comparison
of the clinical features between the two COVID-19 clinical
types is provided in Table S1 in Multimedia Appendix 1, which
shows the ORs, confidence intervals, and associated P values.
For patients with the two clinical types of COVID-19, the
prevalence was distinct for a number of different features.
Patients with severe COVID-19 were statistically much more
likely to be older (aged ≥50 years, OR 13.77, 95% CI
7.33-25.86, P<.001) and male (OR 1.89, 95% CI 1.24-2.90,
P=.003) and to have renal diseases (OR 8.51, 95% CI
1.86-38.99, P<.001), cardiovascular diseases (OR 5.61, 95%
CI 2.81-11.20, P<.001), hypertension (OR 5.37, 95% CI
3.36-8.56, P<.001), diabetes (OR 4.61, 95% CI 2.53-8.38,
P<.001), loss of appetite and taste (OR 3.20, 95% CI 1.70-6.01,
P<.001), chills (OR 2.21, 95% CI 1.16-4.22, P=.01), and chest
congestion (OR 1.88, 95% CI 1.22-2.89, P=.003) than their
counterparts with nonsevere COVID-19. The only exception
was sore throat, which patients with severe COVID-19 were

significantly much less likely to develop (OR 0.30, 95% CI
0.14-0.61, P<.001). These discoveries are further demonstrated
in the forest plot of the ORs and confidence intervals in Figure
2, which shows the differences between the two clinical types.
Therefore, these relatively easily measured and acquired clinical
features could be used to clinically evaluate the disease severity
of patients with COVID-19. Our findings, especially for patients
with severe COVID-19, echoed the US Centers for Disease
Control and Prevention’s recently updated list of symptoms of
COVID-19 [32] and more recent characterizations of patients
with COVID-19 in the United States [33]. Our findings showed
that older male patients with COVID-19 who had cardiovascular
disease, respiratory disease, renal disease, and diabetes were at
much higher risk of developing serious complications of
COVID-19, such as acute respiratory distress syndrome (ARDS)
and even death [20,21]. In addition, we discovered that Chinese
patients with renal diseases were significantly more likely to
develop severe COVID-19, which has not been widely reported.
Clinical evidence has shown that ACE-2 expression is associated
with kidney diseases; thus, kidney disease is a potential
complication of SARS-CoV-2 infection [34,35]. This finding
would inform clinicians that they should also monitor kidney
dysfunction, such as acute kidney injury, as a clinical sign or
consequence of severe COVID-19 complications.

Figure 1. Comparison of clinical features of patients with nonsevere and severe COVID-19. Note that because these features were binary, the y-axis
indicates the prevalence of a positive result. CAR: cardiovascular disease; CHL: chills and shaking; CNC: cancer; CON: contact with patients with
COVID-19; COU: coughing; CPD: chronic obstructive pulmonary disease; DIA: diabetes; DIR: diarrhea; FAM: family members with COVID-19;
FEV: fever; FTG: fatigue; HED: headache; HIF: high fever; HYP: hypertension; KID: renal disease; LOF: low fever; MOF: medium fever; MSA:
muscle ache; MUC: phlegm; NAP: loss of appetite; OLD: older age; PREV: prevalence; SEX: male sex; SHB: chest congestion; SMK: history of
smoking; SOR: sore throat; VOM: vomiting.
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Figure 2. Forest plot of the importance of clinical features of patients with nonsevere and severe clinical types of COVID-19. Chronic obstructive
pulmonary disease is not included because only patients with severe COVID-19 showed it as a comorbidity. The threshold for a feature to be positively
or negatively associated with severe COVID-19 was 1 (dashed line), not 0. CAR: cardiovascular disease; CHL: chills and shaking; CNC: cancer; CON:
contact with patients with COVID-19; COU: coughing; CPD: chronic obstructive pulmonary disease; DIA: diabetes; DIR: diarrhea; FAM: family
members with COVID-19; FEV: fever; FTG: fatigue; HED: headache; HIF: high fever; HYP: hypertension; KID: renal disease; LOF: low fever; MOF:
medium fever; MSA: muscle ache; MUC: phlegm; NAP: loss of appetite; OLD: older age; SEX: male sex; SHB: chest congestion; SMK: history of
smoking; SOR: sore throat; VOM: vomiting. *P<.05, **P<.01; ***P<.001 from the 2×2 contingency table for each feature.

For the laboratory testing modality features, we compared the
distributions of the continuous features between nonsevere and
severe COVID-19. The results are demonstrated in Figure 3. A
more detailed comparison of these 26 laboratory testing features
between the two clinical types is provided in Table S2 in
Multimedia Appendix 1, which shows the P values from the
Kolmogorov-Smirnov tests. Based on the 2-sided

Kolmogorov-Smirnov test, severe and nonsevere COVID-19
types differed significantly in most laboratory features, except
for platelet (PLT), hemoglobin (HGB), CD3, and CD4. Among
all laboratory features, IL-6, high-sensitivity troponin I (hsTNI),
and D-dimer had the most significant differences between
nonsevere and severe COVID-19 types.
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Figure 3. Comparison of laboratory testing features of patients with nonsevere and severe COVID-19. Values shown on the y-axis were obtained after
feature scaling and are between 0 and 1. The error bars represent the standard error of each laboratory testing feature. ALB: albumin; ALT: alanine
transaminase; AST: aspartate aminotransferase; BNP: Brain natriuretic peptide; CK: creatine kinase; CREA: creatinine; CRP: C-reactive protein; DD:
dimerized plasmin fragment D; ESR: erythrocyte sedimentation rate; FERR: ferritin; HGB: hemoglobin; hsCRP: high-sensitivity C-reactive protein;
TNI: troponin I; IL6: interleukin 6; LDH: lactate dehydrogenase; LY: lymphocyte; LY%: percent of lymphocytes; NE: neutrophil; NE% percent of
neutrophils; PCT: procalcitonin; PLT: platelet; TBIL: total bilirubin; WBC: white blood cell.

In conclusion, after extensive clinical feature extraction and
data mining, we obtained strong qualitative and quantitative
evidence that nonsevere and severe COVID-19 types differ
substantially with regard to clinical features and laboratory test
results. These findings pave the way toward creating an effective
ML classifier to accurately differentiate these two COVID-19
types in clinical practice.

Clinical Type Classification via ML

Comorbidity and Symptom (Clinical) Modality
We first explored whether relatively simple binary features
could provide accurate insights in identifying COVID-19 disease
severity. The performance of this model is summarized in the
upper section of Table 1. Based on 100 independent runs, the

RF model reached a median of >99% and 94% accuracy for the
training and testing sets, respectively (Table 1). Median is
reported instead of mean value because the performance metrics
were not normally distributed. The AUC was 90.2% (range
82.9%-97.6%) based on the ROC curve (Figure 4, left panel).
The model performed better in detecting true positives (ie,
severe clinical type) than true negatives (ie, nonsevere type).
In other words, clinical features alone in the RF models were
very unlikely to misclassify a severe case as a nonsevere case
but had a higher likelihood of predicting a nonsevere case to be
a severe case. In clinical practice, this would be a lesser concern,
as a false positive (failure to detect nonsevere type) would be
more tolerable than a false negative (failure to detect severe
type).
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Table 1. Performance of the random forest model with multimodal features. The results are based on 100 runs. In each run, 80% of the data was
randomly selected as the training set and 20% as the testing set. The table shows the model performance on the testing set only.

MaximumMinimumMedianFeature and performance metric

Clinical (%)

>9981.0894.59Accuracy

>9980.95>99Sensitivity

>9975.0093.75Specificity

>9982.9397.30F1 score

97.6082.9090.20AUCa

Laboratory testing (%)

>9993.0697.22Accuracy

>9994.59>99Sensitivity

>9983.3396.97Specificity

>9994.7497.89F1 score

>9992.9097.10AUC

Multimodal (%)

>9991.6797.22Accuracy

>9990.00>99Sensitivity

>9975.0094.44Specificity

>9997.2297.78F1 score

>9992.2097.40AUC

aAUC: area under the curve

Figure 4. ROC curves from the random forest models based on clinical, laboratory testing, and multimodal features. Left: the symptom feature as the
sole input; middle: the laboratory testing feature as the sole input; right: both features combined as the input. AUC: area under the curve; ROC: receiving
operator characteristic.

Our RF model also identified the major influential features to
differentiate COVID-19 types based on their contributions to
the Gini importance in the training set. The top influential
clinical features, in descending order, were age, gender,
hypertension, diabetes, and cardiovascular diseases, in
accordance with existing literature reports [36]. Other important
clinical features included fatigue, chest congestion, sore throat,
phlegm, and fever. Most of these findings aligned well with our
parametric data mining with OR comparison (Figure 2, Table
S1 in Multimedia Appendix 1) but showed much higher
accuracy (94% accuracy on the testing set of the RF model
compared to 68% accuracy from logistic regression). The only

exception was renal disease, which was not considered to be a
major differentiating factor based on its Gini importance (Table
S1, Multimedia Appendix 1).

Clinically, older male patients with pre-existing comorbidities,
especially hypertension, diabetes, and cardiovascular diseases,
are much more vulnerable to COVID-19 and have a much higher
risk of developing severe disease [19,21]. Therefore, we
suggested using the comorbidity and symptom features of
patients with COVID-19 as the first round of evaluation of
severity with reasonable accuracy.
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Laboratory Testing Modality
The RF model with 26 laboratory testing features was highly
effective in differentiating nonsevere and severe COVID-19.
The RF model achieved >99% and >95% accuracy for the
training and testing data sets, respectively. The sensitivity,
specificity, and F1 scores were all >95% when using only 8
trees in the RF model (Table 1, middle section). The AUC was
97% based on the ROC curve (Figure 4, middle panel). Although
this study focused on ML methods, we evaluated the model
performance of non-ML logistic regression in Table S3
(Multimedia Appendix 1) as a reference point to show the
improvement that state-of-the-art ML models could achieve.

The top differentiating features in the laboratory testing modality
were D-dimer, hsTNI, neutrophil, IL-6, lactate dehydrogenase
(LDH), and hsCRP, in descending order. The clinical
interpretation of their important roles was that patients with
severe COVID-19 experience more intense immune responses
and hyperinflammation, such as cytokine storm syndrome, with
substantially increased IL-6 [37]. Research has also shown that
SARS-CoV-2 can infect many organs other than the lungs,
including the heart, and induce dysfunction of these organs
[38,39]. Increasing hsTNI was found to be a sign of heart tissue
damage from SARS-CoV-2 infection [40]. In addition, patients
with severe COVID-19 may have microthrombosis, which
induces higher D-dimer levels [19,21,41-43]. Abnormal levels
of neutrophils may be responsible for cytokine storms and
ARDS in patients with severe COVID-19 [13,44]. hsCRP, a
biomarker of acute inflammation, cardiovascular disease, and
ischemic events, was also confirmed to be a major contributing
factor of COVID-19 mortality [19]. LDH is a biomarker of
tissue damage and has been used to predict the clinical course
of patients with COVID-19 [45]. These findings add further
clinical insights to how multiple organs and systems, not just
the lungs, respond to SARS-CoV-2 infection in different clinical
types [14,46,47].

Multimodal Features
We further developed a multimodal RF model that incorporated
both clinical and laboratory testing modalities with a completely
new data set that was not used for the single modality model
development. We used only the 5 most important features from
the clinical and laboratory testing modalities, based on their
Gini importance scores. The results showed that the top 10 of
a total of 52 features from both modalities achieved almost
>95% in every model performance metric, including accuracy,
sensitivity, specificity, and F1 score (Table 1). The AUC was
>97% as well (Figure 4, right panel). Therefore, we concluded
that a two-step evaluation and triaging process would be feasible
to differentiate the clinical types of patients with COVID-19
when the gold standard type-defining features were not readily
available.

These findings reflect our clinical understanding that
SARS-CoV-2 attacks multiple organs and systems, and the
human body reacts in a unity against infection. Different features
(eg, comorbidity, symptom, and laboratory testing results)
complemented each other to provide a more comprehensive
characterization of how the human body as a united entity, not
only the respiratory system, reacted to SARS-CoV-2 infection

[14]. In addition, the decent model performance supports the
feasibility of multimodal data mining in detecting and
differentiating patients with nonsevere COVID-19 from patients
with severe disease.

Comparing the original 52 features in both modalities, which
may not be all available at the same time during COVID-19
diagnosis, the top 10 most differentiating multimodal features
provided a more practical input combined with the highly
accurate ML model. Therefore, we concluded that our work
would help effectively optimize health care operations during
the pandemic and avoid overloading of the health care system
[8].

Discussion

Principal Findings
This study provides a novel analytical framework that combines
the power of multiple clinical features from different modalities
to differentiate COVID-19 clinical types via ML techniques.
Practically, it enables the delivery of a more comprehensive
understanding of the pathobiology of COVID-19. It can aid the
development of optimal treatment plans for individual patients,
such as sending them to a mobile cabin hospital or admitting
to a hospital with an ICU [7]. In addition, it will enable more
effective triaging and optimization of health care system
resources and personnel. This will substantially reduce the risk
of overloading the health care system by admitting all patients
with COVID-19 to hospital, decrease potential health
care–associated infections, and improve clinical outcomes for
the patients, especially during the COVID-19 pandemic [8].

In addition to accurately detecting vulnerable patients with
COVID-19 who are likely to have severe disease, this study
also provides insights on why these patients may have severe
disease. ML models work directly with data and therefore are
generally not good at providing clear interpretations. In this
study, we combined the power of both hypothesis-driven and
data-driven ML models. The highest-contributing comorbidities,
symptoms, and biochemical features help predict and explain
potential COVID-19 clinical courses and prognoses. Our
research echoes recent studies that characterize and predict the
clinical course, critical illness, and mortality of patients with
COVID-19 [13,19,21]. In particular, another decision tree–based
algorithm, extreme gradient boosting (XGBoost), showed
promising performance in predicting the mortality of patients
with COVID-19 [19]. RF is technically similar to XGBoost,
and our results were consistent in identifying the key
differentiating features, including LDH and hsCRP.

A continuous-valued risk score calculator for predicting risk of
transitioning to critical-type COVID-19 (an even more severe
type that requires ICU hospitalization, an invasive ventilator,
or extracorporeal membrane oxygenation, and has a mortality
rate as high as 50%) has been developed for patients with
COVID-19 [21]. As a comparison, although our RF model
predicts a 0-1 binary outcome for nonsevere and severe type
disease, the internal RF modeling process through decision tree
approach actually calculates an intermediate score between 0
and 1. By using a cutoff threshold, the RF model reports a final
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dichotomized 0-1 outcome. Therefore, our analytical framework
can also be readily adjusted to provide a continuous risk score
for clinical evaluation and triaging of patients with COVID-19,
if needed.

Many patients with severe COVID-19 present symptoms in
lungs, especially ground-glass opacity (GGO), which can be
detected by biomedical imaging techniques such as computed
tomography (CT). However, a major clinical challenge of
COVID-19 lies in the asymptomatic patient problem, which
creates far worse difficulties than other coronavirus epidemics,
including the original SARS and MERS epidemics. These
patients show few or no classic symptoms related to viral
pneumonia, and they present no GGO; however, they are almost
as capable of transmitting the virus as symptomatic patients
[4-6]. We suggest that the term “asymptomatic” is used due to
lack of a comprehensive characterization and understanding of
this novel pathogen and the pathophysiology of the host; we
also suggest that these patients are not truly “asymptomatic,”
as in, without any clinical symptoms or signs. Approximately
10% of the patients with mild COVID-19 in our study cohort
did not show typical respiratory symptoms, including fever,
coughing, and chest pain, upon admission. However, they
showed other symptoms from the more comprehensive modality
of 26 clinical features.

Future Work
The next step of this study is to further include a biomedical
imaging modality. A technical barrier is that a CT scan is a
high-dimensional feature set, while clinical and laboratory test
data have relatively low dimensionality. Therefore, the CT scan,
in its original form of imaging, cannot be effectively combined
with other modalities. We will evaluate the feasibility of using
a convolution neural network (CNN, another ML technique)
first to reduce the feature space in CT scans and extract a fully
connected layer in the CNN as a representation of the CT scan
feature. A fully connected layer is a 1D vector and has the same
dimensionality as the other two modalities. Therefore, in theory,
we would be able to further combine CT scans with other
clinical features and investigate the association between these
features with regard to COVID-19.

COVID-19 is a complex disease in which the pathogen not only
attacks the respiratory system but other organs and systems that
possess ACE-2 receptors as well [14,33]. Our findings reveal
the complicated pathological, physiological, and immunological
responses to SARS-CoV-2 infection and shed light in
understanding the complex interactions between the virus and
the human body. Although our multimodal data mining and ML
framework was developed with data from patients with severe
and nonsevere COVID-19, we suggest that the end-to-end
framework is applicable to many disease systems in which
multimodal inputs are common, including demographic
information, comorbidity, laboratory testing, imaging, and
-omics data. Having a more holistic viewpoint and approach
will enable us to understand and respond to these emerging
diseases, especially the unprecedented COVID-19, more readily
in the field. Another feasible analytical solution is ensembling.
Each input feature modality can be used independently to train
a specific model, and the final prediction of COVID-19 clinical

type can be made through ensembling. We will further explore
this analytical framework and transfer our insights to future
clinical studies, such as differentiating healthy patients from
patients with non–COVID-19 viral pneumonia, nonsevere
COVID-19, and severe COVID-19.

Limitations
In this study, we recruited participants from a single hospital
in Wuhan, the first epicenter of COVID-19. There will inevitably
be selection bias, as the ethnic group is currently limited to
Chinese participants who are mostly of Han ethnicity. It is
possible that ethnicity and race and their confounding risk
factors (eg, socioeconomic status, nutrition conditions,
accessibility of care, and other social determinants of health)
are different in various studies. Therefore, we wish to share our
findings with our colleagues worldwide and determine whether
different demographic backgrounds influence feature
distributions between nonsevere and severe COVID-19 in
patients. Some of our findings of the top contributing clinical
and laboratory testing features were supported in other
COVID-19 studies across different ethnic groups, while others
were not [32,40]. For example, while we found male gender to
be a strong influencing factor of severe COVID-19, other studies
did not reach a similar conclusion [36]. The findings in this
study on Chinese ethnicity could actually complement other
existing studies on other ethnic groups and reveal the clinical
and epidemiological complexity of this unprecedented ongoing
pandemic.

Another limitation of this study is that the patients were
evaluated at the time of admission; therefore, the study was a
cross-sectional instead of a longitudinal study. Future studies
could examine both diagnosis and prognosis and further explore
how and why some patients with nonsevere COVID-19 may
transition to a severe disease state and whether ML techniques
are able to identify critical predictive features to undesirable
prognoses such as death.

Additionally, different subtypes of SARS-CoV-2, their specific
pathogenicity and virulence, and their host-pathogen interactions
should be taken into consideration when conducting and
comparing studies across different regions of the world. The
other factors that this study did not include are behavioral and
societal aspects, such as whether and how using mobile cabin
hospitals to treat patients with nonsevere COVID-19 reduces
the rate of transition to severe type. The COVID-19 epidemic,
like all infectious disease epidemics, has individual clinical,
epidemiological, behavioral and societal factors. Therefore, we
will also explore cross-scale individual clinical course and
population-level epidemics in future studies.

Conclusion
We trained and validated ML RF models to predict COVID-19
severity based on 26 comorbidity and symptom features and 26
laboratory testing features from a cohort of 214 patients with
nonsevere COVID-19 and 148 patients with severe COVID-19.
We identified the top features from both feature modalities to
differentiate the clinical types, and we achieved predictive
accuracies of >90%, >95%, and >99% when clinical features,
laboratory test data, and the top 5 features from each modality
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combined were used as inputs, respectively. The results will
help patients with COVID-19 self-evaluate their condition, help
clinicians to evaluate disease severity and triage patients, and

optimize health care resource utilization during the COVID-19
pandemic.
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