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Abstract

Background: Pancreatic cancer is the third leading cause of cancer-related deaths, and although pancreatectomy is currently
the only curative treatment, it is associated with significant morbidity.

Objective: The objective of this study was to evaluate the utility of wearable telemonitoring technologies to predict treatment
outcomes using patient activity metrics and machine learning.

Methods: In this prospective, single-center, single-cohort study, patients scheduled for pancreatectomy were provided with a
wearable telemonitoring device to be worn prior to surgery. Patient clinical data were collected and all patients were evaluated
using the American College of Surgeons National Surgical Quality Improvement Program surgical risk calculator (ACS-NSQIP
SRC). Machine learning models were developed to predict whether patients would have a textbook outcome and compared with
the ACS-NSQIP SRC using area under the receiver operating characteristic (AUROC) curves.

Results: Between February 2019 and February 2020, 48 patients completed the study. Patient activity metrics were collected
over an average of 27.8 days before surgery. Patients took an average of 4162.1 (SD 4052.6) steps per day and had an average
heart rate of 75.6 (SD 14.8) beats per minute. Twenty-eight (58%) patients had a textbook outcome after pancreatectomy. The
group of 20 (42%) patients who did not have a textbook outcome included 14 patients with severe complications and 11 patients
requiring readmission. The ACS-NSQIP SRC had an AUROC curve of 0.6333 to predict failure to achieve a textbook outcome,
while our model combining patient clinical characteristics and patient activity data achieved the highest performance with an
AUROC curve of 0.7875.

Conclusions: Machine learning models outperformed ACS-NSQIP SRC estimates in predicting textbook outcomes after
pancreatectomy. The highest performance was observed when machine learning models incorporated patient clinical characteristics
and activity metrics.

(J Med Internet Res 2021;23(3):e23595) doi: 10.2196/23595
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Introduction

Pancreatectomy is a particularly complex operation with a
90-day mortality rate over 4% and serious morbidity rates over
20%, even in high-volume centers [1,2]. In the recently
completed Alliance for Clinical Trials in Oncology
(ALLIANCE) trial A021101 [3] and PREOPANC [4]
multicenter clinical trials, 53% and 68% of patients, respectively,
experienced at least a moderate complication from
pancreatectomy. When a complication occurs after a
pancreatectomy, the cost of the procedure to the health care
system nearly triples from US $31,809 to US $82,576 because
of prolonged hospitalization, additional treatments, and
readmissions [5,6]. Complications are especially morbid in
patients with pancreas cancer, a frail population with a mean
age of 70 years, with up to 40% of patients being malnourished
on presentation [7]. Multiple studies have shown that patients
with pancreatic cancer who experience a therapeutic
complication have decreased overall survival and quality of life
[8].

Patients undergoing pancreatectomy have an increased risk of
postoperative complications if they have poor preoperative
physical health and overall performance [9,10]. To evaluate
patients for surgery, physicians perform a physical examination
in the office. This is subjective and can be misleading [11-13].
The patient’s condition on that day may or may not be consistent
with their general health. There are simple tests such as the
6-minute walk test or the Timed Up and Go test that can be used
to determine a patient’s baseline physical capacity and assess
if a patient is fit for the physical demands of surgery; however,
these tests have not been widely adopted [11-13]. In addition,
although they are more objective than a physical examination,
these tests also suffer from being a single measurement at a
single time point. A more widely used surgical assessment tool
is the American College of Surgeons National Surgical Quality
Improvement Program surgical risk calculator (ACS-NSQIP
SRC) [14-16]. It uses 20 patient-specific variables to calculate
the likelihood of a patient having a complication or readmission
after surgery. Although these evaluation tools are helpful, there
is still a major gap in the ability to objectively measure and
analyze patient health status in order to determine if the patient
is fit for surgery.

Recently published data have demonstrated that telemonitoring
using wearable devices with a 3-axis accelerometer and
photoplethysmogram sensors can provide real-time data on
patient activity metrics, which can holistically capture a patient’s
physical health status [17-23]. A study utilizing this technology
in cohorts of patients with gastrointestinal and advanced solid
malignancy undergoing chemotherapeutic treatment
demonstrated an inverse association between symptom severity
and patient activity, with each increase of 1000 steps per day
being associated with reduced odds for severe adverse events
and increased survival [24,25]. Moreover, the application of
machine learning methodologies and feature engineering
techniques on patient activity data have shown that human
biobehavioral rhythms, semantic features, and second-order
statistical features are predictors of clinical outcomes [18-23].
Prognostic models derived using machine learning

methodologies in patients who underwent pancreatectomy have
also been shown to perform better than traditional methods in
predicting outcomes [15,16].

For patients undergoing pancreatectomy, this technology has
the potential to improve patient selection. To evaluate the
relationship between longitudinal patient activity bioinformatics
and their effect on surgical outcomes, our team implemented a
protocol in which we provided patients with wearable
telemonitoring devices before undergoing pancreatectomy at
our institution and evaluated predictive outcomes. Herein, we
present a prospective cohort study of patients undergoing
pancreatectomy over a 12-month period.

Methods

Study Population
From February 2019 to February 2020, eligible patients were
recruited from multidisciplinary pancreas clinics. Both men and
women and members of all races and ethnic groups were eligible
for this trial. The inclusion criteria for our study included
patients who (1) were scheduled to undergo pancreatic resection,
(2) had access to a smartphone, (3) were at least 18 years of
age, and (4) were able to understand and willing to sign an
institutional review board (IRB)–approved informed consent
document (IRB #201810002).

Study Design
We conducted a prospective, single-center, single-cohort trial
evaluating the utility of telemonitoring devices to measure daily
activity in patients undergoing pancreatectomy. The device used
in this study was the Fitbit Inspire HR (Fitbit, Inc), which was
selected because it provides remote data access from the device
with a set frequency and enhanced granularity. It is also a
waterproof, inexpensive, consumer-based device and designed
to be compatible with most smartphones. At the time of consent,
study patients were provided with a telemonitoring device and
assisted in setting it up with their smartphone. Pancreatectomy
typically took place more than two weeks after surgical consent,
providing a minimum of two weeks of preoperative activity
metric data. All clinical practices followed the standard of care.

Patient Activity Assessments
Our team developed software to remotely collect activity metrics
from our patient telemonitoring devices that was compliant with
the Health Insurance Portability and Accountability Act. This
platform collected real-time patient data with 1-minute
granularity. In cases of a lost connection, the wearable device
saved up to 7 days of minute-to-minute activity metrics as well
as accessory data (eg, battery life at last sync and time of last
sync). Our informatics system performed daily audits and ran
a weekly summary routine to provide the study team with the
previous week’s data, including yield. Yield was tracked using
the total number of heart rate data points obtained during the
day as a proxy for the percentage of the day the patient was
wearing the device properly.

Patient Clinical Assessments
Patient clinical characteristics were collected, including
demographics, comorbidities, and clinical presentation.
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ACS-NSQIP SRC risk calculations were evaluated and
documented.

Study Outcome Measurements
All outcome measurements were prospectively collected by the
study team and recorded in the patient’s secure study record.
All postoperative complications were coded and graded using
the Modified Accordion Grading System (MAGS) [26]. The
MAGS grades complications on a scale of 1 to 6, with grade
3=severe, 4=single organ system failure, 5=multiorgan system
failure, and 6=death (grades 1 and 2 complications are
considered nonsevere). To ensure rigor and reproducibility,
surgical complications were presented and verified at a
multidisciplinary pancreas conference held every week. All
postoperative complications and readmissions were collected
for 30 days after hospital discharge. Complications data were
then used to compute the primary outcome for our study—the
textbook outcome for pancreatectomy [27]. Textbook outcome
was defined as the absence of postoperative pancreatic fistulae,
bile leak, postpancreatectomy hemorrhage, severe complications,
readmission, and in-hospital mortality. We modified our
definition of textbook outcome to allow for discharging distal
pancreatectomy patients with a drain on or before day 4, the
standard of care in our practice.

Data Analysis

Feature Engineering
To construct machine learning models based on activity metrics
data, we applied feature engineering techniques to extract three
types of features: statistical, semantic, and biobehavioral
rhythmic features. We extracted first- and second-order
statistical features from the daily step count, heart rate, and sleep
time-series data [17]. The first-order statistical features used in
our analysis were mean, maximum, minimum, skewness, and
kurtosis. The second-order statistical features in medical data
mining were co-occurrence features for which we generated
energy, entropy, correlation, inertia, and local homogeneity.
We then performed detrended fluctuation analysis (DFA) on
the data, which evaluates long-range correlation of noisy
time-series data, and used the root-mean-square deviation from
the trend, namely the fluctuation, from DFA as the feature in
our analysis. [17]. The semantic features collected provided
summaries of the patient’s daily activity level and sleep quality.
Examples of the semantic features were time in bed, minutes
to fall asleep, daily sedentary time, and daily sedentary bout
count. Using the previously defined methodology, we derived
and calculated biobehavioral rhythm–related features from the
step count and heart rate time series [18,19]. The biobehavioral
rhythmic features used in our models included stability,
variability, mean of the 5 least active hours each day (L5), mean
of the 10 most active hours each day (M10), amplitude
(M10-L5), relative amplitude ([M10-L5]/[M10+L5]) and
amplitude, phase, and midline estimating statistic of rhythm
(MESOR) [20,21]. Patient clinical characteristics are potentially
complementary to patient activity metrics, and we incorporated
that data into the predictive models. For these categorical
variables, we applied standard one-hot encoding to transfer them
into features that could be used together with the features
extracted from the activity metrics.

To account for variation in the study participation period (ie,
time to surgery), the extracted patient activity features were
unified to consistent dimensions. Biobehavioral rhythmic
features were computed for the entire study participation period,
and the statistical and semantic features were generated daily.
In order to eliminate varying input feature dimension caused
by different lengths of monitoring periods, we used mean and
variance of the statistical and semantic features of a participant
as the final inputs to the machine learning models.

Machine Learning Methods and Statistical
Considerations
Multiple machine learning models were developed, trained, and
evaluated for their ability to predict outcomes by discovering
complex underlying patterns from multimodal time-series patient
activity data collected from wearable devices and patient clinical
characteristics. To avoid overfitting, we performed
state-of-the-art “shallow” machine learning models, including
random forest, gradient boosted trees (GBT), k-nearest neighbors
(KNN), support vector machine (SVM) with linear kernel, and
logistic regression (LR) with L1 penalty. A GBT model is an
ensemble of weak decision trees that classifies the samples
based on the predictions of those trees [22]. The algorithm
iteratively fits a weak decision tree to the pseudo-residuals from
the last iteration. We then employed regularization and feature
selection to avoid overfitting and improve generalizability of
the models. When implementing the GBT model, we explored
established regularization techniques including controlling the
complexity of the trees, applying shrinkage during the training
process, and using stochastic gradient boosting. In general, an
SVM model constructs an optimal hyperplane or a set of
hyperplanes that can separate the samples of different classes
by enforcing a large margin. It then makes predictions by
deciding which side or region of the hyperplane the input sample
should be on. In our implementation, we chose a linear kernel
instead of other nonlinear kernels, such as a radial basis function
(RBF) kernel, because the linear kernel is less likely to be
overfitted in small data sets. LR with L1 penalty enforces the
coefficients of less important features to be shrunk to zero,
which works well for the case that has multiple features. For
the feature selection in the training phase, we implemented a
mixture of feature selection methods, using the chi-square
statistic as the heuristic for categorical features and the F statistic
from analysis of variance (ANOVA) for continuous features.
When training the models, the hyperparameters were tuned
using grid search. For example, for SVM the kernel choice and
regularization strength were tuned, for GBT the coefficients of
L1 and L2 regularization terms and the learning rate were tuned,
and for LR the coefficients of elastic net regularization were
tuned.

Leave-one-subject-out cross-validation (LOSO CV) was used
for calculating the performance metrics, such as area under the
receiver operating characteristic (AUROC), sensitivity,
specificity, precision, and F1 score. LOSO CV was able to
evaluate the model’s performance on unseen patients, namely
the out-of-sample accuracy [23]. Model explanation techniques
were explored to study the relation between input features and
predicted outcomes. We used the SHapley Additive exPlanations
(SHAP) technique [28], which associates each feature with an
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importance score—the Shapley value. SHAP is an established
model-agnostic explanation approach that can be used to explore
models from any kind of machine learning [29].

Missing Data
There were three possible causes of missing data: (1) improper
wearing of the device, (2) lack of user compliance (not wearing
the device), and (3) loss of connectivity for longer than 7 days.
For patients with missing data, we applied a two-level
imputation method to the activity metrics collected by our
telemonitoring devices [17]. The data-level imputation was to
fill the missing data points in heart rate time series if the daily
data yield, defined as the fraction of the expected data points
that were successfully collected, was equal to or above the
threshold (10%). The imputed time-series data were then used
to compute the features [23]. We applied KNN imputation to
estimate the missing heart rate data based on recent step count
and heart rate data in a sliding window (eg, 5 minutes). For
those heart rate time series with a daily yield of less than 10%
but greater than 0%, we used feature-level imputation to directly
impute their corresponding statistical and semantic features.
For the feature-level imputation, we again applied KNN
imputation to the missing statistical and semantic features based
on other available features from the same participant on the
same day. Days with no data (daily yield of 0%) were discarded
in the analysis.

Model Performance Evaluation
To evaluate the effectiveness of the machine learning models
in predicting postoperative outcomes, defined by the modified
textbook outcome, we compared them with clinical patient
performance status assessment tools, including the ACS-NSQIP
SRC. Utilizing the ACS-NSQIP SRC as our baseline model,
we evaluated the performance and efficacy of this approach and
applied machine learning models to (1) patient clinical
characteristics (demographics, comorbidities, and clinical
presentation), (2) features derived from remotely collected

activity metrics, and (3) patient clinical characteristics + features
derived from remotely collected activity metrics. The
comparative evaluation of the “patient activity–only” and
“clinical characteristic–only” models assessed the predictive
power of activity metrics, while the performance of a combined
“patient activity + clinical characteristic” model, by design,
tested whether activity metrics and clinical records complement
each other to yield better results.

Results

A total of 54 patients were enrolled in the study, and 48 patients
completed it. Four patients had their pancreatectomy cancelled
on the day of surgery because of intraoperative evidence of
advanced disease, and 2 patients electively chose to withdraw
for nonmedical reasons. All patients had an independent
functional status. Of the 48 patients who completed the study,
29 (60%) were females and 19 (40%) were males, with an
average age of 63.2 (SD 11.6) years. Patients underwent three
different types of pancreatectomy, including
pancreaticoduodenectomy (n=41, 85%), distal pancreatectomy
(n=6, 13%), and total pancreatectomy (n=1, 2%). The surgeries
were performed open in 28 (58%) cases and minimally
invasively in 20 (42%) cases. Final surgical pathology was
adenocarcinoma (n=36, 75%), neuroendocrine (n=7, 15%),
benign disease (n=4, 8%), and metastatic renal cell carcinoma
(n=1, 2%).

In our cohort, 28 (58%) patients had a textbook outcome, with
the other 20 (42%) patients not achieving a textbook outcome.
Fourteen patients developed 19 severe complications (MAGS
score ≥3), including delayed gastric emptying (n=3), pancreatic
fistula (n=3), organ space infection (n=2), postpancreatectomy
hemorrhage (n=4), nonpancreatic anastomotic leak (n=1),
myocardial infarction (n=1), and other (n=5). Additionally, 11
patients required readmission to the hospital. See Table 1 for
univariate analyses of demographic and comorbidity features
stratified by textbook outcome in our cohort.
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Table 1. Patient characteristics.

P valueaPatients with textbook out-
comes (n=28)

Patients with complications
(n=20)

Characteristic

.0460.26 (31.02-84.02)67.24 (48.14-80.52)Age (years), mean (range)

.12Gender, n (%)

8 (29)11 (55)Male

20 (71)9 (45)Female

.86Race, n (%)

25 (89)19 (95)White

3 (11)1 (5)Non-White

.06Comorbidities, n (%)

8 (29)12 (60)≥5

20 (71)8 (40)<5

.45Tobacco use, n (%)

19 (68)11 (55)Never smoked

3 (11)1 (5)Active smoker with >10 pack years

1 (3.5)0Active smoker with <10 pack years

4 (14)7 (35)Past history of smoking with >30 pack years

1 (3.5)1 (5)Past history of smoking with <30 pack years

.48Medications, n (%)

6 (21)7 (35)≥5

22 (79)13 (65)<5

.07ASAb class, n (%)

1 (3.6)01

18 (64.3)7 (35)2

9 (32.1)13 (65)3

.5929.03 (19.00-48.07)27.99 (20.30-37.00)BMI (kg/m2), mean (range)

.02Prior surgery, n (%)

10 (36)15 (75)Yes

18 (64)5 (25)No

.38Operative approach, n (%)

14 (50)14 (70)Open

9 (32)4 (20)Laparoscopic

5 (18)2 (10)Robotic

.22Operation type, n (%)

23 (82)18 (90)Pancreaticoduodenectomy

5 (18)1 (5)Distal pancreatectomy

0 (0)1 (5)Total pancreatectomy

aP values were derived from chi-square tests for categorical variables and F tests for continuous variables.
bASA: American Society of Anesthesiologists.

Patient activity metrics were collected over an average of 25.9
days (range 6 to 153 days) before surgery. The average daily
yield of all patients, defined as the fraction of expected heart
rate readings per minute that were successfully collected in a
day, was 82.1% (SD 23.5%). High data availability was defined

as days with a yield greater than or equal to 50%. Based on this,
the average number of days per patient with high data
availability was 19 (range 2 to 102) and the average percentage
of days with high data availability per patient was 79.8% (range
14.8% to 100%). Patients took on average of 4162.1 (SD 4052.6)
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steps per day, had an average heart rate of 75.6 (SD 14.8) beats
per minute, and had an average sleep time series of 2 (SD 1),
which was a mean DFA of their sleep stages with 50-minute
windows. The average ACS-NSQIP SRC calculations for a
patient developing any complication was 27.3% (SD 6.4%),
developing a serious complication was 23.3% (SD 5.5%), and
being readmitted was 15.1% (SD 3.4%).

Utilizing the ACS-NSQIP SRC as our baseline model, we
evaluated the performance and efficacy of this approach and
applied machine learning models to (1) patient clinical
characteristics, which included demographics, comorbidities,
and clinical presentation; (2) patient activity with features

derived from remotely collected activity metrics; and (3) patient
clinical characteristics + patient activity with features obtained
or derived from both clinical records and activity metrics. Table
2 shows the performance comparison of these models at
predicting a textbook outcome. The predictive models were
trained with probabilistic outputs and then the classification
thresholds were adjusted to obtain a sensitivity of 0.9 in order
to ensure a high detection rate and allow an equitable
comparison. Our AUROC curves were 0.6333 for the
ACS-NSQIP SRC, 0.7054 for the patient clinical characteristics
model, 0.7027 for the patient activity model, and 0.7875 for the
patient clinical characteristics + patient activity model.

Table 2. Performance comparison of machine learning models trained with different data sources.

Metricsb

F1 scorePrecisionSpecificitySensitivityAUROCc curveModelParametera

0.56250.40910.03700.90000.6333ACS-NSQIP SRCd

0.60510.45580.23210.90000.7054LRePatient clinical characteristics

0.59920.44910.21070.90000.7027SVMfPatient activity

0.65450.51430.39290.90000.7875GBTgPatient clinical characteristics + patient activity

aParameters used for the models are summarized in Multimedia Appendix 1.
bThe metrics for the machine learning models represent the average across all leave-one-subject-out cross-validation folds.
cAUROC: area under the receiver operating characteristic.
dAmerican College of Surgeons National Surgical Quality Improvement Program surgical risk calculator (ACS-NSQIP SRC) was used as the baseline
model for complications from pancreatoduodenectomy.
eLR: logistic regression.
fSVM: support vector machine.
gGBT: gradient boosted trees.

In our analysis, we observed that 15 out of 20 features with the
highest impact discovered by SHAP were from the best
performing GBT model trained on patient clinical characteristics
+ patient activity (see Table 3 for feature exemplars).

Finally, to determine if the amount of missing data affected the
performance of the classification model, the average number
of days with high data availability (again, defined as days with

a yield greater than or equal to 50%) for correctly classified
patients was compared with that for incorrectly classified
patients. The difference in the average number of days with
high data availability between correctly classified patients and
incorrectly classified patients was statistically insignificant (17
days, SD 10 days, versus 25 days, SD 25 days, respectively;
P=0.12). This suggests that the amount of missing data did not
affect the performance of the classification model.
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Table 3. Analysis of variance test statistics on the features extracted from Fitbit Inspire HR (Fitbit, Inc) data.

SHAPb

value

P valueF 46Patients with textbook out-
comes, mean (SD)

Patients with complications, mean
(SD)

Featuresa

Heart rate features

1.2694.00211.160313362.2921 (7545.2961)6744.5286 (5055.2469)Variance of local homogeneity

0.2338.122.532431.9996 (0.0004)31.9993 (0.0007)Mean of correlation

0.2214.171.908624.8816 (5.0493)22.7418 (5.3550)Mean DFAc of heart rate with 40-
minute window

0.2064.142.2724140.9836 (71.2032)202.1648 (192.6207)Mean of energy

0.1787.132.40061.1065 (0.4253)1.3182 (0.4978)Mean of skewness

0.1507.291.14647.3569 (3.6230)6.2318 (3.3540)Cosinor amplitude

0.1500.191.79779.9500e–7 (2.0791e–7)3.3737e–7 (8.8545e–7)Variance of correlation

0.1119.410.70412.4344 (0.6922)2.2616 (0.6844)Log Cosinor amplitude

0.0558.420.66405.6795 (2.4526)6.2530 (2.2063)Mean of kurtosis

0.0476.083.103517.6321 (11.8530)12.1549 (7.9180)Variance DFA of heart rate with 30-
minute window

Step features

0.2174.350.87980.5574 (0.3587)0.4669 (0.2638)Variance of daily sedentary bout

0.0930.025.37520.0689 (0.0368)0.1100 (0.0808)Mean of intradaily stability

0.0662.035.09690.2097 (0.0878)0.2948 (0.1653)Relative amplitude

0.0428.025.44690.0788 (0.0559)0.1341 (0.1034)Intradaily stability with 60-minute
window

Sleep features

0.0471.400.72942.9634 (0.2589)2.8834 (0.3767)Mean DFA of sleep stages with 50-
minute window

Categorical features

0.9024.034.832331.5393 (30.4855)50.8000 (27.5481)Neutrophils

0.3428.0078.13740.3571 (0.4792)0.7500 (0.4330)Prior surgery

0.2932.054.23789.6071 (0.6464)9.2450 (0.4955)Calcium

0.1522.025.80692.2857 (0.5249)2.6500 (0.4770)ASAd class

0.0419.102.81890.3571 (0.4792)0.6000 (0.4899)Hyperlipidemia

aStatistically significant features (P value <.05) are listed.
bSHAP: SHapley Additive exPlanations.
cDFA: detrended fluctuation analysis.
dASA: American Society of Anesthesiologists.

Discussion

Principal Results
Preoperative clinical evaluation and assessment for surgical
candidacy plays an essential role in postoperative outcomes.
Patients who are more physically fit for surgery are less likely
to experience complications. To better predict which patients
will have poor outcomes, several tools have been developed
and implemented over the years, including physical examination,
patient demographics, laboratory values, and risk calculators;
however, none of these are perfect. In this study, we used
wearable telemonitoring technology in conjunction with machine

learning to evaluate patient activity preoperatively and assess
its ability to predict surgical outcomes.

Our models included patient clinical characteristics, patient
activity, and patient clinical characteristics combined with
patient activity, which we then compared with predictions from
the ACS-NSQIP SRC. We found that all three of our machine
learning models outperformed the baseline estimations from
the ACS-NSQIP SRC. As shown in the results section, the
ACS-NSQIP SRC had an AUROC curve of 0.6333 for
predicting a textbook outcome after pancreatectomy, which is
consistent with previous reported findings of AUROC curves
in national samples [30]. Machine learning models created using
the same patient clinical characteristics utilized by the
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ACS-NSQIP SRC outperformed the ACS-NSQIP SRC, with
an AUROC curve of 0.7054 for LR. This was similar to machine
learning models that utilized only patient activity data collected
from telemonitoring (AUROC curve of 0.7027 for SVM). The
best results were achieved with machine learning models that
combined patient clinical characteristics with patient activity
data (AUROC curve of 0.7875 for GBT). This confirmed our
hypothesis that machine learning technology can outperform
the standard ACS-NSQIP SRC in predicting textbook outcomes
in patients who had a pancreatectomy. In addition, patient
activity metrics significantly improved the predictive power.

Within the machine learning model, we utilized SHAP scores
to identify features with the greatest impact. Specifically, within
heart rate features, the “variance of local homogeneity” in heart
rate was significantly correlated with higher SHAP values. This
suggests that particular attention should be paid to patients’
physiological status prior to surgery. Additionally, the “mean
of intradaily stability” and “relative amplitude” of steps taken
[18], which pertain to the subjects’ physical mobility, were also
significantly associated with higher SHAP values. The definition
and derivation of these features was described by Mao et al
[29]. Similar to the findings of previous studies [18,21-23],
incorporating patient activity data with patient clinical data
increased the performance of our machine learning models. The
patient clinical data that specifically improved the models’
performance included neutrophil levels, calcium levels, and a
history of prior surgery. The Rotterdam Study [31] found that
patients with an elevated neutrophil count in relation to
lymphocyte count (neutrophil to lymphocyte ratio) were
independently associated with increased morbidity and mortality.
Likewise, multiple authors have also shown age-related changes
in calcium metabolism and found that variations in absorption
of vitamin D, as well as a decreased intake of calcium, are
commonly seen in the elderly [32]; 26 (54%) of the patients in
this study were aged ≥65 years at the time of surgery.

Physical activity is a targetable and modifiable behavior that
has been shown to improve outcomes of cancer patients

undergoing chemoradiation [33-35]. Similarly, a meta-analysis
of 15 randomized controlled trials with more than 400 patients
showed that prehabilitation prior to major abdominal surgery
led to a significant reduction in overall and pulmonary morbidity
[33].

Based on our early results, we think that the combination of
patient activity metrics collected preoperatively using wearable
devices and machine learning models has the potential to reliably
predict operative risks. In addition, by objectively tracking
activity metrics and identifying areas of weakness, the data will
provide targets for preoperative optimization and allow surgeons
to more efficiently engage patients in their surgical care even
before they undergo a major procedure. The ultimate goal is to
decrease the likelihood of postoperative complications, which
we believe will have a particularly large impact on patients with
pancreatic cancer, a growing population with a high proportion
of elderly and frail patients.

Limitations
The study was limited by a small sample size, which could
potentially increase the risk of overfitting. However, as
discussed in the methods section, multiple precautions were
taken to reduce the effect of overfitting. We also acknowledge
the risk for selection bias, as we recruited patients with access
to a smartphone, which has the potential to exclude elderly
patients and patients from lower socioeconomic groups.

Conclusion
Machine learning models based on preliminary data outperform
standard ACS-NSQIP SRC estimates when used to predict a
textbook outcome after pancreatectomy. The highest
performance at this task was observed when machine learning
models incorporated patient clinical characteristics and activity
metrics collected with wearable telemonitoring technology. In
the future, this can provide physicians with real-time actionable
data that can be used to modify management of patients
undergoing pancreatectomy and develop interventions to
increase patient activity.
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