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Abstract

Background: More than 17 million people worldwide, including 360,000 people in the United Kingdom, were diagnosed with
cancer in 2018. Cancer prognosis and disease burden are highly dependent on the disease stage at diagnosis. Most people diagnosed
with cancer first present in primary care settings, where improved assessment of the (often vague) presenting symptoms of cancer
could lead to earlier detection and improved outcomes for patients. There is accumulating evidence that artificial intelligence
(AI) can assist clinicians in making better clinical decisions in some areas of health care.

Objective: This study aimed to systematically review AI techniques that may facilitate earlier diagnosis of cancer and could
be applied to primary care electronic health record (EHR) data. The quality of the evidence, the phase of development the AI
techniques have reached, the gaps that exist in the evidence, and the potential for use in primary care were evaluated.

Methods: We searched MEDLINE, Embase, SCOPUS, and Web of Science databases from January 01, 2000, to June 11, 2019,
and included all studies providing evidence for the accuracy or effectiveness of applying AI techniques for the early detection of
cancer, which may be applicable to primary care EHRs. We included all study designs in all settings and languages. These searches
were extended through a scoping review of AI-based commercial technologies. The main outcomes assessed were measures of
diagnostic accuracy for cancer.

Results: We identified 10,456 studies; 16 studies met the inclusion criteria, representing the data of 3,862,910 patients. A total
of 13 studies described the initial development and testing of AI algorithms, and 3 studies described the validation of an AI
algorithm in independent data sets. One study was based on prospectively collected data; only 3 studies were based on primary
care data. We found no data on implementation barriers or cost-effectiveness. Risk of bias assessment highlighted a wide range
of study quality. The additional scoping review of commercial AI technologies identified 21 technologies, only 1 meeting our
inclusion criteria. Meta-analysis was not undertaken because of the heterogeneity of AI modalities, data set characteristics, and
outcome measures.

Conclusions: AI techniques have been applied to EHR-type data to facilitate early diagnosis of cancer, but their use in primary
care settings is still at an early stage of maturity. Further evidence is needed on their performance using primary care data,
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implementation barriers, and cost-effectiveness before widespread adoption into routine primary care clinical practice can be
recommended.

(J Med Internet Res 2021;23(3):e23483) doi: 10.2196/23483
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Introduction

Background
Cancer control is a global health priority, with 17 million new
cases diagnosed worldwide in 2018. In high-income countries
such as the United Kingdom, approximately half the population
over the age of 50 years will be diagnosed with cancer in their
lifetime [1]. Although the National Health Service (NHS)
currently spends approximately £1 billion (US $1.37 billion)
on cancer diagnostics per year [2], the United Kingdom lags
behind comparable European nations with their cancer survival
rates [3].

In gatekeeper health care systems such as the United Kingdom,
most people diagnosed with cancer first present in primary care
[4], where general practitioners evaluate (often vague)
presenting symptoms and decide on an appropriate management
strategy, including investigations, specialist referral, or
reassurance. More accurate assessment of these symptoms,
especially for patients with multiple consultations, could lead
to earlier diagnosis of cancer and improved outcomes for
patients, including improved survival rates [5,6].

There is accumulating evidence that artificial intelligence (AI)
can assist clinicians in making better clinical decisions or even
replace human judgment, in certain areas of health care. This
is due to the increasing availability of health care data and the
rapid development of big data analytic methods. There has been
increasing interest in the application of AI in medical diagnosis,

including machine learning and automated analysis approaches.
Recent studies have applied AI to patient symptoms to improve
diagnosis [7,8], to retinal images for the diagnosis of diabetic
retinopathy [9], to mammography images for breast cancer
diagnosis [10,11], to computed tomography (CT) scans for the
diagnosis of intracranial hemorrhages [12], and to images of
blood films for the diagnosis of acute lymphoblastic leukemia
[13].

Few AI techniques are currently implemented in routine clinical
care. This may be due to uncertainty over the suitability of
current regulations to assess the safety and efficacy of AI
systems [14-16], a lack of evidence about the cost-effectiveness
and acceptability of AI systems [14], challenges to
implementation into existing electronic health records (EHRs)
and routine clinical care, and uncertainty over the ethics of using
AI systems. A recent review of AI and primary care reported
that research on AI for primary care is at an early stage of
maturity [17], although research on AI-driven tools such as
symptom checkers for patient and clinical users are more mature
[18-21].

The CanTest framework [22] (Figure 1) establishes the
developmental phases required to ensure that new diagnostic
tests or technologies are fit for purpose when introduced into
clinical practice. It provides a roadmap for developers and policy
makers to bridge the gap from the development of a diagnostic
test or technology to its successful implementation. We used
this framework to guide the assessment of the studies identified
in this review.
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Figure 1. The CanTest Framework [22].

Objectives
Few studies of AI-based techniques for the early detection of
cancer have been undertaken in primary care settings [17].
Therefore, the aim of this systematic review is to identify AI
techniques that facilitate the early detection of cancer and could
be applied to primary care EHR data. We also aim to summarize
the diagnostic accuracy measures used to evaluate existing
studies and evaluate the quality of the evidence, the phase of
development the AI technologies have reached, the gaps that
exist in the evidence, and the potential for use in primary care.
As many commercial technological developments are not
documented in academic publications, we also performed a
parallel scoping review of commercially available AI-based
technologies for the early detection of cancer that may be
suitable for implementation in primary care settings.

Methods

Search Strategy and Selection Criteria
This study was conducted in accordance with PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-analysis) guidelines [23], and the protocol was registered
with PROSPERO (an international prospective register of
systematic reviews) before conducting the review
(CRD42020176674) [24]. All aspects of the protocol were
reviewed by the senior research team.

We included all primary research articles published in
peer-reviewed journals, without language restrictions, from
January 01, 2000, to June 11, 2019. Studies were included if
they provided evidence around the accuracy, utility,

acceptability, or cost-effectiveness of applying AI techniques
to facilitate the early detection of cancer and could be applied
to primary care EHRs (ie, to the types of data found in primary
care EHRs) [22]. We included AI techniques based on any type
of data that were relevant to primary care settings, including
coded data and free text. We included all types of study design,
as we anticipated that there would be few relevant randomized
controlled trials. We kept our search terms broad to not miss
relevant studies and carefully considered evidence from any
health care system to assess whether the evidence could be
applied to primary care settings.

As our aim is to identify AI techniques that would be applicable
in primary care clinical settings, we excluded studies that
incorporated data not typically available in primary care EHRs
in the early diagnostic stages (eg, histopathology images,
magnetic resonance imaging, or CT scan images). We also
excluded studies that only described the development of an AI
technique without any testing or evaluation data, studies that
did not incorporate an element of machine learning (ie, with
training and testing or validation steps), studies that used AI
techniques for biomarker discovery alone, and studies that were
based on sample sizes of less than 50 cases or controls. Machine
learning techniques and neural networks have been described
since the 1960s [25,26]; however, they were initially limited
by computing power and data availability. We chose to start
our search in 2000, as this was when the earliest research
describing the new wave of machine learning techniques
emerged [27].

We searched MEDLINE, Embase, SCOPUS, and Web of
Science bibliographic databases, using keywords related to AI,
cancer, and early detection. We extended these systematic
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searches through manual searching of the reference lists of the
included studies. We contacted study authors, where required.
Where studies were not published in English, we identified
suitably qualified native speakers to help assess these studies.
We performed a parallel scoping review to look for
commercially developed AI technologies that were not identified
through systematic searches, thus unpublished and not
scientifically evaluated. This included manually searching
commercial research archives and networks (eg, arXiv [28],
Google [29], Microsoft [30], and IBM [31]), reviewing the
computer-based technologies identified in 3 recent reviews
[19-21], and manually searching for further technologies
mentioned in the text or references of the studies and websites
included in these reviews.

Following duplicate removal, 1 author (OJ) screened titles and
abstracts to identify studies that fit the inclusion criteria. Of the
titles and abstracts, 17.42% (1838/10,456) were checked by 2
other authors (SS and NC); interrater reliability was excellent
at 96.24% (1769/1838). Any disagreements were discussed by
the core research team (OJ, SS, NC, and FW), and a consensus
was reached. Three reviewers (OJ, SS, and NC) independently
assessed the full-text articles for inclusion in the review. Any
disagreements were resolved by a consensus-based decision.

Data Analysis
Data extraction was undertaken independently by at least two
reviewers (OJ, SS, and NC) into a predesigned data extraction
spreadsheet. The research team met regularly to reach consensus
by discussing and resolving any differences in data extraction.
One author (OJ) amalgamated the data extraction spreadsheets,
summarizing the data where possible.

The main summary measures collected included sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), area under the receiver operating characteristic
(AUROC) curve, and any other diagnostic accuracy measures

of the AI techniques. Secondary outcomes include the types of
AI used, the type of data used to train and test the algorithms,
and how these algorithms were evaluated. We also collected
data, where identified, on cost-effectiveness and patient or
clinician acceptability.

Risk of bias assessment was undertaken for all full-text papers
by 2 independent researchers (OJ and NC) using the quality
assessment of diagnostic accuracy studies-2 (QUADAS-2)
critical appraisal tool [32]. OJ assessed all studies, and 50%
(40/79) of them were cross-checked by NC. Any disagreements
in the assessment were resolved by consensus discussion.

The studies identified were heterogeneous, employing various
AI techniques and using different outcome measures for
evaluation. Hence, a meta-analysis of the data was not possible,
and we chose to use a narrative synthesis approach, following
established guidance on its methodology [33]. We aimed to
summarize the findings of the identified studies using primarily
a textual approach, while also providing an overview of the
quantitative outcome measures used in the studies. Once data
extraction was completed, we explored the relationships that
emerged within the data.

Full details of our review question, search strategy, inclusion
or exclusion criteria, and data extraction methodology are
described in Multimedia Appendices 1 [1-5,7-9,11-13,34-38]
and 2, and the full list of excluded studies is provided in
Multimedia Appendix 3 [34,39-114].

Results

A total of 13,004 articles were identified in database searches
(including 2548 duplicates), and 793 articles underwent full-text
review. Of the 79 articles that were related to EHRs, 16 met the
inclusion criteria and were included in this analysis (Figure 2),
representing the data of 3,862,910 patients. No articles identified
through other sources or reference lists met the inclusion criteria.
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Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) flow diagram for studies included in the review. AI: artificial
intelligence.

Tables 1 and 2 show the main study characteristics for the 16
included studies, including the modality of AI used.
Supplementary information on the variables included in the AI
techniques is available in Multimedia Appendix 4 [34,39-53].
We categorized the variables included into the following
categories: demographics, symptoms, comorbidities, lifestyle

history, examination findings, blood results, and other. Most
studies (n=13) described the initial development and testing of
an AI technique [39-51]. Three studies validated the AI
technique developed by Kinar et al [48] in independent data
sets from 3 different countries (Israel, United States, and United
Kingdom) [34,52,53].
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Table 1. Study details including modality of artificial intelligence and adopted comparison or control.

Comparison or controlModality of artificial
intelligence

CancerAuthors’ originStudy

OtherNot statedSpecialistHistopathology

Development studies

1d——cXbWONN-MLBaLung cancerJordan and

India

Alzubi et al, 2019
[39]

2g; 3hX——BPNNe; LRfPancreatic

Cancer

TaiwanChang et al, 2009
[40]

4k—XXANNi; CVTj; LRColorectal

Cancer

United

Kingdom

Cooper et al, 2018
[41]

2; 5m—X—BPANNlColorectal

Cancer

United

Kingdom

Cowley et al, 2013
[42]

2——XSVMn; DTo; K-NNpLeukemiaGaza, PalestineDaqqa et al, 2017
[43]

——XXMLP-ANNqLung cancerPolandGoryński et al, 2014
[44]

2; 6rX——BPANNLung cancerUnited StatesHart et al, 2018 [45]

2; 3——XBPNNProstate cancerUnited StatesKalra et al, 2003
[46]

2—XXBPNN; CVT; SVM;
DT

Any cancerChinaKang et al, 2017
[47]

3; 6—XXDT/RFs; GBMt; CVTColorectal

Cancer

Israel and

United States

Kinar et al, 2016
[48]

——XXCARTu; RF; LR;
CVT

Colorectal

Cancer

The

Netherlands

Kop et al, 2016 [49]

2; 3—X—DNNv; RFMultiple diseases
and cancers

United StatesMiotto et al, 2016
[50]

3—XXMLP-ANNCMLw and lym-
phoproliferative
disorders

IranPayandeh et al, 2009
[51]

Validation studies

——XXDT/RF; GBM; CVTColorectal

Cancer

United

Kingdom

Birks et al, 2017
[52]

——XXDT/RF; GBM; CVTColorectal

Cancer

United StatesHornbrook et al,
2017 [34]

——XXDT/RF; GBM; CVTColorectal

Cancer

IsraelKinar et al, 2017
[53]

aWONN-MLB: weight optimized neural network with maximum likelihood boosting.
bX: corresponding control used in this study.
cNot used in this study.
d1: previously developed artificial intelligence methods.
eBPNN: back propagation neural network.
fLR: logistic regression.
g2: other artificial intelligence methods developed by this author.
h3: other statistical (ie, non-artificial intelligence) techniques.
iANN: artificial neural network.
jCVT: cross-validation techniques.
k4: colonoscopy.
lBPANN: back propagation artificial neural network.
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m5: primary care clinicians.
nSVM: support vector machine.
oDT: decision tree.
pK-NN: K-nearest neighbor.
qMLP-ANN: multilayer perceptron artificial neural network.
r6: screening tests (eg, low-dose computed tomography scan and fecal occult blood test).
sRF: random forest.
tGBM: gradient boosting model.
uCART: classification and regression trees.
vDNN: deep neural network.
wCML: chronic myeloid leukemia.

The study authors originated from a variety of countries,
including the United States (n=5), countries in the Middle East
(n=5), Europe (n=5), and Asia (n=3), with some studies
involving multiple countries. The AI techniques were most
commonly developed to identify colorectal cancer (n=7)
[34,41,42,48,49,52,53], although they also addressed lung cancer
(n=3) [39,44,45], hematological cancers (n=2) [43,51],
pancreatic cancer (n=1) [40], prostate cancer (n=1) [46], and
multiple cancers (n=2) [47,50].

Neural networks were the dominant technique employed (n=10)
[39-42,44-47,50,51], with many neural network subtypes
mentioned. The study by Miotto et al [50] was the only study
to include a processed form of the free text notes in the data

used by the AI technique, although the work described by Kop
et al [49] was developed in a subsequent study to include clinical
free text data [115].

The majority of studies (n=9) used a combination of
histopathological diagnoses and expert opinion as the control
for their study [34,41,44,47-49,51-53]. The clinical control
group was unclear in 2 studies [40,45]. Many studies used
multiple AI techniques and then compared them with each other
(n=8) [40,42,43,45-47,49,50]. Some studies used non-AI
techniques, such as logistic regression and screening tests, as
comparators for the performance of the AI technique that was
being developed [40,41,45,46,48-51].
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Table 2. Study details: patient variables.

Patient variablesStudy

OtherbOther blood
tests

FBCaExaminationLifestyleComorbiditiesSymptomsDemographicsSexAge

Development studies

X———XXX——dXcAlzubi et al,
2019 [39]

—XX—XXX—XXChang et al,
2009 [40]

X——————XXXCooper et al,
2018 [41]

X———XXX———Cowley et al,
2013 [42]

——X———————Daqqa et al,
2017 [43]

XXXXXXXXXXGoryński et al,
2014 [44]

———XXX—XXXHart et al, 2018
[45]

—X—X—XXX—XKalra et al,
2003 [46]

XXXX————XXKang et al,
2017 [47]

——X—————XXKinar et al,
2016 [48]

XXXXXXX—XXKop et al, 2016
[49]

XX—XXXXX——Miotto et al,
2016 [50]

——X———————Payandeh et al,
2009 [51]

Validation studies

——X—————XXBirks et al,
2017 [52]

——X—————XXHornbrook et
al, 2017 [34]

——X—————XXKinar et al,
2017 [53]

aFBC: full blood count.
bMore detail on other variables included is available in Multimedia Appendix 4.
cX: corresponding variable used in this study.
dNot used in this study.

Most of the studies (n=12) included blood test results, all
suitable for use in primary care settings. Age was also commonly
included (n=12). Other variables used were sex (n=10),
demographics (n=5), symptoms (n=7), comorbidities (n=8),
lifestyle history (n=7), examination findings (n=6), medication
or prescription history (n=3), spirometry results (n=2), urine
dipstick results (n=1), fecal immunochemical test results (n=1),
x-ray text reports (n=1), and referrals (n=1).

Table 3 shows the study designs and populations. Most studies
used data sets originating from specialist care settings (n=7)
[39,40,42-44,46,51], with only 3 studies using solely primary
care patient data [41,49,52]. Kinar et al [48] included a
follow-up validation study based on the health improvement
network (THIN) database, also using primary care data. Several
studies used a mixture of primary and secondary care patient
data (n=5) [34,47,48,50,53].
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Table 3. Study population and study design.

Testing set
(patients)

Training set
(patients)

Disease negative
population (patients)

Disease positive
population (patients)

Database usedPopulation from
health care setting

Study details

Development studies

1000N/Sa1200 in total; num-
bers of disease posi-

1200 in total; num-
bers of disease posi-

Wroclaw Thoracic Surgery
Centre

Specialist careAlzubi et al,
2019 [39]

tive and negative
unclear

tive and negative
unclear

117234157b194“a certain medical center”Specialist care (un-
clear)

Chang et al,
2009 [40]

N/SN/S1261549NHSc Bowel Cancer
Screening Programme com-
parative study [116]

Primary careCooper et al,
2018 [41]

100777703742-week wait colorectal refer-
rals to Castle Hill Hospital

Specialist careCowley et al,
2013 [42]

N/SN/S20002000Complete Blood Count test
repository, European Gaza
Hospital

Specialist careDaqqa et al,
2017 [43]

489790103Patients treated at Kuyavia
and Pomerania Centre of
pulmonology

Specialist careGoryński et al,
2014 [44]

146,719342,347488,418649National Health Interview
Survey

Other (survey)Hart et al, 2018
[45]

144218N/S348Men whose samples were
tested at 6 sites in the United

Statesd

Specialist careKalra et al,
2003 [46]

N/SN/S1650650Database of Ci Ming Health
Checkup Center

MixedKang et al,
2017 [47]

139,205466,107463,6702437Maccabi Health Services

EMRsf linked to the Israel
Cancer Registry

MixedKinar et al,

2016 [48]e

N/SN/S263,87912926 anonymized data sets from
3 urban regions, each cover-

ing a GPg recording system

Primary careKop et al, 2016
[49]

76,214200,000276,214 patients
with 78 diseases

276,214 patients
with 78 diseases

Mount Sinai Data Ware-
house

MixedMiotto et al,
2016 [50]

132360N/S450Blood test results from pa-
tients at the Taleghani Hos-
pital

Specialist carePayandeh et al,
2009 [51]

Validation studies

N/AN/Ah2,220,1085141Clinical Practice Research
Datalink

Primary careBirks J et al,
2017 [52]

N/AN/A16,195900Kaiser Permanente North

West EHRi system, Kaiser
Permanente Tumor Registry

MixedHornbrook et
al, 2017 [34]

N/AN/A112,451133Maccabi Health Services
EMRs, linked to the Israel
Cancer Registry

MixedKinar et al,
2017 [53]

aN/S: not stated.
bCases of acute pancreatitis.
cNHS: National Health Service.
dHospitals included: Northwest Prostate Institute Seattle, the University of Washington Seattle, the Johns Hopkins Hospital Baltimore, Memorial
Sloan-Kettering Cancer Institute New York, Brigham and Women’s Hospital Boston, and The University of Texas MD Anderson Cancer Center
eNB: this study also included a small validation study in the Health Improvement Network database in the United Kingdom (n=25,613)
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fEMR: electronic medical record.
gGP: general practitioner.
hN/A: not applicable
iEHR: electronic health record.

Almost all the studies used different data sets, with the exception
of the Maccabi Health Services EHR, which was used in 2
studies [48,53]. The data set sizes ranged from 193 to 2,225,249
patients, with a mean of 241,585 (SD 555,953), median of 3,150,
and IQR of 267,237 patients. The wide range is primarily due
to the large data set used by Birks et al [52]. Of the 13
development studies, 3 provided no information on the control
population used [39,46,51]. Five of the development studies
did not provide full information on how they partitioned their
data set for the training and testing of the algorithm
[39,41,43,47,49]. Five studies appeared to have independent
training and testing data sets, with most split in ratios ranging
from 60:40 to 70:30 [40,44-46,50].

Three studies [34,52,53] validated a previously developed AI
technique [48] in independent data sets. Kinar et al [48] reported

both the initial development of an AI technique and a subsequent
validation study in an independent data set. The study by Cooper
et al [41] was the only study that developed an AI technique
based on prospectively collected clinical data, with the data
originating from a pilot study of fecal immunochemical testing
by the NHS Bowel Cancer Screening Programme [116].

Table 4 summarizes the main reported outcome measures.
Specificity (n=11), AUROC (n=11), and sensitivity (n=10) were
the most frequently reported; others included PPV (n=6), NPV
(n=5), diagnostic accuracy (n=4), and odds ratios (n=3).
Specificity results range from 80.6% [45] to 100% [51],
sensitivity results from 0% [51] to 96.7% [40], and AUROC
results from 0.55 [45] to 0.9896 [44].
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Table 4. Outcome measures.

Outcome measures for each modality of AIaCancer typeStudy

Development studies

Lung cancerAlzubi et al, 2019 [39] • Specificity: 92%, Accuracy: 93%
• False positive rate: 9%, F-1 score: 92%

Pancreatic cancerChang et al, 2009 [40] • Sensitivity: BPNNb 88.3%, genetic algorithm LRc 96.7%, stepwise LR 96.7%
• Specificity: BPNN 84.2%, genetic algorithm LR 82.5%, stepwise LR 73.7%
• AUROCd: BPNN 0.895, genetic algorithm LR 0.921, stepwise LR 0.882

Colorectal cancerCooper et al, 2018 [41] • Sensitivity: 35.15% (at FITe threshold 160 µg g-1)
• Specificity: 85.57%
• PPVf: 51.47%, NPVg: 75.19%, AUROC: 0.69, cancer detection rate: 10.66%

Colorectal cancerCowley et al, 2013 [42] • Sensitivity: 90%
• Specificity: 96%
• PPV: 62%, NPV: 99%

LeukemiaDaqqa et al, 2017 [43] • Sensitivity: SVMh 69.7%, K-NNi 60.0%, decision tree 62.4%
• Specificity: SVM 81.5%, K-NN 82.8%, decision tree 87.1%
• PPV: SVM 71.3%, K-NN 68.1%, decision tree 76.1%
• NPV: SVM 80.4%, K-NN 74.1%, decision tree 87.1%
• Accuracy: SVM 76.82%, K-NN 72.15%, decision tree 77.3%
• F-measure: SVM 70%, K-NN 60%, decision tree 67%

Lung cancerGoryński et al, 2014
[44]

• AUROC: 0.9896

Lung cancerHart et al, 2018 [45] • Sensitivity: ANNj 75.30%
• Specificity: ANN 80.60%
• AUROC: ANN 0.86, RFk 0.81, SVM 0.55

Prostate cancerKalra et al, 2003 [46] • Specificity: 92%
• AUROC: 0.825

Any cancerKang et al, 2017 [47] • Sensitivity: DNNl 64.07%, SVM 54.46%, decision tree 60.00%
• Specificity: DNN 94.77%, SVM 95.27%, decision tree 91.50%
• AUROC: DNN 0.882, SVM 0.928, decision tree 0.824
• Accuracy: DNN 86.00%, SVM 83.83%, decision tree 83.60%
• Using fuzzy interval of threshold with DNN achieves sensitivity 90.20%, specificity

94.22%, accuracy 93.22%

Colorectal cancerKinar et al, 2016 [48] • Specificity: Testing set 88% overall (at a sensitivity of 50%). Higher for proximal
colon tumors. Validation set 94% (at a sensitivity of 50%)

• AUROC: Testing set 0.82, validation set 0.81
• ORm 26 at false +ve rate of 0.5% (testing set), OR 40 at false +ve rate of 0.5%

(validation set). Algorithm identified 48% more CRCn cases than gFOBTo

Colorectal cancerKop et al, 2016 [49] • Sensitivity: CARTp 53.9%, RF 63.7%, LR 64.2%
• PPV: CART 2.6%, RF 3%, LR 3%
• AUROC: CART 0.885, RF 0.889, LR 0.891
• F1-score: CART 0.049, RF 0.057, LR 0.058.
• Drugs for constipation most important predictor of CRC, followed by iron deficiency

anemia
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Outcome measures for each modality of AIaCancer typeStudy

• Specificity: 92%
• AUROC: 0.773 for classification of all diseases (cancer and other diagnoses). Rectal

or anal cancer 0.887, liver or intrahepatic bile duct cancer 0.886, prostate cancer
0.859, multiple myeloma 0.849, ovarian cancer 0.824, bladder cancer 0.818, testic-
ular cancer 0.811, pancreatic cancer 0.795, leukemia 0.774, uterine cancer 0.771,
non-Hodgkin lymphoma 0.771, bronchial or lung cancer 0.770, colon cancer 0.767,
breast cancer 0.762, kidney or renal pelvis cancer 0.753, brain or nervous system
cancer 0.742, Hodgkin disease 0.731, cervical cancer 0.675

• Accuracy index: 0.929 overall for classification of all diseases
• F-score: 0.181 for classification of all diseases
• Deep patient obtained approximately 55% correct predictions when suggesting 3 or

more diseases per patient, regardless of time interval

Multiple diseases and can-
cers

Miotto et al, 2016 [50]

• Sensitivity: CML 0%, lymphoproliferative disorder 0%
• Specificity: CML 100%, lymphoproliferative disorder 99.2%
• PPV: CML 0%, lymphoproliferative disorder 0%
• NPV: CML 99.2%, lymphoproliferative disorder 100%
• Error % for convoluted neural network 0.33, error % for LR 0.78

CMLq and lymphopro-lifer-
ative disorders

Payandeh et al, 2009
[51]

Validation studies

• AUROC: analyzed at various time intervals before diagnosis, 3-6 months 0.844, 18-
24 months 0.776

Colorectal cancerBirks et al, 2017 [52]

• Sensitivity: 0-180 days (test to diagnosis): 50-75 years: 34.5%, 40-89 years: 39.9%;
181-360 days: 50-75 years: 18.8%, 40-89 years: 27.4%

• AUROC: 0.80, OR: 34.7 at 99% specificity, 19.7 at 97%, 14.6 at 95%, 10.0 at 90%

Colorectal cancerHornbrook et al, 2017
[34]

• Sensitivity: 17.0% at 1% +ve rate, 24.4% at 3% +ve rate
• PPV: 2.1% at 1% +ve rate, 1.0% at 3% +ve rate
• NPV: 99.9% at 1% +ve rate, 99.9% at 3% +ve rate
• OR: 21.8% at 1% +ve rate, 10.9% at 3% +ve rate

Colorectal cancerKinar et al, 2017 [53]

aAI: artificial intelligence.
bBPNN: back propagation neural network.
cLR: logistic regression.
dAUROC: area under the receiver operating characteristic.
eFIT: fecal immunochemical test.
fPPV: positive predictive value.
gNPV: negative predictive value.
hSVM: support vector machine.
iK-NN: K-nearest neighbor.
jANN: artificial neural network.
kRF: random forest.
lDNN: deep neural network.
mOR: odds ratio.
nCRC: colorectal cancer.
ogFOBT: guaiac fecal occult blood test.
pCART: classification and regression trees.
qCML: chronic myeloid leukemia.

We looked for other secondary outcomes, including
implementation barriers to AI techniques in primary care
settings, but did not find any evidence related to patient or
clinician acceptability or cost-effectiveness.

Table 5 shows the outcomes of the risk of bias assessment using
the QUADAS-2 tool. The studies demonstrated a wide range
in quality; however, no studies were excluded based on their
risk of bias assessment. The identified limitations were
acknowledged in the relative contribution of the studies to the
conclusions of the review.
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Table 5. Critical appraisal results using the Quality Assessment of Diagnostic Accuracy Studies-2 tool.

Applicability concernsRisk of biasStudy

Reference
standard

Index testPatient

selection

Flow and
timing

Reference
standard

Index testPatient

selection

cbaAlzubi et al, 2019 [39]

Birks et al, 2017 [52]

Chang et al, 2009 [40]

Cooper et al, 2018 [41]

Cowley et al, 2013 [42]

Daqqa et al, 2017 [43]

Goryński et al, 2014 [44]

Hart et al, 2018 [45]

Hornbrook et al, 2017 [34]

Kalra et al, 2003 [46]

Kang et al, 2017 [47]

Kinar et al, 2016 [48]

Kinar et al, 2017 [53]

Kop et al, 2016 [49]

Miotto et al, 2016 [50]

Payandeh et al, 2009 [51]

aHigh risk.
bLow risk.
cUnclear risk.

Table 6 summarizes the computer-based technologies identified
in our parallel scoping review of commercial AI technologies.
We identified 21 commercial computer-based technologies. Of
these, 11 were clinician-facing differential diagnosis
technologies that did not appear to be integrated into the EHR
[117-127]. Ten of the technologies were linked to, or integrated
into, the EHR in some way [8,128-136]. Nine of the technologies
did not use AI algorithms incorporating an element of machine
learning, as was required in our inclusion criteria [118,120-127].
It was also not clear from the websites and studies of 3 further
technologies whether they met our AI inclusion criteria

[117,130,134]. There were 8 technologies that met our inclusion
criteria for AI (Abtrace [128], Babylon [8], Cthesigns [129],
Isabel [131], Medial EarlySign [132], symcat [119], symptomate
[135], and the unnamed technology evaluated by Liang et al
[136]). Only the Medial EarlySign tool was evaluated for its
performance in the diagnosis or triage of potential cancer [132];
4 of the studies developing and validating this technology were
included in this systematic review [34,48,52,53]. Cthesigns is
specifically designed to aid the early diagnosis of cancer but
has not been the subject of any studies we could identify [129].
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Table 6. Summarizing scoping review of commercial artificial intelligence technologies.

<50 cas-
es or
controls

Not pri-
mary re-
search

Not pub-
lished

Early re-
search

Not early de-
tection or di-
agnosis

Not pri-
mary care
based

Not can-
cer

Not AIaTechnology identified (origin) websites and associated
academic studies

Abtrace (United Kingdom)

——Xc—————bAbtrace website [128]

Babylon (United Kingdom)

————————Babylon health website [8]

———XXXX—Zhelezniak et al [137]

———XXXX—Douglas et al [138]

XXXX—Smith et al [139]

————X—X—National Health Service 111 powered by Babylon -
Outcomes Evaluation [140]

————X—X—Middleton et al [141]

Cthesigns (United Kingdom)

——X—————Cthesigns website [129]

Diagnosis Pro (United States)

————————No website identified

——————XN/CdBond et al [117]

DocResponse (United States)

——X————N/CDocresponse website [130]

DxPlain (United States)

———————N/CDxplain website [118]

—X—X———XBarnett et al [142]

——————XXBarnett et al [143]

——————XXBauer et al [144]

—————XXXBerner et al [145]

X—————XXBond et al [117]

———X———XElhanan et al [146]

—————XXXElkin et al [147]

X————XXXFeldman et al [148]

—————XXXHammersley et al [149]

————X——XHoffer et al [150]

———X———XLondon et al [151]

Iliad (United States)

————————No website identified

—————XXXBerner et al [145]

X————XXXElstein et al [152]

X————X—XFriedman et al [153]

X————X—XGozum et al [154]

X————X—XGraber et al [155]

X————X—XHeckerling et al [120]

X——————XLange et al [156]

—X——————Lau et al [157]
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<50 cas-
es or
controls

Not pri-
mary re-
search

Not pub-
lished

Early re-
search

Not early de-
tection or di-
agnosis

Not pri-
mary care
based

Not can-
cer

Not AIaTechnology identified (origin) websites and associated
academic studies

X————XXXLi et al [158]

X————XXXLincoln et al [159]

X————XXXMurphy et al [160]

X————XXXWolf et al [161]

Internist-1 (United States)

————————No website identified

X————XXXMiller et al [121]

X————X—XMiller et al [122]

Isabel (United Kingdom)

————————Isabel healthcare website – Isabel pro [131]

——————X—Bond et al [117]

——————X—Ramnarayan et al [162]

——————X—Ramnarayan et al [163]

——————X—Carlson et al [164]

—X——————Graber et al [165]

——————X—Graber et al [166]

——————X—Ramnarayan et al [167]

——————X—Bavdekar et al [168]

——————X—Ramnarayan et al [169]

——————X—Semigran et al [20]

——————X—Meyer et al [170]

Meditel (United States)

————————No website identified

—————XXXBerner et al [145]

—————XXXHammersley et al [149]

—————XXXWaxman et al [171]

X————XXXWexler et al [123]

Medial Early sign (United States/Israel)

————————Earlysign website [132]

————————Kinar et al [53]e

————————Birks et al [52]e

————————Hornbrook et al [34]e

—————X—Goshen et al [172]

——————X—Zack et al [173]

——————X—Cahn et al [174]

Multilevel Diagnosis Decision Support System (Spain)

————————No website identified

X—————XXRodriguez-Gonzalez et al [124]

Online webGP (United Kingdom; later became eConsult)

————————Emis health online-triage website [175]f
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<50 cas-
es or
controls

Not pri-
mary re-
search

Not pub-
lished

Early re-
search

Not early de-
tection or di-
agnosis

Not pri-
mary care
based

Not can-
cer

Not AIaTechnology identified (origin) websites and associated
academic studies

————————Hurleygroup website [176]g

————X—XXEdwards et al [133]

————X—XXCarter et al [177]

————X—XXCowie et al [178]

Pepid (United States)

———————N/CPepid website [125]h

—————XXXBond et al [117]

Problem Knowledge Couplers (PKC; United States)

————————No website identified

————X——XApkon et al [126]

Quick Medical Reference (QMR) (United States; developed from Internist-1)

————————No website identified

X————X—XArene et al [179]

X————X—XBacchus et al [180]

X————X—XBankowitz et al [181]

—————XXXBerner et al [145]

X——————XBerner et al [182]

X————X—XFriedman et al [153]

X————X—XGozum et al [154]

X————X—XGraber et al [155]

X————X—XMiller et al [122]

—————X—XLemaire et al [183]

Reconsider (United States)

————————No website identified

—————XXXNelson et al [127]

Symcat (United States)

——X—————Symcat website [119]

Symptify (United States)

——X————N/CSymptify website [134]

Symptomate (Poland)

——X—————Symptomate website [135]

Unnamed

————————No website identified

—————XX—Liang H et al [136]

aAI: artificial intelligence.
bNot applicable or no data.
cStudy excluded for the reason specified in the column label.
dN/C: not clear.
eThese studies met the inclusion criteria of the systematic review and were therefore included.
fEdwards et al [133] suggests that this Egton Medical Information Systems (EMIS) application is powered by the eConsult system.
gCarter et al [177] suggests that this is the group who developed webGP.
hSeveral published studies are linked in the research section of the website, none involved use of the differential diagnosis or decision support tools.
Some case studies audited the use of these tools.
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Discussion

Principal Findings
We identified 16 studies reporting AI techniques that could
facilitate the early detection of cancer and could be applied to
the types of data found in primary care EHRs. However,
heterogeneity of AI modalities, data set characteristics, outcome
measures, conduct of these studies, and quality assessment
meant that we were unable to draw strong conclusions about
the utility of these techniques in primary care settings. There
was a notable paucity of evidence on performance using primary
care data. Coupled with the lack of evidence on implementation
barriers or cost-effectiveness, this may help explain why AI
techniques have not been adopted widely into primary care
clinical practice to date. The study by Kinar et al [48] and its
subsequent validation in independent data sets [34,52,53],
including primary care data sets, is a valuable example of a
staged evaluation of an AI technique from early development,
via validation data sets, to evaluation in the population for
intended use [22]. The work by Kop and collaborators
[49,115,184] also represents a good example of the staged
development of an AI technique, with sequential peer-reviewed,
published evaluations at each stage.

We also identified 21 commercial AI technologies, many of
which have not been evaluated and reported in peer-reviewed,
published studies. Many other technologies that were
patient-facing and designed for the triage of symptoms were
identified but had not been applied to EHRs. Eight of these
technologies appeared to be based on newer machine learning
AI techniques, with the majority appearing to be driven by
knowledge-based decision tree algorithms. Only one of the
identified technologies has been evaluated specifically for
cancer, although it may be more efficacious for these
technologies to be very general in scope and to be widely used,
rather than to have a narrow focus on cancer alone. With wider
adoption, these technologies have a greater potential for raising
patient and clinician awareness of cancer. However, it remains
important to fully understand their diagnostic accuracy and
safety, including for the triage of potential cancer symptoms.
AI technologies applied to EHRs are potentially useful for
primary care clinicians; however, they need to be designed in
a way that is appropriate for the type and origin of the data found
in primary care EHRs and to have been thoroughly and
transparently evaluated in the population the technology is
intended for.

Strengths and Limitations
The strengths of this systematic review include the following:
a broad and inclusive search strategy to avoid missing studies;
guidance of an international expert panel in the development
of the protocol and search strategy; independent screening,
quality assessment, and data extraction processes; followed
PRISMA guidance; and a parallel scoping review for
commercial AI technologies. As only a few heterogeneous
studies were identified, it was not possible to synthesize the
data and evaluate the utility of these AI techniques. Furthermore,
only one commercially available AI technology was identified
via the systematic review. Many of the technologies identified

in the parallel scoping review lacked sufficient academic
detailing and evidence for their accuracy or safety. This is a
rapidly evolving research area, which will require further review
over time.

Conclusions
Worldwide, there is a great deal of interest in AI techniques and
their potential in medicine, not least in the United Kingdom
where politicians and NHS leaders have publicly prioritized the
incorporation of AI into clinical settings. Our findings support
those of Kueper et al [17], namely, that although some AI
techniques have good initial validation reports, they have not
yet been through the steps for full application in clinical practice.
Validation using independent data is preferable to splitting a
single data set [185] and could be the next step in the
development of many AI techniques identified in this review.
Much of the research is at an early stage, with variable reporting
and conduct, and requires further validation in prospective
clinical settings and assessment of cost-effectiveness after
clinical implementation before it can be incorporated into daily
practice safely and effectively [186].

Consensus is required on how AI techniques designed for
clinical use should be developed and validated to ensure their
safety for patients and clinicians in their intended settings. Good
internal and external validity is required in these experiments
to avoid bias, most notably spectrum bias [187] and
distributional shift [16], and to ensure that the appropriate data
are used to develop the AI technique in keeping with its
anticipated clinical setting and diagnostic function. The CanTest
framework provides an outline for further studies aiming to
develop this evidence base for AI techniques in clinical settings;
to prove their safety and efficacy to commissioners, clinicians,
and patients; and to enable them to be implemented in clinical
practice [22]. Prospective evaluation in the clinical setting for
which the AI technique is intended is essential: AI aimed at
primary care clinics must be evaluated in primary care settings,
where cancer prevalence is low compared with specialist
settings, to accurately evaluate their future performance
[187,188]. Further research around the acceptability of AI
techniques for patients and clinicians and their cost-effectiveness
will also be important to facilitate rapid implementation. Once
these AI techniques are ready for implementation, they will
require careful design to ensure effective integration into health
information systems [189]. Data governance and protection
must also be addressed, as they may present significant barriers
to the implementation of these technologies [190,191].

In conclusion, AI techniques have the potential to aid the
interpretation of patient-reported symptoms and clinical signs
and to support clinical management, doctor-patient
communication, and informed decision making. Ultimately, in
the context of early cancer detection, these techniques may help
reduce missed diagnostic opportunities and improve safety
netting. However, although there are a few good examples of
staged validation of these AI techniques, most of the research
is at an early stage. We found numerous examples of the
implementation of AI technologies without any or sufficient
evidence for their accuracy or safety. Further research is required
to build up the evidence base for AI techniques applied to EHRs
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and to reassure commissioners, clinicians, and patients that they
are safe and effective enough to be incorporated into routine

clinical practice.
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