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Abstract

Background: Stroke is an important clinical outcome in cardiovascular research. However, the ascertainment of incident stroke
is typically accomplished via time-consuming manual chart abstraction. Current phenotyping efforts using electronic health
records for stroke focus on case ascertainment rather than incident disease, which requires knowledge of the temporal sequence
of events.

Objective: The aim of this study was to develop a machine learning–based phenotyping algorithm for incident stroke ascertainment
based on diagnosis codes, procedure codes, and clinical concepts extracted from clinical notes using natural language processing.

Methods: The algorithm was trained and validated using an existing epidemiology cohort consisting of 4914 patients with atrial
fibrillation (AF) with manually curated incident stroke events. Various combinations of feature sets and machine learning classifiers
were compared. Using a heuristic rule based on the composition of concepts and codes, we further detected the stroke subtype
(ischemic stroke/transient ischemic attack or hemorrhagic stroke) of each identified stroke. The algorithm was further validated
using a cohort (n=150) stratified sampled from a population in Olmsted County, Minnesota (N=74,314).

Results: Among the 4914 patients with AF, 740 had validated incident stroke events. The best-performing stroke phenotyping
algorithm used clinical concepts, diagnosis codes, and procedure codes as features in a random forest classifier. Among patients
with stroke codes in the general population sample, the best-performing model achieved a positive predictive value of 86% (43/50;
95% CI 0.74-0.93) and a negative predictive value of 96% (96/100). For subtype identification, we achieved an accuracy of 83%
in the AF cohort and 80% in the general population sample.

Conclusions: We developed and validated a machine learning–based algorithm that performed well for identifying incident
stroke and for determining type of stroke. The algorithm also performed well on a sample from a general population, further
demonstrating its generalizability and potential for adoption by other institutions.

(J Med Internet Res 2021;23(3):e22951) doi: 10.2196/22951

KEYWORDS

stroke; natural language processing; electronic health records; machine learning

Introduction

Stroke is a syndrome involving a rapid loss of cerebral function
with vascular origin [1]. The loss of function can result in deep
coma or subarachnoid hemorrhage. There are two broad

categories of stroke: hemorrhagic and ischemic stroke [2].
Hemorrhage is caused by bleeding within the skull cavity, while
ischemia is characterized by inadequate blood to supply a part
of the brain. Stroke identification is an important outcome for
various cardiovascular studies [3-5]. However, a challenge with
stroke ascertainment is the inconsistent use of International
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Classification of Diseases (ICD) codes [6], which may result
in inaccurate code-based ascertainment of cases [7]. Therefore,
the time-consuming process of electronic health record (EHR)
abstraction remains the gold standard of stroke ascertainment
[8,9].

Machine learning has recently gained popularity for its ability
to classify patients or make predictions on various aspects of
diseases. In contrast to manually curated algorithms based on
domain expertise, machine learning is a data-driven approach
that can be trained on large data sets to identify and leverage
complex feature relationships and improve classification and
prediction tasks thereby. In terms of stroke, machine learning
algorithms have been applied to predict future stroke cases [10],
mortality and recurrent strokes [11,12], and treatment outcomes
[13,14]. Most existing phenotyping algorithms have been
developed to only differentiate between cases and noncases of
diseases [15-18]; however, ascertaining incident disease (ie,
first occurrence of disease) in a population is a more difficult
task [8,19,20]. A recent study by Ni et al [21] examined potential
predictive features of stroke occurrence including demographic,
clinical, and diagnostic characteristics of patients. The authors
found that diagnostic tests for stroke, such as computed
tomography (CT) and magnetic resonance imaging (MRI),
contributed to most of the model performance, and that the
optimal feature set included imaging findings, signs and
symptoms, interventions, emergency department assessments,
findings from angiography and carotid ultrasound tests, ICD
codes, substance use (smoking, alcohol, and street drugs)
characteristics, and demographics. However, features such as
signs and symptoms, substance use characteristics, and
demographics may not be specific enough for disease
ascertainment, as there is a high prevalence of strokelike
symptoms among people without a diagnosis of stroke [22]. In
addition, incorporating too many features in the model may
result in overfitting without appropriate regularization. Another
study [7] also used ICD and Current Procedural Terminology
(CPT) [23] codes as features to classify positive, possible, and
negative stroke cases. However, stroke-related clinical concepts
(including both disease name concepts and symptom concepts)
in unstructured clinical notes were not included in this model.

Rapid adoption of EHRs has enabled secondary use of the EHR
data in epidemiological research [24-26]. Previous studies noted
the existence of bias using a single type of EHR data (ie,
diagnosis codes) [27-29]. To avoid this bias, the Electronic
Medical Records and Genomics (eMERGE) consortium [30,31]
has piloted the development of EHR-based phenotyping
algorithms using multiple types of EHR data [32-34]. This has
given rise to a number of phenotyping algorithms that use both
structured EHR data (eg, demographics, diagnosis and procedure
codes, laboratory test results, and medications) and unstructured
EHR data (eg, clinical notes, imaging reports, and discharge
summaries) [35-38]. However, the eMERGE consortium
algorithms are typically focused on identifying cases and
noncases rather than characterizing a new-onset (ie, incident)
disease in a population. Moreover, extracting information from
unstructured clinical text is a nontrivial task that involves natural
language processing techniques [39-41].

In our paper, we address existing challenges for stroke
ascertainment, specifically for incident stroke. Our research
objective is to develop and validate a machine learning–based
phenotyping algorithm to identify incident stroke and detailed
stroke subtypes based on three major EHR-derived data
elements: clinical concepts extracted from clinical notes; ICD,
Ninth Revision (ICD-9) diagnosis codes; and CPT procedure
codes.

Methods

This study was approved by the Mayo Clinic Institutional
Review Board (no. 17-008818) and is in accordance with the
ethical standards mandated by the committee on responsible
human experimentation. The data that support the findings of
this study are available from the corresponding author upon
reasonable request.

Study Design
This was a predictive modeling study that used observational
cohort data for training and validation. We employed an atrial
fibrillation (AF) cohort, in which all incidences of stroke were
manually ascertained in a previous study [4], to train and test
our phenotyping algorithm for the date of incident stroke events.
We then evaluated the generalizability of our algorithm in a
general population cohort.

The AF Cohort
The AF cohort comprised a patient population from Olmsted
County, Minnesota, USA [4,42]. Olmsted County is an area
relatively isolated from other urban centers with only a few
providers delivering most care to residents, primarily Mayo
Clinic and Olmsted Medical Center [43-45]. Extracting all health
care–related events was completed through the Rochester
Epidemiology Project (REP), a records linkage system [43,44].
The REP is a records linkage system that allows retrieval of
nearly all health care utilization and outcomes of residents living
in Olmsted County. The electronic indexes of the REP include
demographic information, diagnostic and procedure codes,
health care utilization data, outpatient drug prescriptions, results
of laboratory tests, and information about smoking, height,
weight, and body mass index. ICD-9 codes and the Mayo Clinic
electrocardiograms were obtained among adults aged ≥18 years
from 2000 to 2014 to ascertain AF. Patients were identified by
the presence of an ICD-9 code for stroke through March 31,
2015, and then validated by manual review of the EHR. Strokes
were classified as ischemic strokes/transient ischemic attack or
hemorrhagic strokes [4,46]. The first (incident) event of each
type of stroke after the incident AF date was ascertained,
regardless of whether a patient had a prior stroke. The AF cohort
included 4914 validated patients with AF, 1773 of whom were
screened for a possible stroke. Table 1 shows the cohort
characteristics. Manual abstraction of the EHR validated the
stroke code in 740 patients. Manual ascertainment of stroke and
the dates of the events were used as a gold standard to train and
test the stroke algorithm.
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Table 1. Atrial fibrillation cohort characteristics.

Screened (n=1773)Cohort (n=4914)Measure

Gender, n (%)

869 (49.01)2309 (46.99)Female

904 (50.99)2605 (53.01)Male

Age at diagnosis of AFa (years), mean

8076Female

7470Male

27,24327,243ICD-9b diagnosis codesc, n

aAF: atrial fibrillation.
bICD-9: International Classification of Diseases, Ninth Revision.
cICD retrieval was from AF incidence date to March 31, 2015. AF validations were from 2000 to 2014.

Candidate Predictive Features
The proposed algorithm aimed to identify first (incident) stroke
events within a certain time frame. The three major data
elements we used were clinical concepts, ICD-9 codes, and CPT
codes. To align with the manual review process, only codes and
clinical notes from the AF incident date to March 31, 2015,
were retrieved and processed. In our analyses, we constructed
different models by varying the inclusion of CPT codes and
symptom-related clinical concepts in the model feature set and
compared different models’ performances.

Both ICD-9 and CPT codes were extracted from the REP
database. Clinical concepts were identified from the major and
secondary problem list section of Mayo Clinic EHR, and from
clinical notes from other REP sites using a natural language
processing system, MedTagger [47]. Expert-provided vocabulary
was adopted from a previous study [48] to extract clinical
concepts from unstructured clinical notes. MedTagger enables
a series of natural language processing processes, including
regular expression matching and positive, negative, or probable
identification with ConText [49,50], and is insensitive to upper
and lower case. MedTagger is also able to determine if the
extracted clinical concepts are referring to the patients or their
family members, or if the extracted clinical concepts are in
present tense and thus are referring to a current event rather
than a past medical condition. We considered only documents
with positive, present-tense stroke mentions that were referring

to patients themselves. Table S1 in Multimedia Appendix 1 lists
clinical concepts for 2 major stroke subtypes and stroke-related
symptoms. Table S2 in Multimedia Appendix 1 lists ICD-9
codes for 2 stroke subtypes and stroke-related symptoms. Table
S3 in Multimedia Appendix 1 lists the CPT codes used in the
stroke algorithm.

Clinical concept dates were determined by the date of the
clinical notes from which clinical concepts were extracted, while
ICD-9 and CPT code dates were extracted from the REP. Each
visit was characterized by clinical concepts, ICD-9, and CPT
codes within a 60-day window. The visit date was determined
by the earliest date of any of the 3 elements in the 60-day
window. If visit dates were within a 60-day window of a
confirmed stroke incidence date, they were considered positive
instances; otherwise, they were considered negative instances.
Figure 1 demonstrates an example with an incident stroke on
July 4, 2004. All visits were extracted and included in our data
set if there was at least one key word or code during a 60-day
window. Nurse abstractors reviewed every visit sequentially
until they determined the incidence date to be July 4, 2004. All
subsequent visits after a positive stroke incident were not
reviewed and thus were not included in our analyses. Since the
confirmed stroke incidence date fell in the date range of the
third visit (June 24, 2004-August 22, 2004), we considered the
combination of codes and clinical concepts in this visit to be
predictive of a positive stroke incidence.

Figure 1. Inclusion of clinical concepts and codes on a patient visit timeline. CPT: Current Procedural Terminology; ICD-9: International Classification
of Diseases, Ninth Revision.
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Data Analysis
After incident stroke was confirmed, visits afterwards were not
reviewed by abstractors and thus excluded from our overall data
set. Figure 2 shows the workflow of the algorithm training and
testing process. We created a data set with 9130 confirmed visits
(with stroke vs nonstroke labels) among the 1773 patients. In
total, there were 746 stroke visits and 8384 nonstroke visits.
The stroke incidence count (n=746) was larger than the number
of patients with confirmed stroke incidence (740) because
incidence dates for different subtypes of stroke (ischemic stroke/

transient ischemic attack and hemorrhagic stroke) were all
recorded, such that patients might have had multiple incidence
dates. We included data from a randomly selected 79.98% of
our screened patients (1418/1773 patients; 7253 visits) as a
training set and the remaining 20.02% of our screened patients
(355/1773 patients; 1877 visits) were retained as an independent
testing set. Due to the outcome imbalance in the data set
(positive:negative ratio of about 1:10), we used the synthetic
minority oversampling technique [51] to create oversampled
training data sets with an oversampling percentage of 1000%.

Figure 2. Stroke algorithm training and testing workflow. AF: atrial fibrillation.

We considered two machine learning classifiers, logistic
regression and random forest [52], to train our phenotyping
models. Logistic regression served as a baseline modeling
algorithm. Random forest was also chosen because of its high
performance with structured input features and better model
flexibility. We also considered the influence of feature groups
by varying the inclusion of CPT codes and symptom terms in
the input feature set. The hyperparameter tuning of the machine
learning models was performed using 10-fold cross-validation.
The performance metrics adopted for the machine learning task
in the test set were precision, recall, and F score. The
oversampling and machine learning modeling training and
testing processes were implemented in Weka 3 (University of
Waikato) [53]. Additional statistical summaries were performed
using the R statistical software version 3.6.2 (The R Foundation

for Statistical Computing). Quantitative variables are
summarized as means, while nominal variables are expressed
by counts and percentages.

Validation Cohort
We evaluated the generalizability of our model on a sample
from a general population cohort of 71,429 patients. This cohort
consisted of individuals sampled in Olmsted County, Minnesota
on January 1, 2006, with an age ≥30 years and with no prior
history of cardiovascular disease. We applied the best
performing model based on the leave-out test set to this entire
population cohort to generate incident stroke predictions. We
then randomly selected 50 patients from those who had no
stroke-related features (ie, de facto negative stroke predictions),
50 patients from those who were shown to have negative stroke
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predictions, and 50 patients from those who were shown to have
positive stroke predictions and a predicted incident stroke for
evaluation. This verification-based sampling strategy allowed
for estimates of positive and negative predictive values (PPVs
and NPVs, respectively) by conditioning on algorithm
predictions. Under these conditions (n=50), the half-width of
the 95% Wilson score CI for the PPVs and separate NPVs would
be approximately 0.1 for a true value of 0.85.

All 150 patient cases were reviewed by 1 nurse abstractor to
confirm incident stroke, which served as our gold standard. We
recorded model prediction outputs on all patient visits in the
150-patient validation set. We combined visit-level true
predictions to generate patient-level incidence predictions by
saving only the earliest date of positive predictions as stroke
incidences. We compared patient-level incidence predictions
with our gold standard. True prediction in our evaluation meant
the date of the predicted incident stroke was within 60 days of
the abstracted stroke date. A 2 x 2 confusion matrix was used
to calculate performance scores for prediction evaluation. Model
performance metrics included PPV and NPV using manual
evaluation as the gold standard and patient-level predictions to
calculate true positives, false positives, true negatives, and false
negatives. The uncertainty of these performance estimates was
calculated using Wilson score 95% CI for proportions.

In addition, we developed heuristic rules to distinguish stroke
subtype (ischemic stroke/transient ischemic attack or
hemorrhagic stroke) of each identified stroke incidence by

analyzing the composition of keyword or code input feature
sets (in a window of 60 days). We counted the number of
keywords or codes for each ischemic stroke/transient ischemic
attack and hemorrhagic stroke. If an input feature set contained
more keywords or codes for ischemic stroke/transient ischemic
attack, then this incidence was considered an ischemic stroke
incidence; otherwise, it was considered a hemorrhagic stroke
incidence. We only evaluated correct incident stroke predictions
from the previous step in the evaluation data set with manually
ascertained subtypes as the gold standard. Accuracy was
calculated to measure performance of the subtype identification.

Results

Model Selection and Subtype Identification
Table 2 shows the algorithm performance measured on the test
set for 8 models run on 4 input combinations and 2 classifiers
(logistic regression and random forest). The random forest
classifier outperformed the logistic classifier regardless of the
feature sets used. Inclusion of CPT codes as features improved
the performance for the random forest model with F score
increased from 0.836 (Model 3) to 0.905 (Model 1). However,
in the logistic model, the inclusion of CPT codes slightly
improved the F score from 0.772 (Model 4) to 0.793 (Model
2). Using comparisons to all features (Model 1 and 2) and
excluding the symptom terms (Model 6 and 7) achieved better
F score (values italicized in Table 2).

Table 2. Stroke algorithm performance.

F scoreRecallPrecisionClassifierCPTbClinical conceptICD-9aModel

0.9050.9060.912Random forestYesSymptoms + disease conceptsYes1

0.7930.7950.807LogisticYesSymptoms + disease conceptsYes2

0.8360.8450.835Random forestNoSymptoms + disease conceptsYes3

0.7720.7770.791LogisticNoSymptoms + disease conceptsYes4

0.9150.9150.920Random forestYesDisease-only conceptYes5

0.7960.7980.809LogisticYesDisease-only conceptYes6

0.8460.8470.856Random forestNoDisease-only conceptYes7

0.7630.7670.779LogisticNoDisease-only conceptYes8

aICD-9: International Classification of Diseases, Ninth Revision.
bCPT: Current Procedural Terminology.

Model Generalizability
Table 3 shows the distribution of stroke features in the AF cohort
and the general population cohort. The AF cohort had a higher
proportion of stroke-related codes and concepts. Results from
the evaluation of the 150 selected patient records are presented
in Table 4. Prediction performance corresponded to a PPV of

0.86 (95% CI 0.74-0.93), an NPV without ICD codes of 1.00
(95% CI 0.92-1.00), and an NPV with codes of 0.92 (95% CI
0.90-0.98). No strokes were observed among patients with no
eligible stroke ICD codes. For subtype characterization, we
achieved an accuracy of 80% (95% CI 0.68-0.89) in the general
population sample.
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Table 3. Patient feature distribution post-AF.

Olmsted County cohort
(N=71,429), n (%)

AF cohort total
(n=4914), n (%)

AF nonscreened
(n=3141), n (%)

AFa screenedStroke feature distribution

No stroke (n=1033),

n (%)

Stroke (n=740),

n (%)

2726 (3.82)1033 (21.02)0 (0)379 (36.69)654 (88.37)ICD-9b+CPTc+CCd

1018 (1.42)662 (13.47)0 (0)596 (57.70)66 (8.92)ICD-9+CPT

48 (0.067)21 (0.43)0 (0)12 (1.16)9 (1.22)ICD-9+CC

1595 (2.23)167 (3.40)167 (5.32)0 (0)0 (0)CPT+CC

194 (0.27)57 (1.16)0 (0)46 (4.45)11 (1.49)ICD-9

17,433 (24.40)1736 (35.33)1736 (55.27)0 (0)0 (0)CPT

566 (0.79)11 (0.24)11 (0.35)0 (0)0 (0)CC

47,849 (66.99)1227 (24.97)1227 (39.06)0 (0)0 (0)None

aAF: atrial fibrillation.
bICD-9: International Classification of Diseases, Ninth Revision.
cCPT: Current Procedural Terminology.
dCC: clinical concepts.

Table 4. Generalizability analysis results from the Olmsted County cohort.

Stroke algorithm prediction (N=150)Gold standard

Positive (n=50)Negative (n=100)

Predicted no stroke (n=50)No ICD-9a codes (n=50)

4340Stroke

74650No Stroke

aICD-9: International Classification of Diseases, Ninth Revision.

Discussion

Principal Findings
The rapid expansion of information available in EHRs opens
new opportunities to combine structured and unstructured data
for research. Advances in machine learning methods and tools
facilitate the combination of multimodal clinical data for
effective development of phenotyping algorithms. However,
performance of stroke electronic phenotyping algorithms varies
by stroke subtypes [25] and phenotyping tasks (ie, case vs
noncase or incident stroke phenotyping). Our previous study
showed that when naïve ICD codes with clinical concept
matching were used, stroke incidence identification had a PPV
of 60.6% while case-versus-noncase identification had a much
higher PPV of 88.7% [20].

In this study, we included clinical concepts extracted from
clinical notes along with ICD-9 and CPT codes for incident
stroke ascertainment. The rationale to add CPT codes is that
diagnosis of stroke usually needs to be confirmed by imaging
evidence and will probably be followed by therapeutic
procedures. Thus, the addition of CPT codes in the model could
potentially help to reduce the information redundancy effect by
distinguishing between past and current events recorded in
clinical notes. Our algorithm closely resembles the ascertainment

process (chart review) of clinicians, which uses multiple types
of EHR data (eg, diagnoses and procedure codes, unstructured
clinical notes) in a parsimonious manner. Due to the redundancy
and temporal ambiguity in unstructured clinical notes, we needed
to construct a data set with sufficient and interpretable features
from multimodal clinical data.

We found that the random forest generated better results, while
the addition of CPT codes improved overall performance. This
may be because imaging procedures, especially head CT or
MRI, are critical in the diagnosis of stroke. Therefore, CPT
codes of such procedures can be important indicators for
distinguishing between incident and historical events. In
addition, ICD codes and therapeutic procedures can vary
significantly between incident and recurrent events. Meanwhile,
we observed that the additions of stroke-related symptom
concepts were not helpful for the phenotyping task. This may
be due to the fact that our stroke incidence ascertainment
depends largely on the ubiquitous nature of many stroke-related
symptoms: they may be stroke-related but not necessarily stroke
specific. Additionally, ascertainment requires well-documented
evidence, such as imaging or imaging reports. Without properly
recorded evidence, patients are not likely to be ascertained as
stroke.

Our generalizability evaluation demonstrates that models trained
using a specific disease cohort for incident stroke ascertainment
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can generalize well to a general patient population. This is very
encouraging given there are many existing patient cohorts
available. Secondary use of these patient cohorts would be a
cost-effective way for developing machine learning–based
phenotyping algorithms. The study also illustrates that
incorporating structured EHR data, such as CPT codes, can
effectively distinguish incident stroke mentions from historical
events in the clinical notes.

One limitation of our study is the dependence of domain experts
to provide relevant clinical concepts, ICD-9 codes, and CPT
codes. In the future, we will explore advance feature engineering
approaches to identify those relevant concepts or codes
automatically or semiautomatically. We are also aware that our
imbalance cohort data and oversampling strategies might have
introduced overfitting. Although our evaluation in the general
population proved the performance of the algorithm, in the
future, we can adopt a case–control matching strategy to deal
with imbalanced data and mitigate the potential overfitting issue.

In addition, new treatment strategies (mechanical thrombectomy)
to treat stroke have been in the market in recent years, and thus
the features used in our algorithm could have different weights
for predictions of events in different temporal settings. A more
precise strategy could consider using different features for
prediction tasks in different time frames, where variations in
clinical knowledge and care path have been considered.

Conclusions
In conclusion, the high prevalence of stroke and the lack of an
efficient algorithm to confirm incident stroke events necessitate
the development of an effective and interpretable algorithm to
identify incident stroke occurrences. In this paper, we described
our efforts to develop and validate an EHR-based algorithm
that accurately identifies incident stroke events and goes beyond
typical case-versus-noncase stroke identification. Our
algorithm’s good performance in a general population sample
demonstrates its generalizability and potential to be adopted by
other institutions.
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