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Abstract

Background: Successful management of gestational diabetes mellitus (GDM) reduces the risk of morbidity in women and
newborns. A woman’s blood glucose readings and risk factors are used by clinical staff to make decisions regarding the initiation
of pharmacological treatment in women with GDM. Mobile health (mHealth) solutions allow the real-time follow-up of women
with GDM and allow timely treatment and management. Machine learning offers the opportunity to quickly analyze large quantities
of data to automatically flag women at risk of requiring pharmacological treatment.

Objective: The aim of this study is to assess whether data collected through an mHealth system can be analyzed to automatically
evaluate the switch to pharmacological treatment from diet-based management of GDM.

Methods: We collected data from 3029 patients to design a machine learning model that can identify when a woman with GDM
needs to switch to medications (insulin or metformin) by analyzing the data related to blood glucose and other risk factors.

Results: Through the analysis of 411,785 blood glucose readings, we designed a machine learning model that can predict the
timing of initiation of pharmacological treatment. After 100 experimental repetitions, we obtained an average area under the
receiver operating characteristic curve of 0.80 (SD 0.02) and an algorithm that allows the flexibility of setting the operating point
rather than relying on a static heuristic method, which is currently used in clinical practice.

Conclusions: Using real-time data collected via an mHealth system may further improve the timeliness of the intervention and
potentially improve patient care. Further real-time clinical testing will enable the validation of our algorithm using real-world
data.

(J Med Internet Res 2021;23(3):e21435) doi: 10.2196/21435
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Introduction

Background
Gestational diabetes mellitus (GDM), defined as glucose
intolerance with onset or first recognition during pregnancy [1],
increases the risk of morbidity in women and newborns.
Successful management of GDM reduces maternal
hyperglycemia and perinatal morbidity. Having a pregnancy
complicated by GDM is associated with a risk of developing
type 2 diabetes in the long term for women [2] and, later in life,
for the offspring [3]. Standard clinical management for GDM
is lifestyle advice and pharmacological treatment [4,5].

The increased prevalence of GDM [6], combined with limited
resources available to the National Health Service (NHS) [7],
is challenging the optimal delivery of care to women with GDM
in the NHS.

GDM is usually diagnosed after 24 weeks of pregnancy,
providing only a short intervention period (typically around 10
weeks) to influence perinatal outcomes. Therefore, timely
identification of the need for pharmacological treatment is very
important.

In current clinical practice, blood glucose (BG) data are provided
by women in the form of paper-based diaries that are bought to
clinics for clinician review. Decisions regarding GDM
management therefore occur only during these reviews.

Benefits of Mobile Health
Access to real-time data recorded in electronic diaries could
enable between-clinic recognition of patterns in the data and
allow midwives to adjust medication in a timely fashion so that
women have more chance of tighter control of their BG readings,
facilitating improved clinical outcomes for the woman and her
baby.

Mobile health (mHealth; ie, internet-linked mobile devices to
monitor patients’ health) is well placed to facilitate this type of
care and provide health care providers access to a larger and
richer set of data on which to base their clinical decisions [8].

The use of mHealth by women with GDM can simplify their
daily routine and has been shown to provide an easy and

acceptable way of collecting, storing, and analyzing their data
to aid personal decision making [9,10].

Digitally monitored BG can also provide additional benefits to
clinicians by enabling real-time reviews and customized
feedback. Furthermore, using the collected data could lead to
the development of algorithms for the early identification of
the need for pharmacological treatment, allowing earlier
intervention, more frequent reviews, and potentially improved
outcomes.

Some studies have successfully used baseline characteristics to
predict the need for pharmacological treatment or maternal
outcomes. Among these studies, factors such as glucose
tolerance test results, maternal age, maternal BMI, ethnicity,
and previous pregnancy history were identified as predictors of
the requirement for pharmacological therapy [11-16].

Prediction of Pharmacological Treatment
Barnes et al [12] analyzed a cohort of 3317 women with GDM
to predict pharmacological treatment using variables from
electronic patient records. The authors validated their model
using data from different time periods (eg, 1992-2004 and
2005-2015) and multiple clinics (Bankstown-Lidcombe Hospital
Diabetes Centre and Liverpool Hospital Diabetes Centre). Their
algorithm was capable of a positive predictive value of 87.6%,
negative predictive value of 69.9%, sensitivity of 93%,
specificity of 99.4%, and the area under the receiver operating
characteristic curve (AUC) value of 0.712 (95% CI
0.693-0.731). This study makes use of variables at diagnosis,
such as the oral glucose tolerance test and glycated hemoglobin
(HbA1c) results, to predict the need for pharmacological
treatment. In contrast to our study, the authors do not include
operational, real-time BG readings, which may be fundamental
to obtain better predictions.

Data collected by mHealth platforms (an example is given in
Figure 1) will enable the design of algorithms for the
identification of women at risk (stratification) and the early
detection of required pharmacological treatment (prediction).
By using machine learning (ML) to analyze data, it will be
possible to provide real-time feedback to women and clinicians
and allow the development of decision-supported processes for
the titration of medication therapy for hyperglycemia.
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Figure 1. Patient data sample illustrating blood glucose readings, 7-day average blood glucose (BG), medication information, and target range (green
shading). Both the dashed and solid circled lines represent medications. In this instance, the use of appropriate medication and dosage allows BG to
reach the target range. BG: blood glucose.

This paper aims to describe the application of ML techniques
to real-world data collected with an mHealth app to predict
future medication events. This study compares how the
predictive algorithm performs against standard heuristic
techniques currently employed in NHS trusts and provides initial
insights on future lines of work that will improve the existing
model.

Methods

Data Collection
The GDm-Health system (Sensyne Health, plc) was used in
research and clinical practice settings, and at the time of writing,
it is currently routinely used for clinical practice in 35 NHS
trusts.

The GDm-Health system was used to track (1) BG readings and
(2) adherence to medications prescribed by health care
professionals. Using the GDm-Health app, participants entered
their readings, tagged them with information identifying the
meal (eg, prebreakfast, postlunch, etc) and recorded information
concerning the dose of any medication taken. Whenever enabled,
wireless transfer from Bluetooth-enabled BG monitors was
used; as an alternative (eg, if there were issues with the wireless
transfer or use of a noncompatible meter), manual input of BG
readings was also employed.

The analysis was performed on fully anonymized data based
on established partnerships with these trusts.

For the analysis in this paper, one source of data was an
implementation study that included data from (1) John Radcliffe
Hospital, Oxford University Hospitals (OUH) NHS Foundation
Trust, and (2) Royal Berkshire Hospital, Royal Berkshire
Hospitals (RBH) NHS Foundation Trust.

This implementation study was performed by the Institute of
Biomedical Engineering at the University of Oxford and OUH.

Data from the research implementation were collected for the
period January 2016 to January 2019 for OUH and September
2014 to September 2019 for RBH.

A second larger set of data was generated by the anonymized
data set collected and curated by Sensyne Health, plc, via the
GDm-Health system. Anonymization was performed according
to guidelines [17] and using a publisher (Privitar, London,
United Kingdom).

Both data sets were analyzed in anonymized form.
Anonymization included the removal of identifiable information
(eg, given name, family name, NHS number) and transformation
of sensitive information (eg, date of birth was transformed into
age in years). In both instances (research and production
implementation), the systems were used for clinical management

J Med Internet Res 2021 | vol. 23 | iss. 3 | e21435 | p. 3https://www.jmir.org/2021/3/e21435
(page number not for citation purposes)

Velardo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of women with GDM; therefore, this analysis corresponds to a
retrospective, secondary care–based cohort study of women
with GDM using the GDm-Health system (Figure 2 describes

the data flow that contributed to the data set used for the
analysis).

Figure 2. Data collection and anonymization flow. NHS: National Health Service; OUH: Oxford University Hospitals; RBH: Royal Berkshire Hospitals.

Pregnant women with GDM used the GDm-Health app to track
pre- and postprandial BG. All women with GDM during the
monitoring period were included in the analysis. Women with
type 1 and type 2 diabetes and Maturity onset diabetes of the
young (MODY) were excluded from the analysis.

GDM was diagnosed using a variety of methods, including the
International Association of Diabetes and Pregnancy Study
Groups criteria [18] and the National Institute for Health and
Care Excellence 2010 guidelines [19]. Clinical management
included hospital-based follow-up in antenatal clinics and remote
monitoring of BG readings using the GDm-Health app.
Monitoring and management of patients varied across sites and
included management via diet alone, metformin, insulin, or a
combination of the above.

Analysis
To develop an algorithm that could predict women in need of
pharmacological treatment, we identified 2 subgroups of interest:
the diet–diet group and the diet–drug group. Women belonging
to the first group did not have any prescribed medication;
therefore, they remained on lifestyle-based therapy throughout

their pregnancy. Those belonging to the second group
transitioned from lifestyle-based therapy to pharmacological
treatment (metformin and/or insulin). We identified patients as
belonging to this group when not taking any medication for at
least 14 days from the first day of use of the GDm-Health
system. If participants initiated pharmacological treatment before
the cutoff period (2 weeks), they were excluded from the
analysis as they would have initiated pharmacological treatment
too early.

By aligning data from all involved women to their respective
delivery date allows us to plot the average BG values regardless
of their meal tag and their standard error per day up to delivery.
Figure 3 shows the plot of the average BG per day up to the
delivery date, and at the same time it shows the number of
readings used to compute the statistics of the previous. One can
observe how both averages decrease toward the delivery date,
suggesting that treatment is successful in both groups. However,
the average BG value for those in the diet–drug group was
higher than that in the diet–diet group. This result points to the
importance of the BG value in deriving features to distinguish
women belonging to these 2 groups.
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Figure 3. Graph (a) shows the average and SE of blood glucose values per day corresponding to the 2 groups. Graph (b) indicates how many readings
per day were used to obtain the average in (a). In both cases, the number of days on the x-axis refers to the number of days to delivery. For the period
where the number of readings is high, 100 to 5 days to delivery, which roughly corresponds to the last 3 months, the average of the blood glucose values
for the 2 groups is clearly different.

Clinical Variables
To train a model that is capable of recognizing women belonging
to one of the 2 specified groups (diet–diet and diet–drug), we
trained an ML algorithm over a set of features (predictors) to
be extracted from the training periods associated with the 2
groups.

A list of relevant predictors, informed by clinicians, was drawn
up to summarize the monitoring period extracted from the data
of each group. Wherever possible, this set of predictors was
extended by considering the average and SD of variables over
the monitoring period to capture the level and variability of
each.
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Table 1 lists the set of predictors used for our analysis, together
with a detailed explanation of their nature, including the time
and the way in which they were recorded. The majority of
predictors describe the BG level at different times of the day

(eg, prebreakfast, postdinner); 2 identify a consecutive alerting
situation (eg, 3 days with high readings at the meal tag in a row),
and 2 describe demographics of the patient (age and BMI).

Table 1. Description of predictors used in this study.

How it was recordedWhen it was recordedHow it was expandedFeature

BGd data were recorded by partici-
pants through the GDm-Health mo-
bile app developed to help mothers-
to-be to keep track and manage their
BG throughout their pregnancy

Recordings were made according

to the GDMc management plan
each participant discussed with
their health care professional

Mean, SD, mina, maxb, linear regression coeffi-
cient

Breakfast readings

BG data were recorded by partici-
pants through the GDm-Health mo-
bile app developed to help mothers-
to-be to keep track and manage their
BG throughout their pregnancy

Recordings were made according
to the GDM management plan
each participant discussed with
their health care professional

Mean, SD, min, max, linear regression coefficientLunch readings

BG data were recorded by partici-
pants through the GDm-Health mo-
bile app developed to help mothers-
to-be to keep track and manage their
BG throughout their pregnancy

Recordings were made according
to the GDM management plan
each participant discussed with
their health care professional

Mean, SD, min, max, linear regression coefficientEvening meal read-
ings

BG data were recorded by partici-
pants through the GDm-Health mo-
bile app developed to help mothers-
to-be to keep track and manage their
BG throughout their pregnancy

Recordings were made according
to the GDM management plan
each participant discussed with
their health care professional

Mean, SD, min, max, linear regression coefficientAll readings (regard-
less of prandial tag)

BG data were recorded by partici-
pants through the GDm-Health mo-
bile app developed to help mothers-
to-be to keep track and manage their
BG throughout their pregnancy

Recordings were made according
to the GDM management plan
each participant discussed with
their health care professional

Variable indicating the number of prebreakfast
alerts in a 3-day consecutive period

Raised 3-day prebreak-
fast

BG data were recorded by partici-
pants through the GDm-Health mo-
bile app developed to help mothers-
to-be to keep track and manage their
BG throughout their pregnancy

Recordings were made according
to the GDM management plan
each participant discussed with
their health care professional

Variable indicating the number of alerts in a 3-
day consecutive period for each postprandial meal

Raised 3-day postpran-
dial

BMI is a derived variable from weight
and height. Both these variables were
recorded at the time of booking

Data were recorded at the first en-
counter with the health care profes-
sional

BMI at the time of bookingBMI

Variable derived, for privacy reasons,
from the date of birth recorded at
booking. Recorded as age in number
of months

Data were recorded at the first en-
counter with the health care profes-
sional

Age at the time of bookingAge

Data were manually recorded by the
health care professional

Data were recorded at the first en-
counter with the health care profes-
sional

Asian, Chinese, Pakistani, Bangladeshi, and other
ethnicities considered at risk for GDM

Ethnicity risk factor

Data were manually recorded by the
health care professional

Data were recorded at the first en-
counter with the health care profes-
sional

Previous GDM, high BMI, family history of dia-
betes, previous large-for-gestational-age baby,
ethnicity, polyhydramnios, glycosuria, macroso-

mia, missed OGTTe, unable to take OGTT, poly-
cystic ovaries

Risk factors

amin: minimum.
bmax: maximum.
cGDM: gestational diabetes mellitus.
dBG: blood glucose.
eOGTT: oral glucose tolerance test.
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Data collected were first analyzed at the population level. BG
data distributions were inspected, and sensible (data-driven)
thresholds were established to filter out readings that considered
outliers. BG monitoring is highly affected by how the test is
performed and the experience level of the user. Therefore,
inconclusive tests can lead to skewed BG values that are not
representative of the real BG levels, and such outliers must be
identified and removed to avoid bias in the training data. For
the BG level, the 95th percentile of all population data was
selected as the cutoff threshold, and values above this level were
excluded from the data set as outliers.

As we cannot assume that our analysis would be unaffected by
missing data (eg, we cannot guarantee that data are missing
entirely at random), variables with missing data were imputed
by substituting each missing feature with the values of the
population mean for that characteristic.

Development of an ML Model
Figure 4 shows the learning tasks considered. BG metrics and
medication information were available on the GDm-Health
platform. Medications are prescribed by health care
professionals and are collected and available on the GDm-Health
platform as self-reported information by women. Both the type
of medication and its dosage were captured in the platform;
however, only a binary representation (medication/no
medication) was used during the analysis. For the diet–drug
group, the training period considered corresponded to the week
before the first medication was administered. For the diet–diet
group, as it was challenging to identify a clear event and to train
over a range of data that represent the whole predelivery
monitoring period, a randomly selected week was chosen from
all the available ones. For the diet–drug group, we excluded
from the training week one day before the start of medication,
whereas there was no need for a gap day for the diet–diet group.
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Figure 4. For both (a and b) training and (c and d) validation, summary features are computed on 1 week’s data and a label is assigned according to
the group the data belong to (diet–drug and diet–diet). During training, (a) for women with a medication prescription (diet–drug), the week before the
first medication dosage is considered for training. A 1-day gap between the training week and the medication event is maintained. (b) For women with
no medication prescription (diet–diet), a random week is selected among all those available. During validation, (c) for women in the diet–drug group,
we used a similar approach to training and computed the features on the week before the first day of medication (leaving a 1-day gap before the medication
event). (d) For women in the diet–diet group, instead, we considered each week available for testing as an independent sample on which to perform a
prediction.

Validation was performed similarly to the training for the
diet–drug group, that is, based on features computed from the
week before the medication event. For the diet–diet group, all
available nonoverlapping weeks were independently considered.

For each of these, a set of features was generated with the
appropriate label for the diet–diet group.
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To develop the statistical model, we trained a logistic regression
model on training data and tested the output of the training
model on the held-out validation data.

We repeated this experiment on 100 different random
permutations of the main data set between training and
validation data using a 70% training and 30% validation split.
At each iteration, to avoid biasing the algorithm toward the
overrepresented class (diet–diet), this was randomly
downsampled to the number of women in the underrepresented
class (diet–drug). The validation set was not downsampled,
thereby retaining within it the class imbalance that would be
observable in real data. Before training, a lasso feature selection
step was performed on the training data and predictors deemed
important to this step were selected and used for training the
algorithm. The lasso MATLAB (MathWorks) function was
used with its alpha parameter set to .75 (corresponding to elastic
net regression) and using 5-fold cross-validation.

At each iteration, a different set of women would compose the
training and testing set, thus training is performed on subjects
who do not contribute data to the testing set.

The results of the test were evaluated by computing the receiver
operating characteristic curve (ROC), which plots the
false-positive rate (FPR) against the true-positive rate (TPR).
The AUC was also computed to permit the comparison of
different models and to provide a summary of the performance
of the algorithm. From the 100 repeated experiments, a summary
description of the ROC and AUC was obtained by calculating
percentiles at 5%, 50%, and 95%, providing the median ROC
curve and CIs at 5% and 95%, respectively.

To compute the ROC curves, risk groups were defined
automatically by the perfcurve function (MATLAB 2019a) by
varying the value of the decision threshold over the range of
values from 0 to 1 produced by the logistic regressor. Finally,
comparison with the standard of care was evaluated by
visualizing the performance of the current methodology against
the ROC curve. The current clinical heuristic states that
treatment should be considered if 3 or more consecutive BG
readings of the same meal tag are over the designated threshold.

Results

Data Description
Data from 12 trusts were collected from women being monitored
using the GDm-Health platform during 2019 (Sensyne Health,
plc data set) and from the Oxford University research data set
between 2014 and 2015.

A total of 3029 women were included in our data set at the time
of analysis. After excluding data from women with incomplete
demographic information (eg, missing weight and height) and
excluding data from women with insufficient BG data (eg,
women with fewer than 36 BG readings in the first week of
use), data from 1789 women were analyzed. After further
reduction and classification into one of the 2 groups of interest
for our analysis (diet–diet and diet–drug), the remaining group
of women (Figure 5) provided 411,785 BG readings (mean 230,
SD 181), of which 160,812 were tagged as breakfast readings,
117,887 as lunch readings, and 133,086 as evening meal
readings.

Figure 5. Consort diagram describing the data selection flow. Final groups are identified by the colored boxes.
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Among the 1789 patients, 39.12% (700/1789) women required
pharmacological treatment during their pregnancy, whereas the
remaining group was managed only through diet adjustments.

Analysis
The results of the analysis outlined in the Methods section are
summarized in Figure 6.

Figure 6. Experimental results. (a) ROC curves depicting the 5th and 95th centiles out of 100 repetitions of the classification experiment. (b) Histogram
showing the distribution of area under the curve values for all 100 experiments. (c) Top 10 variables out of 100 repeated experiments. (d) Precision-recall
curve depicting the 5th and 95th centiles out of 100 repetitions of the classification experiment. (a) Performance of the 3-day heuristic. Each dot represents
a different run out of 100 repetitions. Although straightforward to implement, the average performance of the heuristic does not provide the possibility
of customizing the algorithm to specific needs, such as increasing the true-positive rate at the expense of a higher false-positive rate. AUC: area under
the curve; ROC: receiver operating characteristic.

The ROC and AUC results of repeated experiments are shown
in Figure 6. Figure 6 also shows the results of the lasso feature
selection with the top 14 (top 10 in bold) and summarizes the
number of times each was deemed relevant. Figure 6
summarizes the precision-recall curves. Results from the
repetition of the validation step are described by the 5%, 50%,
and 95% ROC values percentiles; these provide the median
ROC curve and corresponding CIs, and the same is done for
the precision-recall curves in Figure 6.

The histogram of AUC values drawn from the ROC curves is
centered around a median value of 0.80, which supports the

potential for clinical evaluation of the proposed algorithmic
approach.

To evaluate the distribution of scores for a given model, we
selected one close to the median performance shown in Figure
6, 0.80 AUC. The selected model operates with 4 features (mean
of all BG values, mean of all prebreakfast BG values, max of
all postbreakfast BG values, and raised 3-day prebreakfast).
Figure 7 shows the distribution of scores for the 2 classes and
demonstrates how the model can distribute scores for both
classes, although an overlap is presented around the decision
boundary. For completeness, additional figures showing the
distribution of feature values are shown in the Multimedia
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Appendix 1 for true positive, true negative, false positive, and
false negative.

To compare performance with the standard of care, we evaluated
the algorithm against the 3-day heuristic currently used in the

trusts, considering that treatment should be considered when 3
or more consecutive BG readings of the same meal tag are over
the designated threshold.

Figure 7. Distribution of scores from a model close to median performance (area under the curve 0.80). The model uses 4 features to perform its
function. Although scores for the diet–diet group are clearly distributed on the left-hand side of the graph, the diet–med group presents higher variability.

As shown in Figure 6, the current heuristic performance is fixed
to an area and is nonconfigurable. However, the proposed
ML-based approach can make use of a different threshold (eg,
to classify differently the score of 0 to 1 output by the logistic
regression), thus allowing a change in the operating point of
the system and allowing for a larger TPR at the expense of a
slightly larger FPR. For example, from Figure 6, we could aim
at 80% TPR by increasing our FPR by 20%, thus providing the
possibility to the system to identify more women in need of
medications, at the added cost of few women who will probably
be screened by midwives and identified as false positives.

Discussion

The increased prevalence of GDM [6] and limited resources
available to the NHS [7] pose a problem to the already burdened
antenatal care services.

Predicting the need for pharmacological treatment could likely
benefit women diagnosed with GDM by improving glycemic
control, thereby leading to improved perinatal outcomes and
avoiding complications such as large-for-gestational-age
newborns or c-sections. Digital health technology such as
GDm-Health can provide the real-time monitoring required to
collect dense, longitudinal data sets and enable the delivery of
clinical decisions quickly and efficiently to patients. Algorithms
derived from real-world data obtained from GDm-Health could
help midwives to optimize their clinical decision making and
allow interventions, including medication, to be delivered
earlier.

Conclusions
In this study, we have used ML on a large, anonymized data set
from a population affected by GDM to design an algorithm
capable of detecting the need for pharmacological treatment.

The strength of our study lies in the use of a large, multisite,
real-world data set to validate our results. Predictors selected
by our ML algorithm match most of the predictors included in
the state of the art [11-16] and are enhanced by the use of risk
factors and other demographic information available as part of
routinely collected data by GDm-Health.

The logistic algorithm employed was experimentally tested
against LightGBM and Random Forest algorithms. However,
when applied to the same features and methodology, these
comparator algorithms did not significantly improve AUC
performance (both reporting a median of 0.81 AUC).

The aggregated results of the trained logistic regression models
achieved an average AUC of 0.80, which is significant to justify
future work to evaluate and validate this algorithm in real
clinical settings.

Some of the limitations of this study are very common to other
mHealth systems, including the challenge of user-reported data
such as medication and BG data, which may be inaccurate or
missing. However, in the case of GDm-Health data, user
retention and user adherence have been very high, with only
4% of profiles being excluded because of complete
disengagement with the system (117 women with no readings).

Given the longitudinal nature of this data set (ie, from 2014 to
2019) and the heterogeneous nature of each trust, women at
each trust could have been subject to different clinical
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management processes, adding to the complexity of the ML
task.

Nevertheless, we demonstrate that our algorithm predicts the
requirement for pharmacological therapy, and we show the
superiority of our approach against a heuristic currently
employed in clinical settings.

The very likely future introduction of ML algorithms to aid the
work of health care professionals and to support patients coping
with their conditions requires the validation of the technology
using real-world data sets such as the one provided by
GDm-Health. We intend to clinically validate the performance
of the algorithm further by evaluating its real-time performance
on a data set used for clinical operations. To that end, we will
first pursue a posthoc analysis on a subset of data not used to

design the algorithm and then deploy an implementation of the
algorithm alongside GDm-Health to monitor its real-time
performance (ie, predictions performed on a daily basis on
updated BG daily readings) against decisions performed by
health care professionals. Finally, repeated validation and
postmarket evaluation strategies will be employed to
continuously validate the algorithm against clinical decision
making made by health care professionals.

Future work may include new analyses of the GDm-Health data
set to include other variables that might identify a change in
clinical patient management (eg, including the trust name as a
predictor), considering variable lengths of predictive windows
(eg, computing features at 2, 3, or 4 weeks before a medication
event), or considering the problem as a time-to-event prediction
(via Cox proportional hazards, etc).
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