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Abstract

Background: In a fast-evolving public health crisis such as the COVID-19 pandemic, multiple pieces of relevant information
can be posted sequentially on a social media platform. The interval between subsequent posting times may have a different impact
on the transmission and cross-propagation of the old and new information that results in a different peak value and a final size
of forwarding users of the new information, depending on the content correlation and whether the new information is posted
during the outbreak or quasi–steady-state phase of the old information.

Objective: This study aims to help in designing effective communication strategies to ensure information is delivered to the
maximal number of users.

Methods: We developed and analyzed two classes of susceptible-forwarding-immune information propagation models with
delay in transmission to describe the cross-propagation process of relevant information. A total of 28,661 retweets of typical
information were posted frequently by each opinion leader related to COVID-19 with high influence (data acquisition up to
February 19, 2020). The information was processed into discrete points with a frequency of 10 minutes, and the real data were
fitted by the model numerical simulation. Furthermore, the influence of parameters on information dissemination and the design
of a publishing strategy were analyzed.

Results: The current epidemic outbreak situation, epidemic prevention, and other related authoritative information cannot be
timely and effectively browsed by the public. The ingenious use of information release intervals can effectively enhance the
interaction between information and realize the effective diffusion of information. We parameterized our models using real data
from Sina Microblog and used the parameterized models to define and evaluate mutual attractiveness indexes, and we used these
indexes and parameter sensitivity analyses to inform optimal strategies for new information to be effectively propagated in the
microblog. The results of the parameter analysis showed that using different attractiveness indexes as the key parameters can
control the information transmission with different release intervals, so it is considered as a key link in the design of an information
communication strategy. At the same time, the dynamic process of information was analyzed through index evaluation.

Conclusions: Our model can carry out an accurate numerical simulation of information at different release intervals and achieve
a dynamic evaluation of information transmission by constructing an indicator system so as to provide theoretical support and
strategic suggestions for government decision making. This study optimizes information posting strategies to maximize
communication efforts for delivering key public health messages to the public for better outcomes of public health emergency
management.
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Introduction

In the absence of effective treatment or a vaccine, the success
or failure of mitigating COVID-19 transmission in the
population relies heavily on the effectiveness of social
distancing, self-protection, case detection, quarantine, isolation,
and testing. The effectiveness of these nonpharmaceutical
interventions depends on the active participation and
engagement of residents in the community, which is
substantially influenced by the public opinion. Given the short
disease transmission doubling time, the timing (and hence time
lags) in the communication of critical public health information
to the community has a profound impact on the outcome of
public adherence to nonpharmaceutical measures and,
ultimately, on the outcome of outbreak mitigation. Adding to
the challenging of effective communications is the
cross-propagation of relevant, and sometimes inconsistent,
pieces of information that enter social media at different time
points. This calls for a strategy of optimizing the timing of
posting key information in social media during a fast-evolving
pandemic.

Figure 1 shows the cross-propagation of three pieces of related
information about COVID-19: titled as “Just want a regular
20200202,” “Announcement of donation acceptance by Wuhan
JinYinTan hospital,” and “Three cases of community
transmission were reported in Shenzhen for the first time.”
These pieces of information were posted in Sina Microblog,
with different beginning and ending time points marked in the
(horizontal) timeline. Almost immediately after reading
information A, some users forwarded information B, so both
pieces of information shared similar life cycle but with
beginning and ending time points close to each other. There
were 12,283 information A users, among which 742 (6.04%)
forwarded information B. Eventually, 7161 of users forwarded
information B, and those who simultaneously forwarded
information A accounted for 10.36% (n=7161). Information C
was then released, and users of information B started to forward
information C. At the end, among 7161 users of information B,
1158 (16.17%) also forwarded information C, accounting for
10.26% (n=11,289) of the users for C.

Figure 1. Cross-propagation of three relevant pieces of information related to the COVID-19 pandemic, posted in sequence on Sina Microblog.

In general, relevant information, when posted with an
appropriate time lag, can attract the interest of social media
users in public hot events by increasing the efficiency of
dissemination of a group of information cross-propagated. It is
an important topic of research; the main objective of our study
is to understand the information cross-propagation dynamics
to inform optimal strategies of posting relevant information in
an appropriate time sequence to ensure their maximum

interaction for effective copromotion during a public health
emergency situation.

To the best of our knowledge, no appropriate model framework
has been developed and analyzed to examine the impact of
information cross-propagation dynamics for a group of relevant
information that is posted subsequently. Here, we try to fill this
gap by proposing a susceptible-forwarding-immune model with
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time-delayed posting and transmission. We developed and
illustrated this framework, and parametrized our model by using
the forwarding quantity that represents public attention to some
popular opinions on the COVID-19 pandemic. Our focus is on
the dynamic interactions among several pieces of information
posted sequentially, and we aim to examine the impact of time
lags between different posting time points on the evolution and
steady states of cross-propagation.

In the field of information propagation dynamics, there is a
strong similarity between the propagation of rumors and a
pathogen’s spread in the population [1]. Many studies have used
epidemic models to examine rumor propagation in the hope that
the negative influence of rumors can be eliminated or at least
m i n i m i z e d .  F o r  e x a m p l e ,  t h e
susceptible-infected-exposed-recovered (SIER) model [2-5],
s u s c e p t i b l e - i n f e c t e d  m o d e l  [ 6 - 9 ] ,
susceptible-infected-susceptible [10,11] model, and
susceptible-infected-recovered (SIR) model [12-14] have all
been developed and recognized as classical propagation
dynamics models.

The development of the internet and the enrichment of social
media mandate further extensions of traditional models to reflect
novel transmission mechanisms and to take advantage of data
from multiple platforms. Gu and Cai [15] and Gu et al [16]
proposed the forget-remember mechanism to study the spreading
process in a 2-state model. Zhao et al [17] combined the
forgetting mechanism and the SIR model to represent the rumor
spreading process in an online social blogging platform
LiveJournal. In 2014, Zhao et al [18] integrated the refutation
mechanism in homogeneous social networks into the SIR model
and analyzed the dynamic process of rumor propagation.
Considering the three influencing factors of enterprises affected
by rumors, pinion leaders, and a microblog platform, an SIR
model based on browsing behavior was constructed to explain
how rumors spread among followers under the influence of
different rumor refuting measures [19]. Other features of the
new media were further incorporated by Zhao et al [20].
Borge-Holthoefer et al [21] considered the case when spreaders
were not always active and an ignorant was not interested in
spreading the rumor, and then separately introduced these ideas
into two different models. They concluded that these models
provided higher adhesion to real data than classical rumor
spreading models. In 2020, Yin et al [22] considered the user’s
behavior of re-entering new topics and proposed a
multiple-information susceptible-discussing-immune model to
investigate COVID-19–relevant information propagation in the
Chinese Sina Microblog. Ding et al [23] proposed an improved
SIR model, which used differential equations to study the rule
of information transmission on media platforms and predicted
microblog information accurately. Wang et al [24] proposed a
modeling method that considers Weibo propagation behavior
based on the susceptible-infected-susceptible model, so the
forwarding trend in the future can be predicted. Zhang et al [25]
focused on the impact of media transmission and interpersonal
relationships on information propagation and then proposed the
media  and  in te rpe r sona l  r e l a t ionsh ip
susceptible-infected-exposed-recovered model. Zhao et al [26]
developed a new rumor spreading model called the

susceptible-infected-hibernator-removed model, introducing a
new kind of people-hibernators to reduce the maximum rumor
influence. Woo et al [27] proposed an event-driven SIR model
based on the impact of news releases on social media to reflect
the impact of specific events on opinion diffusion. Yao et al
[28] concentrated on examining the influence of different
interactions among information on the spread of public opinion
and modeling based on the SIR model, which verified the
otherness of public opinion under a distinct information
environment. For other studies relevant to our paper, see [29-32].
In particular, Tanaka et al [32] added a new module to the
traditional model by using two data sets from the Japanese Mixi
and Facebook rather than a single data set.

Many studies on cross-transmission in disease diffusion are
highly significant to study the cross-propagation of information.
Feng et al [33] established a mathematical model that
incorporated the virus mutation dynamics in the transmission
of the Chikungunya virus among mosquitoes and humans.
However, the important phenomenon of time lag in posting and
cross-propagation of relevant information for information
dissemination in real social media networks has not been
adequately addressed in these earlier studies. We noted that Zan
[34] studied the double rumors spreading with different launch
times, in which the new rumor was launched with a certain
delay but also could interact with the old rumor. Zan [34]
proposed two classes of double-rumors spreading models: a
double-susceptible-infected-recovered model, where it was
assumed that the rumor was disseminated by direct contacts of
infective nodes with others, and a comprehensive
double-susceptible-infected-recovered model, with which the
authors studied the whole spread situation of all rumors with a
focus on determining how many people did not spread all rumors
in the entire period or how many were spreading or had spread
at least one of the rumors.

In comparison with the aforementioned studies, here we consider
the phenomenon where at different propagation stages of a piece
of information posted in social media other pieces of information
are posted, and their relevance in contexts and posting time
sequence combined generate an outbreak for each piece of
information and, more importantly, cross-propagation in which
users of one piece of information forward other pieces of
information they are exposed to later. We developed two classes
of dynamic propagation models that focus on the single
information transmission and multi-information
cross-propagation patterns during explosive and
quasi–steady-state periods of the information posted
sequentially. We aim to examine emphatically the influence of
different participating groups of posted information on the
spread of the information from the participating groups. As
populations who have forwarded, whether exposed or not
exposed to relevant posted information, are attracted to a new
piece of information differently, by introducing and analyzing
the impact of attractiveness indexes on relevant information
propagation and examining the significant factors of delaying
in posting relevant information propagation, we inform strategies
for sequentially posting relevant information to achieve effective
communication of key public opinions. We will illustrate this
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with data from public opinions about COVID-19 pandemic
management.

Methods

Large Delay in Transmission
Susceptible-Forwarding-Immune Dynamics Model
The structure of our proposed large interval delay in
transmission susceptible-forwarding-immune (LTI DT-SFI)

dynamics model is shown in Figure 2. There are two phases
involved. In phase 1, a piece of stand-alone information
(information 1) is spreading; and in phase 2, another piece of
information (information 2) is posted during the
quasi–steady-state period of the posted information.

Figure 2. A schematic illustration of the information cross-spreading, where a new piece of information is posted during the quasi steady-state period
of an already posted information.

Phase 1: Post a Piece of Stand-alone Information
The propagation dynamics during phase 1 for one piece of
posted information is modeled based on the traditional
susceptible-forwarding-immune [35] model, with a novel
stratification of the immune population. Namely, there will be
two classes of immune populations (as far as information 1 is
concerned): those who have forwarded the posted information
but are no longer in the active period of forwarding this posted
information (I1+) and those who have been exposed to the
information but are not interested in forwarding it (I1–). This
distinction of immunity is important, as individuals in these two
distinct compartments will have different levels of interest in
other relevant information that will be posted later. This will
allow us to introduce different measures of attractiveness to
new relevant information.

So, in our model, we stratify the population (N1) into four states:
the susceptible state of the posted information (S1), the
forwarding state of the posted information (F1), the inactive
immune state (I1+), and the direct immune state (I1–). A
susceptible user can be exposed to the posted information with

an average exposure rate β1 and will forward the information
with the forwarding probability p1. The forwarding users can
become inactive immune users with an average rate α1. So a
user may have a unique state, with S1(t), F1(t), I1+(t), and I1–(t)
denoting the number of users in the susceptible, forwarding,
inactive, and direct immune state, respectively. We obtain the
following delay in transmission susceptible-forwarding-immune
(DT-SFI) dynamics model in phase 1:

The state transition of different populations in phase 1 can be
interpreted as follows: an active forwarding user will contact
an average number of β1N1 users per unit time, and the
probability of a user being a susceptible user of the posted
information is S1(t)/N1, so an active forwarding user will contact
β1S1(t) susceptible users. There are F1(t) active forwarding users
of information 1 in total at time t, so p1β1S1(t)F1(t) susceptible
users will choose to forward the information and become new

J Med Internet Res 2021 | vol. 23 | iss. 2 | e25734 | p. 4http://www.jmir.org/2021/2/e25734/
(page number not for citation purposes)

Yin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


forwarding users, and (1 – p1) β1S1(t)F1(t) will not. As time
goes by, α1F1(t) will go to the immune state from the forwarding
period when they do not influence other users as far as
information 1 is concerned.

For data fitting purposes, we noted that the Sina Microblog
provides important data about any piece of information relevant
to COVID-19, the number of cumulative forwarding quantity,
given by:

Phase 2: Post New Information During the
Quasi–Steady-state Period of the Posted Information
Now we consider that a piece of new information is posted at
time tτ when the posted information is already in the
quasi–steady state. We introduce the following indexes:

• An extensive exposure attractiveness index: for the
individuals in the immune state who have forwarded the
posted information but are no longer in their active
forwarding period. These individuals are more susceptible
to the new yet relevant information, as they had interest in
the posted information.

• A mild exposure attractiveness index: for the direct immune
individuals. These individuals have had exposure to the
posted information but had shown little interest in the
information.

• An unexposure attractiveness index: for those who were
never exposed to the first posted information

Accordingly, we introduce three states of the population (N2)
for the newly posted information: the susceptible state (S2), the
forwarding state (F2), and the immune state (I2). We summarize
the notations in Textbox 1.

Textbox 1. Parameter definitions for large delay model.

Attractiveness parameters, stratified by the exposure to old information

• m21: The extensive exposure attractiveness index that an inactive user of state I1+ becomes a forwarding user of state F2.

• m22: The mild exposure attractiveness index that a direct immune user of state I1– becomes a forwarding user of state F2.

• m23: The unexposure attractiveness index that a new susceptible user of state S2 becomes a forwarding user of state F2.

Transmission parameters associated with the different attractiveness

• β21: The average exposure rate that the inactive users of the old information can contact with the newly posted information.

• β22: The average exposure rate that the direct immune users of the old information can contact with the newly posted information.

• β23: The average exposure rate that the new susceptible users can contact with the newly posted information.

• p2: The probability that an exposed user will forward the newly posted information.

• α2: The average rate that a user in the forwarding state of newly posted information becomes inactive to forwarding, where 1/α2 is the average
duration a forwarding user remains active in forwarding newly posted information.

Each user may have a unique state, with I1+(t), I1–(t), S2(t), F2(t),
and I2(t) denoting the number of users in the susceptible,
forwarding, and immune state, respectively. We obtain the
following LTI DT-SFI dynamics model in phase 2:

The mass action in phase 2 can be interpreted as follows: an
active forwarding user will contact an average number of β21N2

inactive immune users of the posted information per unit time,
and the probability of a user being an inactive immune user is
I1+(t)/N2, so an active forwarding user will contact β21I1+(t)
inactive immune users, among which m21p2β21I1+(t)F2(t) will
choose to forward the new information and (1 –
m21p2)β21I1+(t)F2(t) will not, where F2(t) is the number of new
active forwarding users at time t; an active forwarding user will
contact an average number of β22N2 direct immune users of the
posted information per unit time, and the probability of a user
being a direct immune user is I1–(t)/N2, so an active forwarding
user will contact β22I1–(t) direct immune users, among which

m22p2β22I1–(t)F2(t) will choose to forward the new information
and (1 – m22p2)β22I1–(t)F2(t) will not, where F2(t) is the number
of new active forwarding users at time t; an active forwarding
user will contact an average number of β23N2 susceptible users
of the newly posted information per unit time, and the
probability of a user being a susceptible user is S2(t)/N2, so an
active forwarding user will contact β23S2(t) susceptible users,
among which m23p2β23S2(t)F2(t) will choose to forward the new
information and (1 – m23p2)β23S2(t)F2(t) will not, where F2(t)
is the number of new active forwarding users at time t.

The forwarding quantity of the newly posted information is
given by:

The Public Opinion Reproduction Ratio
Since the newly posted Weibo starts at different times and
develops differently under the influence of prior information,
we defined the information reproduction ratio as:
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This is the total number of information 2 users generated by
introducing a typical information 2 user, at time τ after
information 1 was posted, during their entire period of active
forwarding. The initial population for information 2 has been
stratified by the exposure of the entire population to information

1 during the time interval [0, τ]. The relative size of to the
unity determines if information 2 can generate an information

outbreak; since (0) = (m21p2β21I1 + ,τ + m22p2β22I1 – ,τ +

m23p2β23S20 – α2) F2 (0), we concluded that (0)>0 if >1.

Short Delay in Transmission
Susceptible-Forwarding-Immune Dynamics Model
Our comprehensive short interval delay in transmission
susceptible-forwarding-immune (STI DT-SFI) dynamics model
based on the forwarding quantity is shown in Figure 3. In this
model, we include two phases. In phase 1, a stand-alone piece
of information (information 1) is spreading, corresponding to
phase 1 in the LTI DT-SFI model. In phase 2, a piece of newly
posted information (information 2) is posted at tτ during an
outbreak period of the posted information. Here, we also divide
the population into three groups: S population (S), F population
(F1, F2), and I population (I1+, I1–, I2). In particular, we think of
the susceptible state of both the posted information and the new
information as a whole (S). tτ is the post time of the newly posted
information.

Figure 3. A schematic diagram to illustrate information spreading, when the post time of the newly posted information is during the outbreak period
of the posted information.

Phase 1: Post Stand-alone Information
The model is consistent with that of phase 1 of the LTI DT-SFI
model.

Phase 2: Posting New Information During the Outbreak
Period of the Posted Information
Considering that the new information is posted during the
outbreak period of the old information, we developed our phase
2 model to describe the concurrent dynamic process of the two
related pieces of information. We considered the difference
between the population in active forwarding state or the immune
state out of the active period and the population in the direct
immune state of the first (old) piece of information. Here, we
set the following indexes:

• An extensive exposure attractiveness index: for the
individuals in the forwarding state, who have forwarded

the posted information but are still in their active forwarding
period, and the individuals in the immune state, who have
forwarded the old information but are no longer in their
active forwarding period, to indicate that this population
will be attracted by the new information due to the relevance
of the two pieces of information

• A mild exposure attractiveness index: for the direct immune
population to portray that the population will be attracted
due to a moderate contact

• An unexposure attractiveness index: for the integrated
susceptible population to describe that the population will
be attracted when they have never read the related
information

Assuming that the number of users (N3) who can contact the
information in the process of information propagation on Sina
Microblog remains unchanged, we introduced three states of
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the population of the newly posted information: the susceptible
state (S1) that includes the users who can be exposed to the old
information and the new information, the forwarding state of

the new information (F2), and the immune state (I2). The
parameters are shown in Textbox 2.

Textbox 2. Parameters definitions for short delay model.

Attractiveness parameters, stratified by the exposure to old information

• m21: The extensive exposure attractiveness index that an inactive user of state I1+ becomes a forwarding user of state F2.

• m22: The mild exposure attractiveness index that a direct immune user of state I1– becomes a forwarding user of state F2.

• m23: The unexposure attractiveness index that a new susceptible user of state S2 becomes a forwarding user of state F2.

Transmission parameters associated with the different attractiveness

• β1: The average exposure rate that the susceptible users can contact the first information.

• β21: The average exposure rate that the inactive users of the old information can contact the newly posted information.

• β22: The average exposure rate that the direct immune users of the old information can contact the newly posted information.

• β23: The average exposure rate that the new susceptible users can contact the newly posted information.

• p1: The probability that the susceptible users will forward the first information.

• p2: The probability that the exposed users will forward the newly posted information.

• α2: The average rate that a user in the forwarding state of newly posted information becomes inactive to forwarding, where 1/α2 is the average
duration a forwarding user remains active in forwarding newly posted information.

Each user may have a unique state, with S1(t), F1(t), I1+(t), I1–(t),
F2(t), and I2(t) denoting the number of users in the susceptible,
forwarding, and immune state when t>0, respectively. We obtain
the following STI DT-SFI dynamics model in phase 2:

The mass action in phase 2 can be interpreted as follows: an
active forwarding user will contact an average number of β21N3

inactive immune users and forwarding users of posted
information per unit time, and the probability of a user being
an inactive immune user and a forwarding user are I1+(t)/N3 and
F1(t)/N3, respectively, so an active forwarding user will contact
β21I1+(t) inactive immune users and β21F1(t) forwarding users,
among which m21p2β21I1+(t)F2(t) and m21p2β21F1(t)F2(t) will
choose to forward the new information, however, (1 –
m21p2)β2I1+(t)F2(t) and (1 – m21p2)β21I1(t)F2(t) will not, where
F2(t) is the number of new active forwarding users at time t.
Here, the individuals in the forwarding state and the individuals
in the immune state have the same familiarity with the topic
content who have forwarded information 1; an active forwarding
user will contact an average number of β22N3 direct immune
users of posted information per unit time, and the probability
of a user being a direct immune user is I1–(t)/N3, so an active
forwarding user will contact β22I1–(t) direct immune users,
among which m22p2β22I1–(t)F2(t) will choose to forward the new
information and (1 – m22p2)β22I1–(t)F2(t) will not, where F2(t)
is the number of new active forwarding users at time t; an active
forwarding user will contact an average number of β23N3

susceptible users, and the probability of a user being a

susceptible user is S1(t)/N3, so an active forwarding user will
contact β23S1(t) susceptible users, among which
m23p2β23S1(t)F2(t) will choose to forward the new information
and (1 – m23p2)β23S1(t)F2(t) will not, where F2(t) is the number
of new active forwarding users at time t.

The forwarding quantity of the newly posted information is
given by:

The Public Opinion Reproduction Ratio
Considering the initial condition in phase 2, we can obtain the

following public opinion reproduction ratio . The new
information entered at time τ during an outbreak period of the

posted information, and (0) = (m21p2β21F1τ + m21p2β21I1 + ,τ
+ m22p2β22I1 – ,τ + m23p2β23S1τ – α2)F2(0). The population will

never take off if (0) = (m21p2β21F1τ + m21p2β21I1 + ,τ +
m22p2β22I1 – ,τ + m23p2β23S1τ – α2)F2(0)<0 due to the decrease
of S10τ. It is therefore natural to introduce the following as the
STI DT-SFI reproduction ratio:

In the same way, the of the STI DT-SFI model denotes the
comprehensive public opinion generated by the newly posted
Weibo starting at the outbreak period of the posted information.
When the reproduction ratio <1, it means that the new public
opinion will decline. When the reproduction ratio >1, it indicates
that the new public opinion will initially grow exponentially.
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Statistical Analysis

Data Description
Since the COVID-19 outbreak in China, intensive information
that were clearly relevant to each other have been frequently
posted. Figure 4 shows the total forwarding quantities of Weibos
during each 1-hour time frame on January 25, 2020, and January
26, 2020 (data acquisition up to February 19, 2020), for the top
10 opinion leaders of this outbreak event in the Chinese Sina
Microblog. As illustrated, those pieces of information with high
influence were posted frequently by each opinion leader. At the
same time, there was a strong correlation among a series of
Weibos posted by these opinion leaders during certain periods.
Of all the data shown in Figure 4, People’s Daily issued five
Weibos in 1 hour from 10 PM to 11 PM on January 25, and
they were forwarded by a total of more than 300,000 users.
Therefore, the frequent release of relevant information by
original post owners was a common phenomenon in the
COVID-19 information propagation, and understanding its
effectiveness is important.

Figure 5 shows the trend of cumulative forwarding users for
the three pieces of information in Tables 1-3. It shows that when
information A broke out, information B was posted almost

immediately. Compared with the information, the outbreak
period of information B was shorter and the trend was flatter.
Information C was released during the quasi–steady-state period
of information B. In comparison with this information, the
outbreak period of information C lasted longer; meanwhile, the
cumulative forwarding quantity was also larger.

Sequentially releasing two related pieces of information by the
same original post owners within the same COVID-19 theme
was a common phenomenon. Importantly, different entering
times of new information during the spreading process of an
old (previously posted) information exhibited different
promoting effects on the cross-propagation and cross-promotion
of relevant public opinions. Here we focus on users who have
been exposed to one posted information that may have a special
interest in, and hence are susceptible to, new and relevant
information. This represents a remarkable difference from the
spread of rumors and other traditional public hot events. Our
information cross-propagation DT-SFI models, including the
STI DT-SFI dynamics model and the LTI DT-SFI dynamics
model, were developed to take into consideration the situations
when the relevant information is posted during the outbreak
period or during the quasi–steady-state period of the previously
posted (old) information.

Figure 4. A bubble chart of forwarding quantity of public opinions on COVID-19 information by top ten opinion leaders in Weibos, during an early
period of COVID-19 outbreak in China.

Figure 5. Cumulative forwarding quantity of three pieces of information.
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Table 1. Cumulative forwarding quantity of information A posted at 8:41 AM on February 2, 2020.

Information A forwarding quantity, nTime

470 min

59710 min

94020 min

120830 min

145840 min

169150 min

193760 min

218270 min

247780 min

295290 min

3461100 min

3917110 min

43902 h

63663 h

75014 h

82815 h

88466 h

92937 h

96388 h

99549 h

10,19910 h

10,43511 h

10,79512 h

11,13813 h

11,45914 h

11,81215 h

12,01316 h

12,08817 h

12,10918 h

12,11919 h

12,12820 h

12,13621 h

12,14022 h

12,14623 h

12,15724 h

12,17125 h

12,18426 h
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Table 2. Cumulative forwarding quantity of information B posted at 10:41 AM on February 2, 2020.

Information B forwarding quantity, nTime (hours)

152

12813

26154

40135

48176

53227

56858

59329

605210

615211

626412

631713

638014

640115

642316

643417

644718

645419

645520

645621

645822

646023

646124

646525

647126
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Table 3. Cumulative forwarding quantity of information C posted at 5:51 PM on February 2, 2020.

Information C forwarding quantity, nTime (hours)

209

118010

424411

623512

759513

857214

910315

938116

956917

964218

968019

970020

973621

976422

980023

986424

994325

10,00626

Data Fitting for the LTI DT-SFI Model

Parameter Estimation
To fit our model with real data from the Sina Microblog, we
used the least squares (LS) method to estimate the LTI DT-SFI
model parameters and the initial data. In phase 1, the parameter
vector is set as Θ1 = (p1, β1, α1, S10), and the corresponding
numerical calculation based on the parameter vector for C1(t)

is denoted by (k, Θ1). The follow LS error function was used
in our calculation:

where C1k denotes the actual cumulative forwarding populations
of the posted information. Similarly, in phase 2, the vector is
set as Θ2 = (β21, β22, β23, m21, m22, m23, p2, α2, S20), and the
corresponding numerical calculation based on the parameter

vector for C2(t) is denoted by (k, Θ2). The following LS error
function was used in our calculation:

where C2k denotes the actual cumulative forwarding populations
of the newly posted information. Here, n=1, 2 ... represents the
different phases, and k=0, 1, 2, ... is the sampling time n=1, 2,
3. We estimated the parameters of our LTI DT-SFI model with
the data of information B and information C.

Figure 6 reports our data fitting results for information B and
information C on the real data given in Tables 2 and 3, where

the blue star denotes the actual cumulative number of forwarding
users of information B; the red star denotes the actual cumulative
number of forwarding users of information C; and the green
line and the black line denote the estimated cumulative number
of forwarding users of information B and information C,
respectively.

Tables 4 and 5 give estimated values of important parameters
for information B and information C, respectively. We can see
in phase 2, when information C was posted during the
quasi–steady-state period of information B, the average exposure
rate β21 was the largest, indicating that an inactive user of the
posted information B was more susceptible to the newly posted
information C; the average exposure rate β23 was small,
indicating that a susceptible user of the newly posted information
C contacted the information at a lower rate. In addition, among
the three attractiveness indexes, the index m22 is the largest,
which indicates that information C had the strongest appeal to
a direct immune user of information B and has the least
attractiveness to an inactive user of the posted information B.

By comparison, there is a difference between the initial time of
a new piece of information at the outbreak phase and at the
quasi–steady-state phase of the posted information. When the
initial time of new information is in the outbreak phase of the
posted information, the value of the average immune rate α2 is
generally higher than the value in the quasi–steady-state phase,
which is due to the rapid outbreak of information (a large
amount of information updates and iterations). The average
active duration 1/α2 of forwarding users of the new piece of
information where users can influence other users to contact
information is shorter. Similarly, the average forwarding
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probability p2 of the initial time in the outbreak period is also
higher than the value in the quasi–steady-state phase, which
conforms to the fact that people are more willing to participate
in the discussion successively when exposed to relevant
information in the short term. In comparison, the value of
average contact rate β21 in the outbreak phase is lower than that
in the quasi–steady-state phase, indicating that the population
who has forwarded information will be larger based on a
relatively larger contact population. β22 and β23 of the initial
time in the outbreak period are higher than those of the initial

time in the quasi–steady-state phase, indicating that continuous
exposure to relevant information in the short term (when the
initial time of the new piece of information is in the outbreak
phase of a posted information) would attract people who had
not participated in the new transmission to forward and spread
the information. All average attractiveness indexes of the initial
time in the quasi–steady-state phase are larger, which indicates
that information that is re-exposed to users after a period of
time will inspire their freshness and make them pay more
attention to the information itself.

Figure 6. The data fitting results of Information B and Information C.

Table 4. Values of some important parameters, estimated for information B.

MaximumMinimumStandard errorEstimated valueParameter

1.0000 × 1080.000081.03045.6458 × 106S 10

4.00000.00000.04271.5757α 1

1.00000.00001.7463 × 10–51.7901 × 10–4β 1

1.00000.00001.5023 × 10–40.0020p 1
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Table 5. Values of important parameters, estimated for information C.

MaximumMinimumStandard errorEstimated valueParameter

1.0000 × 1080.00001.3770 × 1037.4439 × 106S 20

4.00000.00000.09930.9858α 2

1.00000.00000.28290.8994β 21

1.00000.00000.00230.0023β 22

1.00000.00001.2088 × 10–41.0871 × 10–4β 23

2.00000.00000.11320.2468m 21

2.00000.00000.10871.9895m 22

2.00000.00000.26460.5559m 23

1.00000.00001.8597 × 10–42.9516 × 10–4p 2

Data Fitting for the STI DT-SFI Model

Parameter Estimation
To use our model to explore some distinctions of the qualitative
behaviors for prediction, we used the LS method to estimate
the STI DT-SFI model parameters and the initial data of our
model. The vector is set as Θ3 = (p1, β1, α1, p2, β21, β22, β21,
m21, m22, m23, α2, S10), and the corresponding numerical
calculation based on the parameter vectors for C1(t) and C2(t)

are denoted by (k, Θ3) and (k, Θ3), respectively. The
following LS error function was used in our calculation:

where C1k and C2k denote the actual cumulative forwarding
populations of the posted information and the newly posted
information; here, n=1, 2, 3 represents the different phases, and
k=0, 1, 2, ... is the sampling time n=1, 2, 3. We estimated the
parameters of our STI DT-SFI model with the data of
information A and information B.

In the data fitting of the STI DT-SFI model, we used the same
method as for the LTI DT-SFI model to fit the data of
information A and information B. As shown in Figure 7, we
performed data fitting of information A and information B on

the real data in Tables 1 and 2, where the pink star denotes the
actual cumulative number of forwarding users of information
A; the red star denotes the actual cumulative number of
forwarding users of information B; the green line and the blue
line denote the estimated cumulative number of forwarding
users in the early and later period of information A, respectively;
and the black line denotes the estimated cumulative number of
forwarding users of information B. It can be seen that our STI
DT-SFI model achieves accurate estimation.

Table 6 gives some important values of parameter (relevant to
the early period of the outbreak) estimation for information A,
and Table 7 gives some important values of parameter estimation
for the later period data of information A and all data of
information B. We can see in phase 2, when information B was
posted during the outbreak period of information A, the average
exposure rate β21 and β22 are much larger than β1 and β23, which
indicates that users who have been exposed to information A
will contact information B at a greater rate than new susceptible
users. In addition, the unexposure attractiveness index m23 is
the largest among the three attractiveness indexes since the time
interval between two information posts is small, and people
who have not been exposed to relevant information may have
a greater interest in new information; the outbreak of information
B has the strongest appeal to susceptible users.
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Figure 7. The data fitting results of Information A and Information B.

Table 6. Values of some important parameters, estimated for information A.

MaximumMinimumStandard errorEstimated valueParameters

1.0000 × 1070.000028.38415.1682 × 104S 10

4.00000.00000.42143.9986α 1

1.00000.00001.5673 × 10–58.2700 × 10–5β 1

1.00000.00000.15430.9823p 1
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Table 7. Values of important parameters, estimated for information B.

MaximumMinimumStandard errorEstimated valueParameter

1.0000 × 1071.0000 × 105208.46072.1494 × 106S 10

3.500002.50000.13603.4777α 1

3.500001.50000.07061.9159α 1

4.0000 × 10–40.00001.1663 × 10–43.6601 × 10–4β 1

0.00400.00007.4426 × 10–40.0037β 21

1.00000.00000.09320.8184β 22

1.00007.4426 × 10–40.00003.6532 × 10–56.8834 × 10–5β 23

0.20000.00000.01960.0406m 21

0.20000.00000.00930.0109m 22

0.20000.00000.04450.1868m 23

0.02000.00000.00260.0091p 1

0.20000.00000.03460.0788p 2

Results

Influencing Factors Analytics: Information Release
and Dissemination for the LTI DT-SFI Model
To make a qualitative and quantitative analysis of the delay in
transmission, we introduced some additional indexes, shown

in Figure 8, and show how these can be used to characterize the
cross-propagation. We considered different effects of the posted
information on newly posted information when the posted
information has reached a quasi–steady state or is still in its
outbreak period.

Figure 8. Some summative indices of a newly posted information that cross-propagating with an old information.

• The outbreak peak F2max: the maximum of curve F2, which
reflects the peak user values of the newly posted information

• The final size C2S: the stable state of curve C2, which gives
the final size of the total number of users of the newly
posted information

• The outbreak time t2b, the end time t2e, and the duration t2i:
the definition depends on the outbreak threshold F2* set in
advance so that F2(t2b) = F2*=F2(t2e). Here, t2b denotes the
outbreak time of the newly posted information, t2e denotes
the end time, and t2i = t2e–t2b denotes the duration of the

newly posted information transmission. These time indexes
will help us judge the start and end of the newly posted
information transmission.

• The outbreak velocity V2o and the declining velocity V2d:
the definition depends on V2o= (F2max–F2*) / (t2max–t2b) and
Vd= (F2max–F2*) / (t2e–t2max) when F2(t)=F2max and t2max is
definite, which reflects the speed of the outbreak and the
decline of the newly posted information.

To further analyze the different parameters responsible for the
LTI DT-SFI model, we performed an analysis of partial rank
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correlation coefficients [36] to evaluate the sensitivity based on
1000 samples for various input parameters against the threshold
condition. According to the histogram and scatter diagram of

dependence, when the correlation is positive, it means that,
with the increase of the value of the parameter, the
corresponding index value will increase; on the contrary, when
the correlation is negative, the index will decrease as the

parameter decreases. Figures 9-12 give the partial rank
correlation coefficient results and partial rank correlation

coefficient scatterplots with indexes , F2max, C2∞, t2b, t2i, t2max,
V2o, and V2d with nine parameters (β21, β22, β23, p2, α2, m21, m22,
m23, and S20) of the newly posted information in the LTI DT-SFI
model, respectively.

Figure 9. PRCC results and PRCC scatterplots with indexes for different parameters of the newly posted information in the large interval delay in
transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 10. PRCC results and PRCC scatterplots with indexes F2max and C2∞ for different parameters of the newly posted information in the large

interval delay in transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 11. PRCC results and PRCC scatterplots with indexes t2max, t2b, and t2i for different parameters of the newly posted information in the large

interval delay in transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 12. PRCC results and PRCC scatterplots with indexes V2o and V2d for different parameters of the newly posted information in the large interval

delay in transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.

Figure 9 shows the effect of parameters on the public opinion

reproduction ratio of the delay in transmission in the LTI

DT-SFI model. was strongly positively affected by the
average exposure rate β22, the mild exposure attractiveness
index m22, the average exposure rate β23, the unexposure
attractiveness index m23, and the forwarding probability p2, and
strongly negatively affected by the average immune rate α2.
The positive correlation effects of the parameters β21 and m21

were relatively weak. Overall, strategies to increase the
parameters β22, β23, p2, m22, m23, and initial value S20 or to
decrease the α2 can enhance the transmission capability of the
newly posted information.

From Figure 10, the parameters have a similar effect on the
forwarding peak F2max and the cumulative forwarding population
C2∞. The unexposure attractiveness index m23, the forwarding
probability p2, and the initial value S20 of susceptible individuals
have a decisive positive influence on the forwarding peak value
F2max and the final size C2∞ of delayed information propagation.
The effects of the extensive and mild exposure attractiveness
parameters that portray the participation of the population of
the posted information were very weak. The aforementioned
results indicate that the time interval is long between the two
delays in transmission information since the new information
was posted in a quasi–steady state into the propagation; at this

time, most individuals who have been exposed to the posted
information have entered the immune state. In addition, most
individuals will no longer care about the relevant content due
to the possibility of forgetting or leaving the social network
platform. The aforementioned conclusions show that when the
posted information enters the steady state, the effect of the
individuals who have contacted the posted information is not
obvious. Therefore, the information transmission can be
promoted by influencing the number of the new susceptible
population.

Figure 11 shows the effect of parameters on the climax time
t2max, the outbreak time t2b, and the duration t2i of the delay in
transmission. After mastering the influencing factors of t2b and
t2i, the end time of transmission t2e can be calculated. The climax
time t2max, the outbreak time t2b, and the duration t2i are
negatively affected by parameters β23, p2, and m23 in the same
way. In comparison, these parameters have the least impact on
t2b, especially m23. The parameter m22 had a weak negative
correlation effect on each time index, and the parameter α2 was
the main factor to control the duration t2i, which plays a strong
negative correlation effect.

From Figure 12, the unexposure attractiveness index m23 and
the forwarding probability p2 had major positive correlation
effects on the outbreak velocity V2o and the declining velocity
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V2d, and the initial value S20 of susceptible individuals had a
mild positive effect on these two indexes. Moreover, the
parameter α2 had a strong negative effect on the V2o. In addition,
the effects of other parameters on the velocities were not
important. That is to say, the V2o and V2d will increase
accordingly when the parameters m23, p2, and initial value S20

increase. At the same time, the V2o increases with the reduction
of parameter α2. By contrast, the effect of m23 on the velocities
was greater.

Our LTI DT-SFI model concentrates on the influence of the
average exposure rates and attractiveness indexes on the
instantaneous forwarding population F2(t) and the cumulative
forwarding population C2(t) as shown in Figures 13 and 14,
respectively, and the variation of parameters over time
determines the propagation indexes. By comparing and
analyzing the influence of average contact rates and
attractiveness indexes in Figures 11 and 12 with the variation
of one parameter while fixing other parameters, β23 and m23

have a similar overall trend of the effects on the instantaneous
forwarding population F2(t) and the cumulative forwarding
population C2(t) of the new information. With the increase of
the parameters of β23 and m23, the outbreak will accelerate, the
instantaneous number of individuals in the forwarding state can
reach a higher peak, and the final size will be larger. In addition,
the average exposure rate of β22 and the mild exposure
attractiveness index m22 had a weak positive influence on the
final size of the cumulative forwarding quantity and had no
obvious influence on the propagation times and velocities. In
contrast, the average exposure rate β21 and the extensive
exposure attractiveness index m21 had no significant effect on
large interval delay in transmission based on forwarding. All
the aforementioned key parameters had no significant effect on
the outbreak time, climax time, and duration of the long-delayed
cross-information transmission based on forwarding, which was
also consistent with the results of the partial rank correlation
coefficients.

Figure 13. The influence of the average exposure rates on the instantaneous forwarding population F2(t) and the cumulative forwarding population
C2(t) in the large interval delay in transmission susceptible-forwarding-immune model.

Figure 14. The influence of the attractiveness indexes on the instantaneous forwarding population F2(t) and the cumulative forwarding population
C2(t) in the large interval delay in transmission susceptible-forwarding-immune model.

Influencing Factors Analytics: Information Release
and Dissemination for the STI DT-SFI Model
To further analyze the impact of different parameters in the STI
DT-SFI model for the cross-propagation dynamics, we
performed partial rank correlation coefficients to analyze the
relationship between the influence and the range of variation

of parameters on the indexes. Figures 15-18 give the partial
rank correlation coefficient results and partial rank correlation

coefficient scatterplots with indexes , F2max, C2∞, t2b, t2i, t2max,
V2o, and V2d with nine parameters (β21, β22, β23, p2, α2, m21, m22,
m23, and S10) of the newly posted information in the STI DT-SFI
model, respectively.
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Figure 15. PRCC results and PRCC scatterplots with indexes for different parameters of the newly posted information in the short interval delay
in transmission–susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 16. PRCC results and PRCC scatterplots with indexes F2max and C2∞ for different parameters of the newly posted information in the short

interval delay in transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 17. PRCC results and PRCC scatterplots with indexes t2max, t2b, and t2i for different parameters of the newly posted information in the short

interval delay in transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 18. PRCC results and PRCC scatterplots with indexes V2o and V2d for different parameters of the newly posted information in the short interval

delay in transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.

The average exposure rate β23, the unexposure attractiveness
index m23, the forwarding probability p2, and the initial value
S10 were strong contributions to the public opinion reproduction

ratio positively, and the average immune rate α2 had a strong
negative effect on it, as shown in Figure 15. The positive
correlation effects of parameters β21, β22, m21, and m22 were
relatively weak. In general, strategies that can affect the
parameters β23, m23, p2, and the initial value S10 to increase or
the parameter α2 to decrease can increase the initial propagation
capacity of the newly posted information. On the other hand,
we can decrease the parameters β23, m23, p2, and the initial value
S10 to reduce the initial propagation ability of the new
information.

The average contact rate of β21, β22, the forwarding probability
p2, the mild exposure attractiveness index m22, the unexposure
attractiveness index m23, and the initial value S10 of susceptible
individuals had strong positive impacts on the high peak F2max

and the final size C2∞, as shown in Figure 16. In contrast, S10

played a major role, and the impact of β22 and m21 were less
significant. The aforementioend results show that individuals
who have been exposed to but have not forwarded the posted
information are more sensitive to the new information with mild
exposure attractiveness due to the understanding of the former

information. In addition, the average immune rate α2 had a
strong negative effect on the F2max.

Figure 17 indicates that the influence of each parameter on t2max

and t2b were not obvious, and the parameters β23, α2, and the
initial value S10 had negative effects on the duration t2i, and the
β21 had a weak positive effect on it. This means that the average
contact rate at which users in the susceptible state can contact
the second information is the most important factor affecting
the duration t2i of delay in transmission. The smaller the average
contact rate is, the longer the duration of new information
transmission will be within a certain range, slowing down the
development of information transmission.

Figure 18 shows the partial rank correlation coefficients results
of the outbreak velocity V2o and the declining velocity V2d of
the STI DT-SFI model based on forwarding under
multiparameter changes. From the results, the average exposure
rate β21, β23, the forwarding probability p2, the mild exposure
attractiveness index m22, the unexposure attraction index m23,
and the initial value S10 of susceptible individuals make strong
positive contributions on V2o and V2d. The average exposure
rate β22 and the extensive exposure attractiveness index m21 had
no significant effect on the velocities. That is to say, the outbreak
velocity V2o and the declining velocity V2d can be increased
with the increase of the parameters β21, β23, p2, m22, m23, and
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the initial value S10. On the contrary, if the parameters decrease,
the propagation velocities will slow down.

Here, we also took into consideration the influence of the
average exposure rate and attractiveness parameters on the
instantaneous forwarding population F2(t) and the cumulative
forwarding population C2(t) of the STI DT-SFI model as shown
in Figures 19 and 20, respectively. The comparative analysis
shows that the larger the average contact rate and attractiveness
indexes are, the larger the instantaneous forwarding quantity
and the cumulative forwarding quantity are. The final size is
also affected; the average exposure rate of β21, β23, the mild

exposure attractiveness index m22, and the unexposure
attractiveness index m23 are the main influencing factors of the
STI DT-SFI model, and they can play a significant role in the
final size of the newly posted information within a certain range.
So priority must be placed on controlling these parameters. In
addition, the extensive exposure attractiveness index m21 has
only a small magnitude of effects, while the effect of parameter
β22 is significant and has a relatively obvious impact. The impact
of each parameter on the outbreak timing and increasing and
declining velocities is negligible, which is consistent with the
results of the partial rank correlation coefficients.

Figure 19. The influence of the average exposure rates on the instantaneous forwarding population F2(t) and the cumulative forwarding population
C2(t) in the short interval delay in transmission susceptible-forwarding-immune model.

Figure 20. The influence of the attractiveness parameters on the instantaneous forwarding population F2(t) and the cumulative forwarding population
C2(t) in the short interval delay in transmission susceptible-forwarding-immune model.

Discussion

Principal Findings
Figure 21 shows the trend of the cumulative forwarding users
of information B and information C when the newly posted
information is posted during the steady-state period of the posted
information in Tables 2 and 3. The time lag with which the
newly posted information is posted has a significant impact on
the process of public opinion dissemination and the final size
of the cumulative number of forwarding users. If the newly
posted information is posted during the quasi–steady-state period
of opinion propagation, then the earlier the newly posted
information is posted, the earlier the cumulative forwarding
users will peak, though the final size of the cumulative

forwarding users will be close to each other. This, in conjunction
with our parameter sensitivity analysis results, shows that for
the LTI DT-SFI situation, the unexposure attractiveness index
m23 and the average exposure rate β23 are the key elements to
promote the cross-propagation and that, once reaching the
quasi–steady state, the timing of posting the new information
has an insignificant impact on the final size of forwarding users.

In contrast, Figure 22 shows the trend of the cumulative
forwarding users of information A and information B when the
newly posted information is posted during the outbreak period
of the posted information in Tables 1 and 2. The time lag with
which the newly posted information is posted has a noticeable
impact on both the dynamic process of public opinion
dissemination and the final size of the cumulative number of
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forwarding users. If the newly posted information can be posted
during the outbreak period of the old information, then the
earlier the new information is posted, the greater the cumulative
forwarding population and the final size of the cumulative
forwarding users will be. This, combined with our parameter
sensitivity analysis results, shows that, in the STI DT-SFI case,
the mild exposure attractiveness index m22, the average exposure
rates β21 and β23, and the unexposure attractiveness index m23

can all directly influence the interaction between information
posted sequentially to increase the “heat” (popularity) of the
newly posted information.

Our model-based analysis recommends strategies on how
different parameters should be adjusted to achieve the best
information dissemination outcomes. For two pieces of relevant
information separated by a relative long posting lag, strategies
to increase the average exposure rate β23 and the unexposure
attractiveness index m23 are recommendations. These strategies
can be achieved if opinion leaders with a large number of
followers can participate in the information copropagation. On
the contrary, reducing the public’s attention to a new piece of
information can be achieved by efforts in delaying the posting
of the new information or by effectively reducing the potential

correlation between the two pieces of information (reducing
values of the correlation parameters β21, β22, m21, and m22).
Additionally, if our goal is for the final size of the cumulative
forwarding users of the new information to not be impacted by
the relevant information already posted online, the new
information should be posted during the quasi–steady-state
period of the posted information.

For two pieces of information with a short interval between
posting, we recommend developing strategies to alter the
interaction between the information for effectively managing
the information transmission indexes we introduced. If we aim
to make the new information outbreak faster with a large peak
value of forwarding, we should increase the average exposure
rate β21 and mild exposure attractiveness index m22 by
persuading the original post owner to post or forward the
information earlier during the outbreak period of the posted
information, when the posted information has obtained certain
public attention, and increase the relevance and attraction of
the newly posted information to the forwarding users or immune
users of the posted information. Alternatively, we should
persuade some opinion leaders to forward the new information
along with their insights to β23 and m23.

Figure 21. An illustration of a public opinion dissemination process with newly posted information posted with different time lags but during the
quasi–steady-state period of the posted information.

J Med Internet Res 2021 | vol. 23 | iss. 2 | e25734 | p. 26http://www.jmir.org/2021/2/e25734/
(page number not for citation purposes)

Yin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 22. An illustration of a public opinion dissemination process with newly posted information posted with different time lags but during the
quasi–steady-state period of the posted information.

Conclusions
Relevant information is often posted sequentially in
fast-evolving public health events such as the COVID-19
pandemic. Consequently, modeling the impact of delay in
cross-transmission or copropagation is substantial to identifying
the best strategies to communicate key public messages through
social media. In this study, we proposed and examined two
classes of models, the LTI DT-SFI dynamics model and the STI
DT-SFI dynamics model based on the forwarding users in
Weibos, and we parametrized our models using real data related
to the COVID-19 pandemic in the Chinese Sina Microblog. Our
goal is to use these parametrized models to understand the
influence of different time lags in the information posting on
the copropagation of related information in the microblog.

Our model formulation focused on the transmission mechanism
of information in the social network, where a new Weibo may
be posted in different phases—outbreak phase or
quasi–steady-state phase—of some relevant Weibo already
posted. Our goal is to examine the impact of post timing in
relation to the old information, the new information on its peak
value, and the final size of forwarding users. As we have shown,
this impact depends on the correlation of the old and new
information, and on the phase of the old information
transmission when the new information is posted. We hope that
our DT-SFI dynamics models fill in some theoretical gap about
optimizing information posting strategies to maximize
communication efforts to deliver key public health messages
to the public for better outcomes of public health emergency
management.
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