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Abstract

Background: In afast-evolving public health crisis such as the COVID-19 pandemic, multiple pieces of relevant information
can be posted sequentially on asocial mediaplatform. Theinterval between subsequent posting times may have adifferent impact
on the transmission and cross-propagation of the old and new information that results in a different peak value and afina size
of forwarding users of the new information, depending on the content correlation and whether the new information is posted
during the outbreak or quasi—steady-state phase of the old information.

Objective: This study aims to help in designing effective communication strategies to ensure information is delivered to the
maximal number of users.

Methods: We developed and analyzed two classes of susceptible-forwarding-immune information propagation models with
delay in transmission to describe the cross-propagation process of relevant information. A total of 28,661 retweets of typical
information were posted frequently by each opinion leader related to COVID-19 with high influence (data acquisition up to
February 19, 2020). The information was processed into discrete points with a frequency of 10 minutes, and the real data were
fitted by the model numerical simulation. Furthermore, the influence of parameters on information dissemination and the design
of apublishing strategy were analyzed.

Results. The current epidemic outbreak situation, epidemic prevention, and other related authoritative information cannot be
timely and effectively browsed by the public. The ingenious use of information release intervals can effectively enhance the
interaction between information and realize the effective diffusion of information. We parameterized our models using real data
from SinaMicroblog and used the parameterized models to define and evaluate mutual attractivenessindexes, and we used these
indexes and parameter sensitivity analyses to inform optimal strategies for new information to be effectively propagated in the
microblog. The results of the parameter analysis showed that using different attractiveness indexes as the key parameters can
control theinformation transmission with different releaseintervals, so it isconsidered asakey link in the design of aninformation
communication strategy. At the same time, the dynamic process of information was analyzed through index evaluation.

Conclusions: Our model can carry out an accurate numerical simulation of information at different release intervals and achieve
a dynamic evaluation of information transmission by constructing an indicator system so as to provide theoretical support and
strategic suggestions for government decision making. This study optimizes information posting strategies to maximize
communication efforts for delivering key public health messages to the public for better outcomes of public health emergency
management.
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Introduction

In the absence of effective trestment or a vaccine, the success
or failure of mitigating COVID-19 transmission in the
population relies heavily on the effectiveness of social
distancing, self-protection, case detection, quarantine, isolation,
and testing. The effectiveness of these nonpharmaceutical
interventions depends on the active participation and
engagement of residents in the community, which is
substantially influenced by the public opinion. Given the short
disease transmission doubling time, the timing (and hencetime
lags) inthe communication of critical public health information
to the community has a profound impact on the outcome of
public adherence to nonpharmaceutical measures and,
ultimately, on the outcome of outbreak mitigation. Adding to
the challenging of effective communications is the
cross-propagation of relevant, and sometimes inconsistent,
pieces of information that enter social media at different time
points. This calls for a strategy of optimizing the timing of
posting key information in social media during a fast-evolving
pandemic.

Figure 1 shows the cross-propagation of three pieces of related
information about COVID-19: titled as “Just want a regular
20200202," “Announcement of donation acceptance by Wuhan
JinYinTan hospital,” and “Three cases of community
transmission were reported in Shenzhen for the first time.”
These pieces of information were posted in Sina Microblog,
with different beginning and ending time points marked in the
(horizontal) timeline. Almost immediately after reading
information A, some users forwarded information B, so both
pieces of information shared similar life cycle but with
beginning and ending time points close to each other. There
were 12,283 information A users, anong which 742 (6.04%)
forwarded information B. Eventually, 7161 of users forwarded
information B, and those who simultaneously forwarded
information A accounted for 10.36% (n=7161). Information C
wasthen released, and users of information B started to forward
information C. At the end, among 7161 users of information B,
1158 (16.17%) aso forwarded information C, accounting for
10.26% (n=11,289) of the usersfor C.

Figure 1. Cross-propagation of three relevant pieces of information related to the COVID-19 pandemic, posted in sequence on Sina Microblog.

L X" 2
il

[ ]
o Re
Microblog B @
m 1
Original post
owner
Start —

[ ]
.. ° T
N off |i|12283
[ ]
T r o 742
End I'(G.OA%]
S = ® @
[ ]
.g.ﬁ. F I.’I' 7161
I" piq‘m_ W 10.36%
¥ " o 1158
End (16.17%)
®
g
.
End
End  Start me———p> End

Start ) End

In general, relevant information, when posted with an
appropriate time lag, can attract the interest of socia media
users in public hot events by increasing the efficiency of
dissemination of agroup of information cross-propagated. Itis
an important topic of research; the main objective of our study
is to understand the information cross-propagation dynamics
to inform optimal strategies of posting relevant information in
an appropriate time sequence to ensure their maximum
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interaction for effective copromotion during a public health
emergency situation.

To the best of our knowledge, no appropriate model framework
has been developed and analyzed to examine the impact of
information cross-propagation dynamics for agroup of relevant
information that is posted subsequently. Here, wetry to fill this
gap by proposing a suscepti bl e-forwarding-immune model with
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time-delayed posting and transmission. We developed and
illustrated thisframework, and parametrized our model by using
theforwarding quantity that represents public attention to some
popular opinions on the COVID-19 pandemic. Our focusison
the dynamic interactions among severa pieces of information
posted sequentially, and we aim to examine the impact of time
lags between different posting time points on the evol ution and
steady states of cross-propagation.

In the field of information propagation dynamics, there is a
strong similarity between the propagation of rumors and a
pathogen’s spread in the population [1]. Many studies have used
epidemic model sto examine rumor propagation in the hope that
the negative influence of rumors can be eliminated or at least
minimized. For example, the
susceptible-infected-exposed-recovered (SIER) modd [2-5],
susceptible-infected model [6-9],
susceptible-infected-susceptible  [10,11] model, and
susceptible-infected-recovered (SIR) model [12-14] have all
been developed and recognized as classical propagation
dynamics models.

The development of the internet and the enrichment of social
mediamandate further extensions of traditional modelsto reflect
novel transmission mechanisms and to take advantage of data
from multiple platforms. Gu and Cai [15] and Gu et a [16]
proposed the forget-remember mechanism to study the spreading
process in a 2-state model. Zhao et a [17] combined the
forgetting mechanism and the SIR model to represent the rumor
spreading process in an online social blogging platform
LiveJournal. In 2014, Zhao et a [18] integrated the refutation
mechanism in homogeneous social networksinto the SIR model
and analyzed the dynamic process of rumor propagation.
Considering thethree influencing factors of enterprises affected
by rumors, pinion leaders, and a microblog platform, an SIR
model based on browsing behavior was constructed to explain
how rumors spread among followers under the influence of
different rumor refuting measures [19]. Other features of the
new media were further incorporated by Zhao et a [20].
Borge-Holthoefer et a [21] considered the case when spreaders
were not always active and an ignorant was not interested in
spreading the rumor, and then separately introduced these ideas
into two different models. They concluded that these models
provided higher adhesion to real data than classical rumor
spreading models. In 2020, Yin et a [22] considered the user’s
behavior of re-entering new topics and proposed a
multiple-information susceptibl e-discussing-immune model to
investigate COV I D-19-relevant information propagation in the
Chinese SinaMicroblog. Ding et al [23] proposed an improved
SIR model, which used differential equations to study the rule
of information transmission on media platforms and predicted
microblog information accurately. Wang et al [24] proposed a
modeling method that considers Weibo propagation behavior
based on the susceptible-infected-susceptible model, so the
forwarding trend in the future can be predicted. Zhang et al [25]
focused on the impact of mediatransmission and interpersonal
rel ationships on information propagation and then proposed the
media and interpersonal relationship
susceptible-infected-exposed-recovered model. Zhao et al [26]
developed a new rumor spreading model called the
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susceptible-infected-hibernator-removed model, introducing a
new kind of people-hibernators to reduce the maximum rumor
influence. Woo et a [27] proposed an event-driven SIR model
based on the impact of news releases on social mediato reflect
the impact of specific events on opinion diffusion. Yao et a
[28] concentrated on examining the influence of different
interactions among information on the spread of public opinion
and modeling based on the SIR model, which verified the
otherness of public opinion under a distinct information
environment. For other studiesrelevant to our paper, see[29-32].
In particular, Tanaka et a [32] added a new module to the
traditional model by using two data sets from the Japanese Mixi
and Facebook rather than a single data set.

Many studies on cross-transmission in disease diffusion are
highly significant to study the cross-propagation of information.
Feng et a [33] established a mathematical model that
incorporated the virus mutation dynamics in the transmission
of the Chikungunya virus among mosquitoes and humans.
However, theimportant phenomenon of timelag in posting and
cross-propagation of relevant information for information
dissemination in real social media networks has not been
adequately addressed in these earlier studies. We noted that Zan
[34] studied the double rumors spreading with different launch
times, in which the new rumor was launched with a certain
delay but also could interact with the old rumor. Zan [34]
proposed two classes of double-rumors spreading models: a
double-susceptible-infected-recovered model, where it was
assumed that the rumor was disseminated by direct contacts of
infective nodes with others, and a comprehensive
double-susceptible-infected-recovered model, with which the
authors studied the whole spread situation of al rumorswith a
focus on determining how many peopledid not spread all rumors
in the entire period or how many were spreading or had spread
at least one of the rumors.

In comparison with the af orementioned studies, here we consider
the phenomenon where at different propagation stages of apiece
of information posted in social mediaother pieces of information
are posted, and their relevance in contexts and posting time
sequence combined generate an outbreak for each piece of
information and, moreimportantly, cross-propagation in which
users of one piece of information forward other pieces of
information they are exposed to later. We devel oped two classes
of dynamic propagation models that focus on the single

information transmission and multi-information
cross-propagation  patterns  during  explosive  and
Quasi—steady-state periods of the information posted

sequentially. We aim to examine emphatically the influence of
different participating groups of posted information on the
spread of the information from the participating groups. As
populations who have forwarded, whether exposed or not
exposed to relevant posted information, are attracted to a new
piece of information differently, by introducing and analyzing
the impact of attractiveness indexes on relevant information
propagation and examining the significant factors of delaying
in posting relevant information propagation, weinform strategies
for sequentially posting relevant information to achieve effective
communication of key public opinions. We will illustrate this
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with data from public opinions about COVID-19 pandemic
management.

Methods

Large Delay in Transmission
Susceptible-Forwar ding-lmmune Dynamics M odel

The structure of our proposed large interval delay in
transmission susceptible-forwarding-immune (LTI DT-SFI)

Yineta

dynamics model is shown in Figure 2. There are two phases
involved. In phase 1, a piece of stand-alone information
(information 1) is spreading; and in phase 2, another piece of
information  (information 2) is posted during the
guasi—steady-state period of the posted information.

Figure2. A schematic illustration of the information cross-spreading, where a new piece of information is posted during the quasi steady-state period

of an aready posted information.

Phase 1: Post a Piece of Stand-alone I nformation

The propagation dynamics during phase 1 for one piece of
posted information is modeled based on the traditional
susceptible-forwarding-immune [35] model, with a novel
stratification of the immune population. Namely, there will be
two classes of immune populations (as far as information 1 is
concerned): those who have forwarded the posted information
but are no longer in the active period of forwarding this posted
information (I;,) and those who have been exposed to the
information but are not interested in forwarding it (I,.). This
distinction of immunity isimportant, asindividualsin these two
distinct compartments will have different levels of interest in
other relevant information that will be posted later. This will
allow us to introduce different measures of attractiveness to
new relevant information.

So, inour model, we stratify the population (N,) into four states:
the susceptible state of the posted information (S)), the
forwarding state of the posted information (F,), the inactive
immune state (1,,), and the direct immune state (1,_). A
susceptible user can be exposed to the posted information with

http://www.jmir.org/2021/2/e25734/
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an average exposure rate 3; and will forward the information
with the forwarding probability p;. The forwarding users can
become inactive immune users with an average rate ;. So a
user may have a unique state, with S;(t), F(t), 1,1.(t), and 1,_(t)
denoting the number of users in the susceptible, forwarding,
inactive, and direct immune state, respectively. We obtain the
following delay in transmission susceptible-forwarding-immune
(DT-SFI) dynamics model in phase 1:

dSy(t)/dt = =15, F,
dF(t)/dt = p 515, F) — e Fy
dly (t)/dt = ayF,
dl_(t)/dt = (1 —p)B.5:F

The state transition of different populations in phase 1 can be
interpreted as follows: an active forwarding user will contact
an average number of (;N; users per unit time, and the
probability of a user being a susceptible user of the posted
informationis S;(t)/N,, so an active forwarding user will contact
B1Si(t) susceptible users. There are F4(t) active forwarding users
of information 1 in total at timet, so p;3,S;(t)F4(t) susceptible
users will choose to forward the information and become new

(1)

JMed Internet Res 2021 | vol. 23 | iss. 2| €25734 | p. 4
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

forwarding users, and (1 — p;) B1S(t)F4(t) will not. As time
goesby, a1 F(t) will goto theimmune state from theforwarding

period when they do not influence other users as far as
information 1 is concerned.

For data fitting purposes, we noted that the Sina Microblog
providesimportant dataabout any piece of information relevant
to COVID-19, the number of cumulative forwarding quantity,
given by:

C(t) = [ piBiSiFrdt  (2)

Phase 2: Post New I nformation During the
Quasi—Steady-state Period of the Posted | nformation

Now we consider that a piece of new information is posted at
time t, when the posted information is aready in the

quasi—steady state. We introduce the following indexes:

Textbox 1. Parameter definitions for large delay model.

Yineta

- An extensive exposure attractiveness index: for the
individuals in the immune state who have forwarded the
posted information but are no longer in their active
forwarding period. These individuals are more susceptible
to the new yet relevant information, as they had interest in
the posted information.

- Amild exposure attractivenessindex: for the directimmune
individuals. These individuals have had exposure to the
posted information but had shown little interest in the
information.

- An unexposure attractiveness index: for those who were
never exposed to the first posted information

Accordingly, we introduce three states of the population (N,)
for the newly posted information: the susceptible state (S;), the
forwarding state (F,), and theimmune state (1,). We summarize
the notations in Textbox 1.

Attractiveness parameters, stratified by the exposureto old infor mation

e Impy: The extensive exposure attractiveness index that an inactive user of state |1, becomes aforwarding user of state F».
e Impy: The mild exposure attractiveness index that a direct immune user of state |,_ becomes aforwarding user of state F».

e Impg: The unexposure attractiveness index that a new susceptible user of state S, becomes a forwarding user of state F».

Transmission parameter s associated with the different attractiveness

o [Bo1: The average exposure rate that the inactive users of the old information can contact with the newly posted information.

o 22 The average exposure rate that the direct immune users of the old information can contact with the newly posted information.
o o3 The average exposure rate that the new susceptible users can contact with the newly posted information.

e po: The probability that an exposed user will forward the newly posted information.

« 9 The average rate that a user in the forwarding state of newly posted information becomes inactive to forwarding, where 1/a is the average
duration aforwarding user remains active in forwarding newly posted information.

Each user may have aunique state, with [, (t), 1,_(t), Sy(t), Fx(t),
and 1,(t) denoting the number of users in the susceptible,
forwarding, and immune state, respectively. We obtain the
following LTI DT-SFI dynamics model in phase 2:

dS;(t)/dt = —B235:F

dls (£)/dt = —foy 1 F

dl-(£)/dt = —Pay],-F; @

dF,(£)/dt = moyp2farlys Fy + Maspsforly-Fs + MospaBasSaFs — asFy

dly()/dt = (1 —my,p3)Bay i Fy + (1 = maap2) Brali=Fy 4 (1 = My3pa)BaSaFy + a3 Fy
The mass action in phase 2 can be interpreted as follows: an
activeforwarding user will contact an average number of 1N,
inactive immune users of the posted information per unit time,
and the probability of a user being an inactive immune user is
I,+(t)/N,, so an active forwarding user will contact Byql4.(t)
inactive immune users, among which myp,f35111. () F5(t) will
choose to forward the new information and (1 -
My1P5)Boql 1.+ (D) Fo(t) Will not, where F,(t) is the number of new
activeforwarding users at timet; an active forwarding user will
contact an average number of 3,,N, direct immune users of the
posted information per unit time, and the probability of a user
being adirect immune user is|,_(t)/N,, so an active forwarding

user will contact B,,l4_(t) direct immune users, among which

http://www.jmir.org/2021/2/e25734/

MyoP,0,,1 1 (t)F(t) will choose to forward the new information
and (1 — my,yP,)Bool () Fo(t) will not, where F,(t) isthe number

of new active forwarding users at time t; an active forwarding
user will contact an average number of 5N, susceptible users

of the newly posted information per unit time, and the
probability of a user being a susceptible user is Sy(t)/N,, so an
active forwarding user will contact 3,3S,(t) susceptible users,
among Which mysp,B.3Sy(t)F4(t) will chooseto forward the new
information and (1 — mMygP,)BosS(H)F4(t) will not, where F(t)
is the number of new active forwarding users at timet.

The forwarding quantity of the newly posted information is

given by:
E

The Public Opinion Reproduction Ratio

Since the newly posted Weibo starts at different times and
develops differently under the influence of prior information,
we defined the information reproduction ratio as:
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This is the total number of information 2 users generated by
introducing a typical information 2 user, at time T after
information 1 was posted, during their entire period of active
forwarding. The initial population for information 2 has been
stratified by the exposure of the entire population to information

1 during the time interval [0, T]. The relative size of %o to the
unity determines if information 2 can generate an information

outbreak; since 2 (0) = (Myup,Baily + o MyPoBoly ¢ +
MysPaB23S — ) F, (0), we concluded that 2 (0)>0if Ros1.

Yineta

Short Delay in Transmission
Susceptible-Forwar ding-lmmune Dynamics M odel

Our comprehensive short interval delay in transmission
susceptible-forwarding-immune (STI DT-SFI) dynamics model
based on the forwarding quantity is shown in Figure 3. In this
model, we include two phases. In phase 1, a stand-alone piece
of information (information 1) is spreading, corresponding to
phase 1inthe LTI DT-SFI model. In phase 2, a piece of newly
posted information (information 2) is posted at t, during an
outbreak period of the posted information. Here, we also divide
the population into three groups: S population (S), F population
(F4, Fy), and | population (14, 15, 1,). In particular, we think of
the susceptible state of both the posted information and the new
information asawhole (). t; isthe post time of the newly posted
information.

Figure 3. A schematic diagram to illustrate information spreading, when the post time of the newly posted information is during the outbreak period

of the posted information.

A T T T A A A T O G e A

(1-m21p) o1

(1-pJ) A

I
(1)

Phase 1: Post Stand-alone | nformation

The model is consistent with that of phase 1 of the LTI DT-SFI
model.

Phase 2: Posting New | nformation During the Outbreak
Period of the Posted I nformation

Considering that the new information is posted during the
outbreak period of the old information, we developed our phase
2 model to describe the concurrent dynamic process of the two
related pieces of information. We considered the difference
between the population in active forwarding state or theimmune
state out of the active period and the population in the direct
immune state of the first (old) piece of information. Here, we
set the following indexes:

« An extensive exposure attractiveness index: for the
individuals in the forwarding state, who have forwarded

http://www.jmir.org/2021/2/e25734/
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the posted information but are till in their active forwarding
period, and the individuals in the immune state, who have
forwarded the old information but are no longer in their
active forwarding period, to indicate that this population
will be attracted by the new information dueto the relevance
of the two pieces of information

«  Amild exposure attractivenessindex: for the directimmune
population to portray that the population will be attracted
due to amoderate contact

« An unexposure attractiveness index: for the integrated
susceptible population to describe that the population will
be attracted when they have never read the related
information

Assuming that the number of users (N3) who can contact the
information in the process of information propagation on Sina
Microblog remains unchanged, we introduced three states of
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the population of the newly posted information: the susceptible

state (S;) that includes the users who can be exposed to the old
information and the new information, the forwarding state of

Textbox 2. Parameters definitions for short delay model.

Yineta

the new information (F,), and the immune state (l,). The
parameters are shown in Textbox 2.

Attractiveness parameters, stratified by the exposureto old infor mation
«  Impy: The extensive exposure attractiveness index that an inactive user of state |1, becomes aforwarding user of state F».
e Impy: The mild exposure attractiveness index that a direct immune user of state |1_ becomes a forwarding user of state F».

«  Impg: The unexposure attractiveness index that a new susceptible user of state S, becomes a forwarding user of state F».

Transmission parameter s associated with the different attractiveness

o B1: The average exposure rate that the susceptible users can contact the first information.

«  [o1: The average exposure rate that the inactive users of the old information can contact the newly posted information.

o P22 The average exposure rate that the direct immune users of the old information can contact the newly posted information.
e o3 The average exposure rate that the new susceptible users can contact the newly posted information.

e pq: The probability that the susceptible users will forward the first information.

e po: The probability that the exposed users will forward the newly posted information.

« a9 The average rate that a user in the forwarding state of newly posted information becomes inactive to forwarding, where 1/a is the average
duration aforwarding user remains active in forwarding newly posted information.

Each user may have aunique state, with S(t), F4(t), 11.(t), 11_(t),
F,(t), and 1,(t) denoting the number of usersin the susceptible,

forwarding, and immune state when t>0, respectively. We obtain
the following STI DT-SFI dynamics model in phase 2:

dS,(6)/dt = ~B.51Fs — BaS:F
AR ()/dt = piBLSiF, ~ fauFaFs — asFy
dl (©)/dt = ~Baylyy s + aFy ;
dL,_(5)/dt = (1 = p)B,S,F, = Bogl,_F, ©
APy (t)/dt = myypafoi FiFy + Maypafalis Fa + MoapaBoali-Fo + Mg fasSiFa — azFz
dL(t)/dt = (1 — mqyp2) B2y FiFy + (1 — Moy p2)Bas i+ Fy + (1 — Mapp2)Bonh - Fy

+(1 — Magpy)PagSiFy + azFy

The mass action in phase 2 can be interpreted as follows: an
active forwarding user will contact an average number of 35N

inactive immune users and forwarding users of posted
information per unit time, and the probability of a user being
aninactiveimmune user and aforwarding user arel,,(t)/N; and

F,(t)/N5, respectively, so an active forwarding user will contact
Boql44(t) inactive immune users and [3,,F4(t) forwarding users,
among which my; B4l 1. ()F2(t) and mypB21F4(F(t) will
choose to forward the new information, however, (1 —
M1 P2)Bol 1. () F2(t) and (1 — myyp2)Basl 1 (H)F(t) will not, where
F,(t) is the number of new active forwarding users at time t.

Here, theindividualsin theforwarding state and theindividuals
in the immune state have the same familiarity with the topic
content who have forwarded information 1; an activeforwarding
user will contact an average number of (3,,N5 direct immune

users of posted information per unit time, and the probability
of a user being a direct immune user is I;_(t)/N, so an active
forwarding user will contact (3,,1,_(t) direct immune users,
among which my,p,B.l 1 (t)F4(t) will chooseto forward the new
information and (1 — MyyP,)Bool 1 (Y)Fo(t) will not, where F(t)
isthe number of new activeforwarding usersat timet; an active
forwarding user will contact an average number of (3N

susceptible users, and the probability of a user being a

http://www.jmir.org/2021/2/e25734/

susceptible user is Sy(t)/Ng, so an active forwarding user will
contact [3,3S(t) susceptible users, among which
My3PoB3S (D) F5(t) will choose to forward the new information
and (1 —my3p,)BrsSi(H)Fo(t) will not, where F,(t) isthe number
of new active forwarding users at timet.

The forwarding quantity of the newly posted information is

given by:
E

The Public Opinion Reproduction Ratio
Considering the initial condition in phase 2, we can obtain the

following public opinion reproduction ratio %o, The new
information entered at time T during an outbreak period of the

posted information, and B (0) = (M PoB21Far + My PoBoily + ¢
+ MyPoBool 1 — ¢ + MygPaBasSic — aR)F,(0). The population will

never take off if 2 (0) = (MpyPBoFrc + MaPoBaaly + 1 +
MpoPoBosl 1 — ¢ + My3PoPasS — d2)F,(0)<0 due to the decrease
of Syq;. It istherefore natura to introduce the following as the

ST DT-SFI reproduction ratio:

R = My PaBauFirtMay PaBaslyy 1+ MaaPaBaaly st MaaPsBasfar
o
L]

(8

In the same way, the Ro of the STI DT-SFI model denotes the
comprehensive public opinion generated by the newly posted
Weibo starting at the outbreak period of the posted information.
When the reproduction ratio <1, it means that the new public
opinionwill decline. When the reproduction ratio >1, it indicates
that the new public opinion will initially grow exponentialy.
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Statistical Analysis

Data Description

Since the COVID-19 outbreak in China, intensive information
that were clearly relevant to each other have been frequently
posted. Figure 4 showsthetotal forwarding quantities of Weibos
during each 1-hour time frame on January 25, 2020, and January
26, 2020 (data acquisition up to February 19, 2020), for the top
10 opinion leaders of this outbreak event in the Chinese Sina
Microblog. Asillustrated, those pieces of information with high
influence were posted frequently by each opinion leader. At the
same time, there was a strong correlation among a series of
Weibos posted by these opinion |eaders during certain periods.
Of al the data shown in Figure 4, Peopl€e's Daily issued five
Weibos in 1 hour from 10 PM to 11 PM on January 25, and
they were forwarded by a total of more than 300,000 users.
Therefore, the frequent release of relevant information by
origina post owners was a common phenomenon in the
COVID-19 information propagation, and understanding its
effectivenessis important.

Figure 5 shows the trend of cumulative forwarding users for
thethree pieces of informationin Tables 1-3. It showsthat when
information A broke out, information B was posted almost

Yineta

immediately. Compared with the information, the outbreak
period of information B was shorter and the trend was flatter.
Information C wasreleased during the quasi—steady-state period
of information B. In comparison with this information, the
outbreak period of information C lasted longer; meanwhile, the
cumulative forwarding quantity was also larger.

Sequentially releasing two related pieces of information by the
same original post owners within the same COVID-19 theme
was a common phenomenon. Importantly, different entering
times of new information during the spreading process of an
old (previously posted) information exhibited different
promoting effects on the cross-propagation and cross-promotion
of relevant public opinions. Here we focus on users who have
been exposed to one posted information that may have a special
interest in, and hence are susceptible to, new and relevant
information. This represents a remarkable difference from the
spread of rumors and other traditional public hot events. Our
information cross-propagation DT-SFI models, including the
STI DT-SFI dynamics model and the LTI DT-SFI dynamics
model, were devel oped to take into consideration the situations
when the relevant information is posted during the outbreak
period or during the quasi—steady-state period of the previously
posted (old) information.

Figure 4. A bubble chart of forwarding quantity of public opinions on COVID-19 information by top ten opinion leaders in Weibos, during an early

period of COVID-19 outbreak in China.
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Figure5. Cumulative forwarding quantity of three pieces of information.
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Table 1. Cumulative forwarding quantity of information A posted at 8:41 AM on February 2, 2020.

Time Information A forwarding quantity, n
O min 47
10 min 597
20min 940
30 min 1208
40 min 1458
50 min 1691
60 min 1937
70min 2182
80 min 2477
90 min 2952
100 min 3461
110 min 3917
2h 4390
3h 6366
4h 7501
5h 8281
6h 8846
7h 9293
8h 9638
9h 9954
10h 10,199
11h 10,435
12h 10,795
13h 11,138
14h 11,459
15h 11,812
16h 12,013
17h 12,088
18h 12,109
19h 12,119
20h 12,128
21h 12,136
22h 12,140
23h 12,146
24 h 12,157
25h 12,171
26h 12,184
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Table 2. Cumulative forwarding quantity of information B posted at 10:41 AM on February 2, 2020.

Time (hours) Information B forwarding quantity, n
2 15

3 1281
4 2615
5 4013
6 4817
7 5322
8 5685
9 5932
10 6052
11 6152
12 6264
13 6317
14 6380
15 6401
16 6423
17 6434
18 6447
19 6454
20 6455
21 6456
22 6458
23 6460
24 6461
25 6465
26 6471
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Table 3. Cumulative forwarding quantity of information C posted at 5:51 PM on February 2, 2020.

Time (hours)

Information C forwarding quantity, n

9 20
10 1180
1 4244
12 6235
13 7595
14 8572
15 9103
16 9381
17 9569
18 9642
19 9680
20 9700
21 9736
22 9764
23 9800
24 9864
25 9943
26 10,006

Data Fitting for the LTI DT-SFI Model

Parameter Estimation

To fit our model with real data from the Sina Microblog, we
used the least squares (L S) method to estimate the LTI DT-SFI
model parameters and theinitial data. In phase 1, the parameter
vector is set as ©; = (pq, By, 01, Syp), and the corresponding
numerical calculation based on the parameter vector for C,(t)

isdenoted by fe, (k, ®,). Thefollow LS error function was used

in our calculation:
E

where Cy, denotesthe actual cumulative forwarding populations
of the posted information. Similarly, in phase 2, the vector is
set as Oy = (Bar, Bazs Boz, Moy, My, Mg, Po, Op, Sy), and the
corresponding numerical calculation based on the parameter
vector for C,(t) isdenoted by fes (k, ©,). Thefollowing LSerror
function was used in our calculation:

LS = X Ife,(k,©;) — C2|* (10)

where C,, denotesthe actual cumulative forwarding populations
of the newly posted information. Here, n=1, 2 ... represents the
different phases, and k=0, 1, 2, ... isthe sampling time n=1, 2,
3. We estimated the parameters of our LTI DT-S-I model with
the data of information B and information C.

Figure 6 reports our data fitting results for information B and
information C on the real data given in Tables 2 and 3, where

http://www.jmir.org/2021/2/e25734/

theblue star denotesthe actual cumulative number of forwarding
usersof information B; thered star denotesthe actual cumulative
number of forwarding users of information C; and the green
line and the black line denote the estimated cumul ative number
of forwarding users of information B and information C,
respectively.

Tables 4 and 5 give estimated values of important parameters
for information B and information C, respectively. We can see
in phase 2, when information C was posted during the
quasi—steady-state period of information B, the average exposure
rate 3,; was the largest, indicating that an inactive user of the
posted information B was more susceptible to the newly posted
information C; the average exposure rate 3,3 was small,
indicating that a susceptible user of the newly posted information
C contacted the information at alower rate. In addition, among
the three attractiveness indexes, the index m,, is the largest,
which indicates that information C had the strongest appeal to
a direct immune user of information B and has the least
attractiveness to an inactive user of the posted information B.

By comparison, thereis a difference between theinitial time of
a new piece of information at the outbreak phase and at the
guasi—steady-state phase of the posted information. When the
initial time of new information is in the outbreak phase of the
posted information, the value of the average immunerate a, is
generally higher than the value in the quasi—steady-state phase,
which is due to the rapid outbreak of information (a large
amount of information updates and iterations). The average
active duration L/a, of forwarding users of the new piece of
information where users can influence other users to contact
information is shorter. Similarly, the average forwarding
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probability p, of the initial time in the outbreak period is also
higher than the value in the quasi—steady-state phase, which
conforms to the fact that people are more willing to participate
in the discussion successively when exposed to relevant
information in the short term. In comparison, the value of
average contact rate 3, in the outbreak phaseislower than that
in the quasi—steady-state phase, indicating that the population
who has forwarded information will be larger based on a
relatively larger contact population. 3,, and (3,53 of the initial
time in the outbreak period are higher than those of the initial

Figure 6. The datafitting results of Information B and Information C.
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timein the quasi—steady-state phase, indicating that continuous
exposure to relevant information in the short term (when the
initial time of the new piece of information is in the outbreak
phase of a posted information) would attract people who had
not participated in the new transmission to forward and spread
theinformation. All average attractivenessindexes of theinitial
timein the quasi—steady-state phase are larger, which indicates
that information that is re-exposed to users after a period of
time will inspire their freshness and make them pay more
attention to the information itself.
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Table 4. Values of some important parameters, estimated for information B.
Parameter Estimated value Standard error Minimum Maximum
S10 5.6458 x 10° 81.0304 0.0000 1.0000 x 10°
aq 1.5757 0.0427 0.0000 4.0000
B1 1.7901 x 107 1.7463 x 107° 0.0000 1.0000
p1 0.0020 15023 x 107 0.0000 1.0000
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Table 5. Values of important parameters, estimated for information C.
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Parameter Estimated value Standard error Minimum Maximum
S20 7.4439 x 10° 1.3770 x 10° 0.0000 1.0000 x 108
o5 0.9858 0.0993 0.0000 4.0000

B oy 0.8994 0.2829 0.0000 1.0000

B 0.0023 0.0023 0.0000 1.0000

B2 1.0871x 1074 1.2088 x 1074 0.0000 1.0000

Moy 0.2468 0.1132 0.0000 2.0000

Mo 1.9895 0.1087 0.0000 2.0000

M3 0.5559 0.2646 0.0000 2.0000

P2 29516 x 107 1.8597 x 107 0.0000 1.0000

Data Fitting for the STI DT-SFI Model

Parameter Estimation

To use our model to explore some distinctions of the qualitative
behaviors for prediction, we used the LS method to estimate
the STI DT-SFI model parameters and the initial data of our
model. The vector is set as ©; = (py, B1, 01, P2,y Bo1s Bozs Bors
Myy, My, My, O, S), and the corresponding numerical
calculation based on the parameter vectors for Cy(t) and C,(t)

are denoted by "o (k, @) and 7% (k, ©s), respectively. The
following LS error function was used in our calculation:

LS = I o|fe, (K, 05) — Ce|” + ZToolfe, (K 03) — Cx|” (1)

where C;, and C,, denote the actual cumulative forwarding
populations of the posted information and the newly posted
information; here, n=1, 2, 3 representsthe different phases, and
k=0, 1, 2, ... isthe sampling time n=1, 2, 3. We estimated the
parameters of our STI DT-SFI model with the data of
information A and information B.

In the data fitting of the STI DT-SFI model, we used the same
method as for the LTI DT-SFI model to fit the data of
information A and information B. As shown in Figure 7, we
performed data fitting of information A and information B on

http://www.jmir.org/2021/2/e25734/

thereal datain Tables 1 and 2, where the pink star denotes the
actual cumulative number of forwarding users of information
A; the red star denotes the actua cumulative number of
forwarding users of information B; the green line and the blue
line denote the estimated cumulative number of forwarding
usersintheearly and later period of information A, respectively;
and the black line denotes the estimated cumul ative number of
forwarding users of information B. It can be seen that our ST
DT-SFI model achieves accurate estimation.

Table 6 gives some important values of parameter (relevant to
the early period of the outbreak) estimation for information A,
and Table 7 gives someimportant values of parameter estimation
for the later period data of information A and all data of
information B. We can seein phase 2, when information B was
posted during the outbreak period of information A, the average
exposurerate 3,4 and 3,, are much larger than 3, and 3,3, which
indicates that users who have been exposed to information A
will contact information B at agreater rate than new susceptible
users. In addition, the unexposure attractiveness index mys is
thelargest among the three attractivenessindexes sincethe time
interval between two information posts is small, and people
who have not been exposed to relevant information may have
agreater interest in new information; the outbreak of information
B has the strongest appeal to susceptible users.
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Figure 7. The datafitting results of Information A and Information B.

Table 6. Values of some important parameters, estimated for information A.

Parameters Estimated value Standard error Minimum Maximum

S10 5.1682 x 10° 28.3841 0.0000 1.0000 x 10’

o 3.9986 0.4214 0.0000 4.0000

B1 8.2700 x 107° 15673 x 107° 0.0000 1.0000

p1 0.9823 0.1543 0.0000 1.0000
hittp://www.jmir.org/2021/2/e25734/ JMed Internet Res 2021 | vol. 23 | iss. 2 | e25734 | p. 14
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Table 7. Values of important parameters, estimated for information B.

Yineta

Parameter Estimated value Standard error Minimum Maximum
S10 2.1494 x 10° 208.4607 1.0000 x 10° 1.0000 x 10’
o 34777 0.1360 2.5000 3.50000
o 1.9159 0.0706 15000 3.50000
P1 3.6601 x 107 1.1663 x 107 0.0000 4,0000 x 1074
B 0.0037 7 4026 x 10~ 0.0000 0.0040
B 0.8184 0.0932 0.0000 1.0000
P23 6.8834 x 107° 3.6532 x 10 0.0000 1.00007.4426 x 1074
Moy 0.0406 0.0196 0.0000 0.2000
Moy 0.0109 0.0093 0.0000 0.2000
Mg 0.1868 0.0445 0.0000 0.2000
p1 0.0091 0.0026 0.0000 0.0200
P 0.0788 0.0346 0.0000 0.2000
Results inFigure8, anql show how these can be used to characterize the
cross-propagation. We considered different effects of the posted
Influencing Factors Analytics: Information Release ~ !"formation on newly posted information when the posted

and

Dissemination for the LTI DT-SFI M odel

To make a qualitative and quantitative analysis of the delay in
transmission, we introduced some additional indexes, shown

information has reached a quasi—steady state or is till in its
outbreak period.

Figure 8. Some summative indices of a newly posted information that cross-propagating with an old information.
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reflectsthe peak user values of the newly posted information
Thefinal size C,g the stable state of curve C,, which gives

the final size of the total number of users of the newly
posted information

The outbreak timet,,, the end time't,,, and the duration ty;:
the definition depends on the outbreak threshold F,* setin
advance so that F,(t,,) = F,* =F,(t,.). Here, t,, denotes the
outbreak time of the newly posted information, t,, denotes
the end time, and t,; = t,t,, denotes the duration of the
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newly posted information transmission. Thesetimeindexes
will help us judge the start and end of the newly posted
information transmission.

The outbreak velocity V,, and the declining velocity Vo
the definition depends on Vo= (Fomac2*) / (tmax—top) @d
Vd: (FZmax_FZ*) / (tZe_thax) when Fz(t):FZmax and t2ma>< is
definite, which reflects the speed of the outbreak and the
decline of the newly posted information.

urther analyze the different parameters responsible for the
DT-SFI model, we performed an analysis of partial rank

JMed Internet Res 2021 | vol. 23 | iss. 2 | €25734 | p. 15
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

correlation coefficients [36] to evaluate the sensitivity based on
1000 samplesfor variousinput parameters against the threshold
condition. According to the histogram and scatter diagram of

=1 dependence, when the correlation is positive, it means that,
with the increase of the vaue of the parameter, the
corresponding index value will increase; on the contrary, when
the correlation is negative, the index will decrease as the

Yineta

parameter decreases. Figures 9-12 give the partial rank
correlation coefficient results and partia rank correlation
coefficient scatterplotswith indexes Ko, Formaxs Cocor Loty Lis Lo
V2o, and Vg With nine parameters (By1, B2z, B2z, P2, O, Mpy, My,
My, and Sy) of the newly posted informationinthe LTI DT-SFI
model, respectively.

Figure 9. PRCC results and PRCC scatterplots with indexes %, for different parameters of the newly posted information in the large interval delay in
transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 10. PRCC results and PRCC scatterplots with indexes Fomgy and Cy,, for different parameters of the newly posted information in the large
interval delay in transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 11. PRCC results and PRCC scatterplots with indexes tomax, toh, and tyj for different parameters of the newly posted information in the large

interval delay in transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 12. PRCC results and PRCC scatterplots with indexes Vg and Voq for different parameters of the newly posted information in thelargeinterval
delay in transmission susceptible-forwarding-immune model. PRCC: partia rank correlation coefficient.
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Figure 9 shows the effect of parameters on the public opinion
reproduction ratio %o of the delay in transmission in the LTI

DT-SFI model. Mo was strongly positively affected by the
average exposure rate f3,,, the mild exposure attractiveness

index my,, the average exposure rate (3,5, the unexposure
attractivenessindex myg, and the forwarding probability p,, and
strongly negatively affected by the average immune rate a.
The positive correlation effects of the parameters 3,; and my,;
were relatively weak. Overall, strategies to increase the
parameters .5, Bog, P2, My, Mys, and initia value Sy, or to
decrease the o, can enhance the transmission capability of the
newly posted information.

From Figure 10, the parameters have a similar effect on the
forwarding peak . and the cumulative forwarding popul ation
C,... The unexposure attractiveness index mys, the forwarding
probability p,, and theinitial value S, of susceptibleindividuals
have adecisive positive influence on the forwarding peak value
Fomax @nd thefina size C,,, of delayed information propagation.
The effects of the extensive and mild exposure attractiveness
parameters that portray the participation of the population of
the posted information were very weak. The aforementioned
results indicate that the time interval is long between the two
delays in transmission information since the new information
was posted in a quasi—steady state into the propagation; at this
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time, most individuals who have been exposed to the posted
information have entered the immune state. In addition, most
individuals will no longer care about the relevant content due
to the possibility of forgetting or leaving the social network
platform. The aforementioned conclusions show that when the
posted information enters the steady state, the effect of the
individuals who have contacted the posted information is not
obvious. Therefore, the information transmission can be
promoted by influencing the number of the new susceptible
population.

Figure 11 shows the effect of parameters on the climax time
tomax the outbreak time t,,, and the duration t,; of the delay in

transmission. After mastering the influencing factors of t,, and
t,;, the end time of transmission t,, can be calculated. The climax
time t,. the outbreak time t,, and the duration t, are
negatively affected by parameters 3,3, p,, and my5 in the same
way. In comparison, these parameters have the least impact on
ton, especialy mys. The parameter my, had a weak negative
correlation effect on each timeindex, and the parameter o, was
the main factor to control the duration t,;, which plays astrong
negative correlation effect.

From Figure 12, the unexposure attractiveness index m,; and
the forwarding probability p, had maor positive correlation
effects on the outbreak velocity V,, and the declining velocity
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Vo4, and the initial value S,y of susceptible individuals had a
mild positive effect on these two indexes. Moreover, the
parameter o, had astrong negative effect on the V.. In addition,
the effects of other parameters on the velocities were not
important. That is to say, the V,, and V,q will increase
accordingly when the parameters m,3, p,, and initial value S,y
increase. At the sametime, the V,, increases with the reduction
of parameter a,. By contrast, the effect of m,; on the velocities
was greater.

Our LTI DT-SFI model concentrates on the influence of the
average exposure rates and attractiveness indexes on the
instantaneous forwarding population F,(t) and the cumulative
forwarding population C,(t) as shown in Figures 13 and 14,
respectively, and the variation of parameters over time
determines the propagation indexes. By comparing and
analyzing the influence of average contact rates and
attractiveness indexes in Figures 11 and 12 with the variation
of one parameter while fixing other parameters, B, and My

Yineta

have a similar overall trend of the effects on the instantaneous
forwarding population F,(t) and the cumulative forwarding
population C,(t) of the new information. With the increase of
the parameters of 3,5 and my,3, the outbreak will accelerate, the
instantaneous number of individualsin theforwarding state can
reach ahigher peak, and thefinal sizewill belarger. In addition,
the average exposure rate of [3,, and the mild exposure
attractiveness index m,, had a weak positive influence on the
final size of the cumulative forwarding quantity and had no
obvious influence on the propagation times and velocities. In
contrast, the average exposure rate (3,; and the extensive
exposure attractiveness index my; had no significant effect on
large interval delay in transmission based on forwarding. All
the aforementioned key parameters had no significant effect on
the outbreak time, climax time, and duration of the long-delayed
cross-information transmission based on forwarding, which was
also consistent with the results of the partial rank correlation
coefficients.

Figure 13. The influence of the average exposure rates on the instantaneous forwarding population F(t) and the cumulative forwarding population
Co(t) inthelarge interval delay in transmission susceptible-forwarding-immune model.
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Figure 14. The influence of the attractiveness indexes on the instantaneous forwarding population Fy(t) and the cumulative forwarding population
Cy(t) inthelarge interval delay in transmission susceptible-forwarding-immune model .
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Influencing Factors Analytics: Information Release
and Dissemination for the STI DT-SFI M odel

To further analyze theimpact of different parametersinthe STI
DT-SFI model for the cross-propagation dynamics, we
performed partial rank correlation coefficients to analyze the
relationship between the influence and the range of variation
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of parameters on the indexes. Figures 15-18 give the partial
rank correlation coefficient results and partial rank correlation
coefficient scatterplotswith indexes iii'o, Formaxs Cocor Loy Lis Lomaxs
V2o, @nd Vg With nine parameters (B,1, Bao, Bas, P2, 02, Mpy, My,
My, and S;p) of the newly posted informationinthe STI DT-SFI
model, respectively.
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Figure 15. PRCC results and PRCC scatterplots with indexes

R
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2 for different parameters of the newly posted information in the short interval delay

in transmi ssi on—susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 16. PRCC results and PRCC scatterplots with indexes Fomgx and Cy, for different parameters of the newly posted information in the short

interval delay in transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 17. PRCC results and PRCC scatterplots with indexes tomax, toh, @nd toj for different parameters of the newly posted information in the short
interval delay in transmission susceptible-forwarding-immune model. PRCC: partial rank correlation coefficient.
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Figure 18. PRCC results and PRCC scatterplots with indexes Vg and Voq for different parameters of the newly posted information in the short interval
delay in transmission susceptible-forwarding-immune model. PRCC: partia rank correlation coefficient.
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The average exposure rate .3, the unexposure attractiveness
index my;, the forwarding probability p,, and the initial value
S, Were strong contributionsto the public opinion reproduction

ratio Jto positively, and the averageimmunerate a, had astrong
negative effect on it, as shown in Figure 15. The positive
correlation effects of parameters B,q, By, My, @nd m,, were

relatively weak. In general, strategies that can affect the
parameters B,z My3, Py, and theinitia value Sy to increase or

the parameter o, to decrease can increase theinitial propagation

capacity of the newly posted information. On the other hand,
we can decrease the parameters 3,3, My, P,, and theinitial value

Sio to reduce the initial propagation ability of the new
information.

The average contact rate of 3,4, B,,, the forwarding probability
p,, the mild exposure attractiveness index m,,, the unexposure
attractivenessindex m,3, and theinitial value Sy, of susceptible
individuals had strong positive impacts on the high peak Fox
and the final size C,,, as shown in Figure 16. In contrast, Sy
played a major role, and the impact of 5, and m,; were less

significant. The aforementioend results show that individuals
who have been exposed to but have not forwarded the posted
information are more sensitive to the new information with mild
exposure attractiveness due to the understanding of the former
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information. In addition, the average immune rate o, had a
strong negative effect on the Fyp,.

Figure 17 indicates that the influence of each parameter on t,,
and t,, were not obvious, and the parameters 3,5, 0, and the
initial value S,y had negative effects on the duration t,;, and the
3,1 had aweak positive effect on it. Thismeansthat the average

contact rate at which users in the susceptible state can contact
the second information is the most important factor affecting
theduration t,; of delay in transmission. The smaller the average
contact rate is, the longer the duration of new information
transmission will be within a certain range, slowing down the
development of information transmission.

Figure 18 showsthe partial rank correlation coefficients results
of the outbreak velocity V,, and the declining velocity V,q of

the STl DT-SFI model based on forwarding under
multiparameter changes. From the results, the average exposure
rate (3,1, Bos, the forwarding probability p,, the mild exposure

attractiveness index m,,, the unexposure attraction index ms,
and the initial value S;, of susceptible individua s make strong
positive contributions on V,, and V,4. The average exposure
rate 3., and the extensive exposure attractivenessindex m,, had

no significant effect on the velocities. That isto say, the outbreak
velocity V,, and the declining velocity V.4 can be increased

with the increase of the parameters (351, Bos, P, Mpy, My, and
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theinitial value S;5. On the contrary, if the parameters decrease,
the propagation velocities will slow down.

Here, we aso took into consideration the influence of the
average exposure rate and attractiveness parameters on the
instantaneous forwarding population F(t) and the cumulative
forwarding population C,(t) of the STI DT-SFI model as shown
in Figures 19 and 20, respectively. The comparative analysis
showsthat the larger the average contact rate and attractiveness
indexes are, the larger the instantaneous forwarding quantity
and the cumulative forwarding quantity are. The final size is
also affected; the average exposure rate of (3,4, B,3, the mild

Yineta

exposure attractiveness index m,,, and the unexposure
attractiveness index my4 are the main influencing factors of the
STI DT-SFI model, and they can play a significant role in the
final size of the newly posted information within acertain range.
So priority must be placed on controlling these parameters. In
addition, the extensive exposure attractiveness index my, has
only asmall magnitude of effects, whilethe effect of parameter
35, issignificant and has arelatively obviousimpact. Theimpact
of each parameter on the outbreak timing and increasing and
declining velocities is negligible, which is consistent with the
results of the partial rank correlation coefficients.

Figure 19. The influence of the average exposure rates on the instantaneous forwarding population F,(t) and the cumulative forwarding population
Co(t) in the short interval delay in transmission susceptible-forwarding-immune model.
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Figure 20. The influence of the attractiveness parameters on the instantaneous forwarding population Fx(t) and the cumulative forwarding population
Cy(t) in the short interval delay in transmission susceptible-forwarding-immune model.
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Discussion forwarding userswill be closeto each other. This, in conjunction

Principal Findings

Figure 21 shows the trend of the cumulative forwarding users
of information B and information C when the newly posted
information is posted during the steady-state period of the posted
information in Tables 2 and 3. The time lag with which the
newly posted information is posted has a significant impact on
the process of public opinion dissemination and the final size
of the cumulative number of forwarding users. If the newly
posted information is posted during the quasi—steady-state period
of opinion propagation, then the earlier the newly posted
information is posted, the earlier the cumulative forwarding
users will peak, though the final size of the cumulative

http://www.jmir.org/2021/2/e25734/
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with our parameter sensitivity analysis results, shows that for
the LTI DT-SFI situation, the unexposure attractiveness index
m,3 and the average exposure rate 3,5 are the key elements to
promote the cross-propagation and that, once reaching the
quasi—steady state, the timing of posting the new information
has an insignificant impact on thefinal size of forwarding users.

In contrast, Figure 22 shows the trend of the cumulative
forwarding users of information A and information B when the
newly posted information is posted during the outbreak period
of the posted information in Tables 1 and 2. The time lag with
which the newly posted information is posted has a noticeable
impact on both the dynamic process of public opinion
dissemination and the final size of the cumulative number of
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forwarding users. If the newly posted information can be posted
during the outbreak period of the old information, then the
earlier the new information is posted, the greater the cumulative
forwarding population and the final size of the cumulative
forwarding users will be. This, combined with our parameter
sensitivity analysisresults, showsthat, inthe STl DT-SFI case,
the mild exposure attractivenessindex my,, the average exposure
rates 3,; and B3, and the unexposure attractiveness index mys
can al directly influence the interaction between information
posted sequentialy to increase the “heat” (popularity) of the
newly posted information.

Our model-based analysis recommends strategies on how
different parameters should be adjusted to achieve the best
information dissemination outcomes. For two pieces of relevant
information separated by arelative long posting lag, strategies
to increase the average exposure rate (3,5 and the unexposure
attractivenessindex my; are recommendations. These strategies
can be achieved if opinion leaders with a large number of
followers can participate in the information copropagation. On
the contrary, reducing the public’'s attention to a new piece of
information can be achieved by efforts in delaying the posting
of the new information or by effectively reducing the potential

Figure 21. Anillustration of a public opinion dissemination process with
quasi—steady-state period of the posted information.

Yineta

correlation between the two pieces of information (reducing
values of the correlation parameters (351, By, My, and my,).
Additionally, if our goal is for the final size of the cumulative
forwarding users of the new information to not be impacted by
the relevant information aready posted online, the new
information should be posted during the quasi—steady-state
period of the posted information.

For two pieces of information with a short interval between
posting, we recommend developing strategies to alter the
interaction between the information for effectively managing
the information transmission indexes we introduced. If weam
to make the new information outbreak faster with alarge peak
value of forwarding, we should increase the average exposure
rate B,y and mild exposure attractiveness index my, by
persuading the origina post owner to post or forward the
information earlier during the outbreak period of the posted
information, when the posted information has obtained certain
public attention, and increase the relevance and attraction of
the newly posted information to the forwarding users or immune
users of the posted information. Alternatively, we should
persuade some opinion leaders to forward the new information
along with their insights to 3,3 and mys.
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Figure 22. Anillustration of a public opinion dissemination process with newly posted information posted with different time lags but during the

guasi—steady-state period of the posted information.
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Conclusion Our model formulation focused on the transmi ssion mechanism
onciusions of information in the social network, where a new Weibo may
Relevant information is often posted sequentidly in be posted in different phases—outbreak phase or

fast-evolving public health events such as the COVID-19
pandemic. Consequently, modeling the impact of delay in
Ccross-transmission or copropagation issubstantial to identifying
the best strategiesto communicate key public messagesthrough
social media. In this study, we proposed and examined two
classes of models, the LTI DT-SFI dynamicsmodel and the ST
DT-SFI dynamics model based on the forwarding users in
Weibos, and we parametrized our modelsusing real datarelated
to the COVID-19 pandemic in the Chinese SinaMicroblog. Our
goa is to use these parametrized models to understand the
influence of different time lags in the information posting on
the copropagation of related information in the microblog.

guasi—steady-state phase—of some relevant Weibo already
posted. Our goal is to examine the impact of post timing in
relation to the old information, the new information on its peak
value, and thefinal size of forwarding users. Aswe have shown,
this impact depends on the correlation of the old and new
information, and on the phase of the old information
transmission when the new information is posted. We hope that
our DT-SFI dynamics modelsfill in some theoretical gap about
optimizing information posting strategies to maximize
communication efforts to deliver key public health messages
to the public for better outcomes of public health emergency
management.
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