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Abstract

Background: Predicting early respiratory failure due to COVID-19 can help triage patients to higher levels of care, allocate
scarce resources, and reduce morbidity and mortality by appropriately monitoring and treating the patients at greatest risk for
deterioration. Given the complexity of COVID-19, machine learning approaches may support clinical decision making for patients
with this disease.

Objective: Our objective is to derive a machine learning model that predicts respiratory failure within 48 hours of admission
based on data from the emergency department.

Methods: Data were collected from patients with COVID-19 who were admitted to Northwell Health acute care hospitals and
were discharged, died, or spent a minimum of 48 hours in the hospital between March 1 and May 11, 2020. Of 11,525 patients,
933 (8.1%) were placed on invasive mechanical ventilation within 48 hours of admission. Variables used by the models included
clinical and laboratory data commonly collected in the emergency department. We trained and validated three predictive models
(two based on XGBoost and one that used logistic regression) using cross-hospital validation. We compared model performance
among all three models as well as an established early warning score (Modified Early Warning Score) using receiver operating
characteristic curves, precision-recall curves, and other metrics.

Results: The XGBoost model had the highest mean accuracy (0.919; area under the curve=0.77), outperforming the other two
models as well as the Modified Early Warning Score. Important predictor variables included the type of oxygen delivery used in
the emergency department, patient age, Emergency Severity Index level, respiratory rate, serum lactate, and demographic
characteristics.

Conclusions: The XGBoost model had high predictive accuracy, outperforming other early warning scores. The clinical
plausibility and predictive ability of XGBoost suggest that the model could be used to predict 48-hour respiratory failure in
admitted patients with COVID-19.
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Introduction

On March 11, 2020, COVID-19, the disease caused by
SARS-CoV-2 infection, was declared a pandemic by the World
Health Organization [1]. As of December 16, 2020, there were
more than 17 million confirmed COVID-19 cases and over
300,000 deaths in the United States. During the first wave, New
York was the epicenter of the pandemic in the United States,
with over 390,000 cases and 30,000 deaths before the summer
[2].

Respiratory failure is the leading cause of death among patients
with COVID-19, with up to one-third of patients admitted with
COVID-19 requiring invasive mechanical ventilation (IMV)
[3-8]. The decision to initiate IMV in these patients is not
straightforward. Many patients with severe disease appear
comfortable despite profound hypoxemia, and they are
commonly managed with supplemental oxygen, self-proning,
and close monitoring [9,10]. However, some of these patients
subsequently deteriorate and require IMV following transfer
from the emergency department (ED). This subgroup has worse
outcomes than those placed on IMV initially [11]. Before the
surge of COVID-19, patients initially admitted to a non–critical
care setting who needed an unplanned transfer to an intensive
care unit (ICU) had greater morbidity and mortality than those
admitted directly to a critical care unit [12-14]. Thus, accurately
identifying patients at high risk for deterioration could improve
clinical outcomes as a result of closer monitoring, direct
admission to a critical care unit, or earlier discussions regarding
patient preferences and goals of care.

Methods of identifying patients at high risk for or in the early
stages of clinical deterioration have been actively researched
for decades. The field has generated many severity-of-illness
calculators, early warning scores, and, more recently, predictive
analytic tools that use advanced machine learning and artificial
intelligence [15-23]. Our goal was to derive a prediction model
that estimates the risk of short-term (<48 hours) respiratory
failure for patients with COVID-19 who were not initially placed
on IMV. Such a tool could improve outcomes by avoiding
delayed admission to a critical care unit, resulting in the
provision of additional respiratory support and closer
monitoring, or the initiation of earlier discussions around the
goals of care.

Methods

Overview
This retrospective observational cohort drew data from 13 acute
care hospitals of Northwell Health, the largest health care system
in New York State. Data were extracted from the electronic
health record (EHR) Sunrise Clinical Manager (Allscripts).
EHRs were screened for adult patients (aged ≥21 years) who
received a positive test result for SARS-CoV-2 based on a
nasopharyngeal sample tested using polymerase chain reaction
assays. Included patients were hospitalized and were discharged,
died, or spent a minimum of 48 hours in the hospital between
March 1, 2020, and May 11, 2020. For patients who had multiple
qualifying hospital admissions, only the first hospitalization
was included. Patients who were transferred between hospitals

within the health system were treated as one hospital encounter.
A total of 11,919 patients were identified. Patients were
excluded if they were placed on mechanical ventilation prior to
inpatient admission. A total of 11,525 patients remained for
analysis. The Institutional Review Board of Northwell Health
approved the study protocol and waived the requirement for
informed consent.

Data Acquisition
Data collected from EHRs included patient demographics,
comorbidities, home medications, initial vitals and laboratory
values, treatments (eg, oxygen therapy, mechanical ventilation),
and clinical outcomes (eg, length of stay, discharge, mortality).
Vitals and laboratory testing were restricted to those obtained
while the patient was in the ED.

Outcomes
The target outcome variable was defined as intubation and
mechanical ventilation within 48 hours of admission. In the
EHR, the admission time was recorded, and the intubation event
was defined as the first time mechanical ventilation was
recorded.

Predictive Machine Learning Model
We evaluated three predictive models: XGBoost, XGBoost +
SMOTEENN (combined oversampling using SMOTE and
undersampling using edited nearest neighbors) [24], and logistic
regression [25]. XGBoost combines a recursive
gradient–boosting method, called Newton boosting, with a
decision-tree model. Given that each tree is boosted in parallel,
the model efficiently provides accurate predictions [26].
Furthermore, because each tree is boosted recursively and in
parallel, the model benefits from the high interpretability of the
variable importance features.

The XGBoost + SMOTEENN method involves combined
oversampling using SMOTE and undersampling using edited
nearest neighbors on the training set before training an XGBoost
model [27]. This method has been shown to have the best
performance in the resampling data sets [28]. Furthermore, in
our experience, when using any of the oversampling or
undersampling methods alone, calibration of the model is
severely affected. However, when we combine oversampling
the minority class with undersampling of the majority class, we
found that we get a more accurate model both in terms of
discriminability and minimizing the effect on the calibration of
the model.

For every learning framework, we validated the model with
external validation using each hospital (ie, for each fold, one
hospital was picked as a testing set and the others as a training
set). Only hospitals with >1000 patients with COVID-19 in the
data set were picked for the testing sets, and a random sample
of 1000 patients was picked to be our testing set for each fold.
Grid search was used to hypertune the parameters of the
respective models. The XGBoost model was tuned based on
min_child_weight, gamma, subsample, colsample_bytree, and
max_depth parameters, and the ranges of the values were 1-20,
0.5-20, 0.2-1.0, 0.2-1.0, and 2-40, respectively.
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When data were missing, we imputed weighted k-nearest
neighbors [29] for numerical values and added a category
“missing” for categorical values. We used one-hot [30] to
encode categorical variables as a one-hot numeric array. The
most important variables were calculated based on a decrease
in the mean Gini coefficient (ie, the variables most useful in
splitting the data to help make a prediction) for XGBoost and
XGBoost + SMOTEENN; and by the absolute value of the
regression coefficient for logistic regression, and were calculated
based on the largest hospital testing set. The resulting receiver
operating characteristic (ROC) curves and corresponding
accuracy, recall (sensitivity), specificity, geometric mean, and
Fβ-score were averaged. For the Fβ-score, the β parameter value
was designated as β=4 to capture a higher detriment of false
negatives than false positives (ie, if we value recall, β times as
much as the precision). For definitions of these measures and
how they were calculated, see Multimedia Appendix 1.

Calibration curves (reliability curves) were plotted by dividing
the testing sets (for each hospital fold) into 10 bins randomly
with an increasing fraction of patients that had respiratory failure
in the sample. The fraction positives (patients who had
respiratory failure) and their mean corresponding predicted
value from the corresponding model were depicted and averaged
into 10 bins. The Brier score was calculated for each external
hospital fold and the mean Brier score and standard deviation
were calculated and depicted in the legend of the calibration
curve. For further explanation of these measures and how they
were calculated, see Multimedia Appendix 1.

Python 2.6 (Python Software Foundation) was used to
implement our machine learning framework. The respective
prediction models of XGBoost and logistic regression from the
scikit-learn application programming interface (API) in Python
were used [31]. GridSearchCV from the scikit-learn API was
used to perform the grid search and hypertune the parameters.
We used the default imblearn API version of the SMOTEENN
[27]. SimpleImputer [32] was used for imputations, which were
replaced with a new category, “missing.” KNNImputer [33]
was used to impute the missing numerical data [29]. The default

value for k=5 was not changed. OneHotEncoder from the sklearn
API was used to transform categorical variables to one-hot
numeric arrays.

Modified Early Warning Score
The Modified Early Warning Score (MEWS) was computed
from patient vital signs (Multimedia Appendix 2) and is a variant
of other known and used risk scores [34,35]. The MEWS ranges
from 0 to 15 and incorporates heart rate (beats per minute),
respiratory rate (breaths per minute), systolic blood pressure
(mm Hg), and body temperature (degrees Celsius). In our data
set, one MEWS subcomponent, the AVPU (alert, verbal, pain,
unresponsive) neurologic assessment, had a significant amount
of missing data (>80%; data not shown) and was not included
in the MEWS calculation for this project. An elevated MEWS
indicates a risk for clinical instability, including death or the
need for ICU admission [36]. In 2012, our health system created
a custom modification that was incorporated into the EHR. It
includes automatic calculation and display of MEWS and other
modules via Arden Syntax Medical Logic Modules [37]. Based
on local health system guidelines, any score ≥7 requires an
escalation in intensity of care. For example, MEWS >7 requires
increased frequency of vital sign measurement (every 2 hours),
MEWS >8 requires evaluation by a licensed independent
provider, MEWS >9 requires consideration of evaluation by a
rapid response team, and MEWS >10 requires a change in the
level of service per a defined protocol. For the MEWS, we chose
the highest value the patient had while in the ED.

Results

Patient Characteristics
During the study period, we identified 11,525 patients admitted
from the ED with a diagnosis of COVID-19. Of these, 933
(8.0%) were placed on IMV within 48 hours of admission.
Baseline characteristics (demographics, baseline vital signs,
and laboratory measurements) for all patients are shown in Table
1, stratified by study outcome. Comorbidities were captured
from ICD-10 codes listed in the EHR.
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Table 1. Demographic, clinical, and laboratory data from hospitalized patients.

Missing (%)Intubated (n=933)Not intubated (n=10,592)Variables

Demographic characteristics

066.00 (56.00-75.00)65.00 (54.00-77.00)Age (years), median (IQR)

0327 (35.0)4530 (42.8)Female, n (%)

0746 (80.0)8498 (80.2)Primary language, English, n (%)

0Race, n (%)

N/Aa236 (25.3)2199 (20.8)Black

N/A77 (8.3)889 (8.4)Asian

N/A310 (33.2)4148 (39.2)White

N/A8 (0.9)71 (0.7)Declined

N/A268 (28.7)2884 (27.2)Other

N/A34 (3.6)401 (3.8)Unknown

0.1Ethnicity, n (%)

N/A202 (21.7)2238 (21.1)Hispanic or Latino

N/A648 (69.5)7685 (72.6)Not Hispanic or Latino

N/A1 (0.1)43 (0.4)Declined

N/A82 (8.8)618 (5.8)Unknown

Vital signs

0.5134.00 (115.00-151.75)134.00 (118.00-150.00)Systolic blood pressure (mm Hg), median (IQR)

0.677.00 (69.00-86.00)79.00 (70.50-87.00)Diastolic blood pressure (mm Hg), median (IQR)

0.497.00 (88.50-112.00)94.00 (85.00-102.00)Heart rate (beats/minute), median (IQR)

0.824.00 (20.00-32.00)21.00 (18.00-25.00)Respiratory rate (breaths/minute), median (IQR)

1.637.86 (1.11)37.77 (0.97)Temperature (°C), mean (SD)

1.796.00 (93.00-98.00)97.00 (95.00-98.00)Oxygen saturation (%), median (IQR)

47.130.39 (9.21)29.12 (7.79)BMI, mean (SD)

Laboratory data

98.25 (6.20-11.50)7.34 (5.45-9.92)White blood cell count (× 109/L), median (IQR)

11.56.84 (4.76-9.62)5.68 (3.95-8.11)Absolute neutrophil count (× 109/L), median (IQR)

11.50.80 (0.56-1.13)0.90 (0.63-1.27)Absolute lymphocyte count (× 109/L), median (IQR)

913.14 (2.11)12.93 (2.12)Hemoglobin (g/dL), mean (SD)

9.1217.19 (87.45)230.17 (101.93)Platelets (K/μL), mean (SD)

11.9135.38 (5.74)136.64 (6.21)Sodium (mmol/L), mean (SD),

11.922.67 (4.68)23.61 (3.79)Carbon dioxide (mmol/L), mean (SD)

121.20 (0.92-1.75)1.03 (0.80-1.46)Creatinine (mg/dL), median (IQR)

12.50.60 (0.40-0.80)0.50 (0.40-0.70)Bilirubin (mg/dL), median (IQR)

73.21731.05 (2631.38)1283.50 (2732.65)Ferritin (ng/mL), mean (SD)

66.32.12 (8.16)1.22 (10.96)Procalcitonin (ng/mL), mean (SD)

65.42659.09 (6798.96)1871.84 (5306.42)D-dimer (ng/mL), mean (SD)

71611.05 (272.16)455.61 (213.04)Lactate dehydrogenase (U/L), mean (SD)

96.77.39 (0.11)7.42 (0.09)pH (arterial), mean (SD)

94.885.26 (61.42)99.90 (65.17)Partial pressure of oxygen (arterial, mm Hg), mean (SD)
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Missing (%)Intubated (n=933)Not intubated (n=10,592)Variables

94.735.38 (11.45)34.66 (9.38)Partial pressure of carbon dioxide (arterial, mm Hg),
mean (SD)

Comorbidities

0115 (12.3)1183 (11.2)Hypertension, n (%)

077 (8.3)685 (6.5)Diabetes, n (%)

015 (1.6)148 (1.4)Coronary artery disease, n (%)

020 (2.1)242 (2.3)Asthma/chronic obstructive pulmonary disease, n (%)

08 (0.9)99 (0.9)Chronic kidney disease, n (%)

01 (0.1)26 (0.2)HIV, n (%)

aN/A: not applicable.

Prediction Models for Respiratory Failure
Based on XGBoost, the mean area under the curve (AUC) of
the ROC (AUCROC) curve was 0.77 (SD 0.05) and the mean
AUC of the PR curve (AUCPR) was 0.26 (SD 0.04; Figure 1).
The 10 most important variables, in order of decreasing
importance, were as follows: most invasive mode of oxygen
delivery being a nonrebreather mask, Emergency Severity Index
(ESI) values of 1 and 3, maximum respiratory rate, maximum
oxygen saturation, Black race, age on admission, eosinophil
percentage, serum sodium level, and serum lactate level (Figure
1). The confusion matrix for the model’s largest hospital testing
set showed that most false predictions were false negatives
(those who were predicted to not require intubation but were
intubated within 48 hours). False positives (those who were
predicted to require intubation but were not intubated within
48 hours) were the minority of predictions (Figure 1). The model
had a mean accuracy of 0.919 (SD 0.028). The corresponding
mean precision, recall, specificity, geometric mean, and Fβ-score
were 0.521 (SD 0.329), 0.051 (SD 0.030), 0.994 (SD 0.005),
0.337 (SD 0.042), and 0.054 (SD 0.029), respectively (Table
2).

Based on the XGBoost + SMOTEENN model, the mean AUCs
of the ROC and PR curves were 0.76 (SD 0.03) and 0.24 (SD
0.06), respectively (Figure 2). The 10 most important variables,
in order of decreasing importance, were as follows: most
invasive mode of oxygen delivery being a nonrebreather mask,
ESI value of 3, male gender, White race, minimum respiratory
rate, Black race, ESI value of 2, most invasive mode of oxygen
delivery being nasal cannula, ESI value of 1, and Hispanic
ethnicity (Figure 2). The mean confusion matrix showed that
most false predictions were false positives (those who were
predicted to require intubation but were not intubated within
48 hours). False negatives (those who were predicted to not
require intubation but were intubated within 48 hours) were the
minority of predictions (Figure 2). Although this model did not
have the highest accuracy, it achieved the highest mean recall,
geometric mean, and Fβ-score of 0.228 (SD 0.095), 0.508 (SD
0.063), and 0.226 (SD 0.010), respectively. The corresponding
mean accuracy, precision, and specificity were 0.893 (SD 0.016),
0.303 (SD 0.089), and 0.955 (SD 0.005), respectively (Table
2).
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Figure 1. The XGBoost model for predicting respiratory failure within 48 hours. (A) ROC curve and (B) PR curve based on a cross-hospital validation
performed by leaving a hospital out as a testing set and using the rest in the training set. Only hospitals with >1000 patients with COVID-19 were
selected for testing sets. The mean ROC and PR curves are shown in dark blue and their corresponding standard deviations are shown in gray. The
MEWS metrics are shown in light yellow. (C) Measurement of the 10 variables with the highest relative importance based on the amount they reduced
the Gini coefficient for the largest hospital testing set. (D) Confusion matrix visually represents the predicted values versus actual prediction for the
largest hospital testing set. AUC: area under the curve of ROC; AUCPR: area under the curve of the precision-recall curve; ED: emergency department;
LIJ: Long Island Jewish; MEWS: Modified Early Warning Score; PR: precision-recall; ROC: receiver operating characteristic.
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Table 2. Mean area under the curve of the receiver operating characteristic curve, area under the curve of the precision-recall curve, accuracies,
precisions, recalls, specificities, geometric means, and Fβ-score (β=4) for models investigated.

Modified Early
Warning Score

Logistic regression,
mean (SD)

XGBoost + SMOTEENN,
mean (SD)

XGBoost, mean
(SD)

Measure

0.610.70 (0.05)0.76 (0.03)0.77 (0.05)Area under the curve of the receiver operating character-
istic curve

0.120.18 (0.06)0.24 (0.06)0.26 (0.04)Area under the curve of the precision-recall curve

0.9130.915 (0.027)0.893 (0.016)0.919 (0.028)Accuracy

0.1650.322 (0.375)0.303 (0.089)0.521 (0.329)Precision

0.0170.009 (0.013)0.228 (0.095)0.051 (0.030)Recall

0.9920.998 (0.002)0.955 (0.005)0.994 (0.005)Specificity

0.2960.285 (0.051)0.506 (0.063)0.337 (0.042)Geometric mean

0.0180.010(0.014)0.226 (0.088)0.054 (0.029)Fβ-score
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Figure 2. The XGBoost + SMOTEENN model for predicting respiratory failure within 48 hours. (A) ROC curve and (B) PR curve based on a
cross-hospital validation performed by leaving one hospital out as a testing set and using the remaining hospitals for the training set. Only hospitals
with >1000 patients with COVID-19 were selected for testing sets. The mean ROC and PR curves are shown in dark blue and their corresponding
standard deviations are shown in gray. The MEWS metrics are shown in light yellow. (C) The 10 variables with the highest relative importance measured
by the amount the variable reduced the Gini coefficient. (D) Mean confusion matrix visually represents the predicted values versus actual prediction.
AUC: area under the curve of ROC; AUCPR: area under the curve of the precision-recall curve; ED: emergency department; LIJ: Long Island Jewish;
MEWS: Modified Early Warning Score; PR: precision-recall; ROC: receiver operating characteristic.

We also examined the performance of a logistic regression
model. The mean AUCs of the ROC and PR curves were 0.70
(SD 0.05) and 0.18 (SD 0.06), respectively. Mean accuracy,
precision, recall, specificity, geometric mean, and Fβ-score were
0.915 (SD 0.027), 0.322 (SD 0.375), 0.009 (SD 0.013), 0.994
(SD 0.005), 0.285 (SD 0.051), and 0.010 (SD 0.014),
respectively (Figure 3 and Table 2). MEWS was used to
compare ROC and PR curves. MEWS resulted in AUCs of the
ROC and PR curves of 0.61 and 0.12, respectively (Figures
1-3). For MEWS, accuracy, precision, recall, specificity,

geometric mean, and Fβ-score were 0.913, 0.165, 0.017, 0.992,
0.296, and 0.018, respectively.

The calibration curves showed that all three models were well
calibrated among all hospital folds, although all three deviated
from perfect calibration as the fraction of positives increased
(Figure 3). The corresponding mean Brier score for XGBoost,
XGBoost + SMOTEENN, and logistic regression was 0.071
(SD 0.019), 0.079 (SD 0.016), and 0.077 (SD 0.018),
respectively (Figure 3).
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Figure 3. The logistic regression model for predicting respiratory failure within 48 hours. (A) ROC curve and (B) PR curve based on a cross-hospital
validation performed by leaving a hospital out as a testing set and using the rest for the training set. Only hospitals with >1000 patients with COVID-19
were selected for testing sets. The mean ROC and PR curves are shown in dark blue and their corresponding standard deviations are shown in gray.
The MEWS metrics are shown in light yellow. (C) The 10 variables with the highest relative importance measured by the absolute value of the regression
coefficient. (D) Mean confusion matrix visually represents the predicted values versus actual prediction. AUC: area under the curve of ROC; AUCPR:
area under the curve of the precision-recall curve; LIJ: Long Island Jewish; MEWS: Modified Early Warning Score; PR: precision-recall; ROC: receiver
operating characteristic.

Discussion

We presented three models (two of which were based on
XGBoost) for predicting early respiratory failure in patients
given a diagnosis of COVID-19 and admitted to the hospital
from the ED. One model was tilted toward precision and
specificity (XGBoost) and the other was tilted toward recall
(XGBoost + SMOTEENN). These models are based on baseline
characteristics, ED vital signs, and laboratory measurements.
Using an automated tool to estimate the probability of
respiratory failure could identify at-risk patients for earlier
interventions (eg, closer monitoring, critical care consultation,

earlier discussions about goals of care) and improve patient
outcomes.

We evaluated three machine learning models: XGBoost,
XGBoost + SMOTEENN, and logistic regression [38-40].
XGBoost is widely used due to its high efficiency and
predictability, and it has been used to predict health care
outcomes in patients with [41,42] and without [43-45]
COVID-19. In our study, XGBoost was the most accurate
prediction model, with an accuracy of 0.919 (SD 0.028) and
precision of 0.521 (SD 0.329; Figure 1), similar to the findings
of another study that examined combined outcomes [46].
However, what is different in our model is that it achieves
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cross-hospital validation. Such accuracy showcases the ability
of the model to separate intubations from nonintubations within
the 48-hour window of interest. Such a model would be useful
for physicians as it more accurately and consistently identifies
patients at high risk for intubation.

We also constructed an XGBoost + SMOTEENN model.
SMOTEENN was used to improve the sensitivity of our
prediction, as our data set was imbalanced (ie, only ~8% of our
COVID-19 cohort were intubated), while keeping deviation
from accuracy and calibration of the model to a minimum.
Compared to XGBoost, the XGBoost + SMOTEENN model
had lower accuracy and precision, but greater recall (or
sensitivity; 0.228 [SD 0.095]; Figure 2). This higher sensitivity
can identify more patients who require IMV, suggesting that
this model may be more suitable for broad or automated
screening of patients.

We also examined the performance of a logistic regression
model to determine whether a compact, linear model could
accurately predict patient risk (Figure 3 and Table 2). Model
performance was inferior to the XGBoost model. This supports
earlier reports that machine learning techniques outperform
classic models of logistic regression in their ability to predict
many prognostic and health outcomes [47-49]. Finally, we
compared the performance of our predictive machine learning
models to the widely used MEWS [36]. MEWS was inferior to
all three models described above in most of the measures
examined.

Using the most important variables for our models, we identified
clinically relevant measures that can best inform clinical
decision making (Figures 1, 2). The XGBoost model was
accurate and precise, as reflected by the low number of false
positives of the model predictions (Figure 1). A more sensitive
alternative to this model would be the XGBoost + SMOTEENN
model, which had fewer false negatives than XGBoost (Figure

2). Both models share important predictors, such as information
about the mode of oxygen delivery, triage acuity, demographic
information, and respiratory rate. However, XGBoost (the more
accurate model with higher precision) adds serum lactate,
sodium, and eosinophil percentage to the top 10 most important
variables. This indicates that when precision is important,
measures such as lactate can rule out the most severe cases by
becoming strong predictors. Among hospitals in Northwell
Health, certain hospitals such as Long Island Jewish (which is
one of the largest in terms of number of patients with
COVID-19) had a high drop in their predictive ability when
logistic regression was used. When Long Island Jewish was
being validated, the 0.86 AUCROC of the XGBoost model
dropped to 0.68 for logistic regression. This could partially be
due to the nature of the outcome predicted (choice of ventilation
from hospital staff), where one would expect different hospitals
to possibly exhibit higher variability, not only for patient
demographics, but also for hospital staff therapy choices.

Variable importance metrics revealed that the linear logistic
regression models use laboratory variables primarily, whereas
nonlinear XGBoost-based models prioritize clinical and
demographic variables that better capture hospital-specific
behavior (eg, oxygen delivery types prior to intubation) and
increase the robustness of the model. However, we need to
validate whether providing these variables along with the
probability of respiratory failure would decrease the rate of
identifying at-risk patients. Further prospective studies and
randomized clinical trials are needed for this validation.

When examining the calibration of the models (Figure 4), we
found that all models were well calibrated, yet as the fraction
of positive cases increased, calibration suffered. This suggests
that if a specific population of patients has a greater likelihood
of intubation (eg, those aged >70 years, or with specific
comorbid conditions), the model would need to be retrained to
increase its accuracy and calibration.
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Figure 4. Calibration plots (reliability curve) of the XGBoost, XGBoost + SMOTEENN, and logistic regression models for respiratory failure within
48 hours. Calibration is based on the precision probability (using predict_proba in Python). For creating the plots, sklearn.calibration.CalibratedClassifierCV
(in Python) was used by inserting a fraction of positives and mean predicted values into 10 bins with an increasing fraction of positives (respiratory
failures) for each hospital fold. The mean Brier score (SD) across all hospitals tested corresponding to the model is shown in the figure legend in
parentheses.

Our study has several limitations. We extracted data on
intubation timing from our EHR, which may have minor
inaccuracies. Although a consistent temporal inaccuracy could
create bias in underestimating/overestimating the intubation
rate, we believe that these small inaccuracies are overcome by
the average calculated from our large number of cases. Another
limitation is that we relied on data from a multicenter, single
health system for both implementation and validation. Thus,
we were unable to externally validate the models in other health
systems and hospitals with different protocols, which might
affect the model’s performance. In addition, because the study
is retrospective, we can only suggest associations and
correlations rather than identify the main contributors that lead
to intubation and mechanical ventilation. Furthermore, the
numerical missing variables were imputed with weighted
k-nearest neighbors. Thus, the conclusions made from these
variables assume uniformity in patient data based on those
missing values. In the case of nonuniformity, the order of
variable importance might change. Additionally, some clinical
variables included in the model may appear to be obvious
correlates of the clinical decision for intubation within 48 hours
(eg, having nonrebreather oxygen flow as the most invasive
form of ventilation). However, the association of all included
variables is not deterministic: only 453 of 2633 patients on

nonrebreather oxygen flow in the ED were intubated within 48
hours. In addition, given that these variables are available to
clinicians and part of their decision making, we included them
in our model. Finally, we used supervised learning on a
homogenous database. Although we used cross-hospital
validation and retrospectively validated our learning method,
external generalizability of these learning methods to other
health systems requires validation in prospective studies and
randomized trials. Such high-quality evidence could provide
more clues on clinical and economic impacts, as well as
measures to improve them.

COVID-19 has evolved into an extremely challenging clinical
and public emergency worldwide, especially in the New York
City metropolitan area. As public health measures attempt to
mitigate this disaster by slowing the spread and alleviating the
heavy burden placed on health care systems, clinicians must
make important decisions quickly and hospital administrators
must manage resources and personnel. Furthermore, as predicted
by many models [50-52], we are in the midst of a second wave
of infection. Our models could inform clinical care by offering
complementary performance characteristics (one model with
superior recall, the other with greater precision) and supporting
clinical decision making as we tackle this unprecedented public
health crisis.
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ICU: intensive care unit
IMV: invasive mechanical ventilation
MEWS: Modified Early Warning Score
PR: precision-recall
ROC: receiver operating characteristic
SMOTE: synthetic minority oversampling
SMOTEENN: oversampling using SMOTE and cleaning using edited nearest neighbors
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