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Abstract

Background: Although commercially available analgesic indices based on biosignal processing have been used to quantify
nociception during general anesthesia, their performance is low in conscious patients. Therefore, there is a need to develop a new
analgesic index with improved performance to quantify postoperative pain in conscious patients.

Objective: This study aimed to develop a new analgesic index using photoplethysmogram (PPG) spectrograms and a convolutional
neural network (CNN) to objectively assess pain in conscious patients.

Methods: PPGs were obtained from a group of surgical patients for 6 minutes both in the absence (preoperatively) and in the
presence (postoperatively) of pain. Then, the PPG data of the latter 5 minutes were used for analysis. Based on the PPGs and a
CNN, we developed a spectrogram–CNN index for pain assessment. The area under the curve (AUC) of the receiver-operating
characteristic curve was measured to evaluate the performance of the 2 indices.

Results: PPGs from 100 patients were used to develop the spectrogram–CNN index. When there was pain, the mean (95% CI)
spectrogram–CNN index value increased significantly—baseline: 28.5 (24.2-30.7) versus recovery area: 65.7 (60.5-68.3); P<.01.
The AUC and balanced accuracy were 0.76 and 71.4%, respectively. The spectrogram–CNN index cutoff value for detecting
pain was 48, with a sensitivity of 68.3% and specificity of 73.8%.

Conclusions: Although there were limitations to the study design, we confirmed that the spectrogram–CNN index can efficiently
detect postoperative pain in conscious patients. Further studies are required to assess the spectrogram–CNN index’s feasibility
and prevent overfitting to various populations, including patients under general anesthesia.
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Introduction

Efficient management of postoperative pain affecting the
prognosis of patients is becoming increasingly important [1].

To properly administer analgesics, it is necessary to first
objectively assess the patient’s degree of pain. In conscious
patients, pain can be assessed by asking the patient directly, but
unconscious patients or those with difficulty communicating
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require an appropriate index to quantify their pain. However,
current commercial analgesic indices were developed for the
purpose of evaluating nociception in patients under general
anesthesia [2,3]; therefore, there is no standard for the
quantification of postoperative pain in conscious patients [4].
Thus, developing a new pain index to quantify pain in patients
who cannot directly communicate their level of pain may also
help in the clinical setting; it will also reduce the need to ask
questions each time the patient is conscious when pain must be
evaluated frequently.

A photoplethysmogram (PPG) is a biosignal that can be obtained
continuously and noninvasively using a pulse oximeter. Because
a PPG conveys much information about a patient’s condition,
many attempts have been made to quantify pain by analyzing
PPG signals [3,5-7]. The surgical pleth index (SPI; GE
Healthcare), developed for quantifying nociception during
general anesthesia, only considers the amplitude and heartbeat
interval of a PPG [3]. In addition to these 2 parameters, other
pain-related features are present in PPG signals [6,7]. Therefore,
the application of a new analytical method has the potential to
improve the performance of analgesic indices.

Deep learning architectures, such as a convolution neural
network (CNN), can be a good solution to elucidate the hidden
features in a PPG because they can identify optimal abstracted
features that are beyond human comprehension without any
manual procedure [8]. Furthermore, in determining the presence
of pain, machine learning has a strong advantage owing to its
nonlinear characteristics compared with the SPI, which assesses
pain based on simple linear regression [8,9], potentially making
it possible to effectively predict nonlinear deviations among
individuals or situations [10]. Therefore, a combination of the
extended features of PPG and machine learning–based scoring
is expected to overcome the limitations of existing pain
assessment techniques. However, because a PPG is a 1D signal,
whereas CNNs have the advantage of multidimensional data
analysis, a dimensional extension of a PPG without loss of
time–frequency characteristics is required to apply it optimally
in a CNN. A spectrogram, which is a 2D image including the
intact time–frequency characteristics of a PPG, can be a good
method for applying a CNN to PPGs.

This study aimed to develop a new analgesic index using PPG
spectrograms and a CNN to objectively assess pain in conscious
patients. In addition, the performance of our newly developed
index was compared with that of the SPI.

Methods

Patient Population
The study protocol was approved by the Institutional Review
Board of Asan Medical Centre (approval number: 2016-0477)
and registered on an international clinical trials registry platform
(registration number KCT0002080). Written informed consent
was obtained from all patients. All procedures were conducted
in accordance with relevant guidelines and regulations. In total,
120 patients (American Society of Anesthesiologists Physical
Status 1, 2, or 3) between the ages of 20 and 80, who were
scheduled to undergo elective surgery, were included in this

observational study. Exclusion criteria were as follows:
clinically significant impairment of the cardiovascular, hepatic,
or renal function; history of cardiac arrhythmia; use of
medication that might affect autonomic function; the presence
of presurgical acute or chronic pain (Visual Analog Scale score
[VAS] > 0, measured before surgery); clinically significant
laboratory findings; and evidence of pregnancy.

Procedure and Data Acquisition
All patients fasted from midnight on the day of surgery without
premedication. In the operating theater, patients were monitored
for their heart activity using electrocardiography, end-tidal
carbon dioxide partial pressure, and noninvasive blood pressure
measurement. Neuromuscular transmission was monitored using
an M-NMT module at the adductor pollicis muscle
(CARESCAPE B850; GE Healthcare). A reusable SPI sensor
was placed on the index finger of each patient (on the arm not
used for blood pressure measurement). Patients were allowed
to acclimatize for at least 5 minutes in the supine position in a
quiet operating theater, after which baseline data (without pain)
were collected for 6 minutes, of which the latter 5 minutes were
used for analysis. General anesthesia was performed by
administering propofol and remifentanil by a target effect-site
concentration–controlled infusion using the Schnider and Minto
models [11,12]. Target effect-site concentrations (Ces) of
propofol were titrated to maintain the bispectral index
(Covidien) at less than 60 during the induction and maintenance
of anesthesia. The target Ces of remifentanil were adjusted to
maintain stable hemodynamics (ie, systolic blood pressure >80
mmHg and heart rate over 45 beats/min). All patients received
a bolus dose of oxycodone (0.1 mg/kg) 30 minutes prior to the
end of surgery.

Intravenous patient-controlled analgesia with oxycodone began
after the administration of the bolus dose of oxycodone.
Neuromuscular blockade was reversed with neostigmine and
glycopyrrolate at the end of surgery. Tracheal extubation was
performed when the train-of-four ratio was greater than 0.9 and
bispectral index value was greater than 80. Patients were then
transported to the postanesthesia care unit (PACU). When the
patients arrived in the PACU, their state of consciousness was
assessed with a modified Aldrete score [13]. Electrocardiogram,
pulse oximetry, and noninvasive blood pressure were also
monitored. Additional PPG and SPI data were obtained for the
initial 5 minutes in the PACU. After obtaining the data, patients
were assessed for pain using a VAS (0=no pain; 100=the most
severe pain). Oxycodone was administered according to
postoperative pain intensity. The PPG and SPI values were
measured using an S/5 Anesthesia Monitor (Datex-Ohmeda,
Inc.) and recorded on a laptop for offline analysis. The PPG
data were sampled at 300 Hz, and SPI data were recorded every
10 seconds.

Pain Assessment Model
A spectrogram–CNN model was developed and validated
through fivefold cross-validation. The developed model outputs
the spectrogram–CNN index as a pain score using a PPG
spectrogram as input and CNN as a pain scorer. During model
development, patients and test sets were separated to prevent
intrasubject interference to avoid data overlaps between the
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development and test sets of each fold. For model training, 90%
of the development set was used as a training set and 10% as a
validation set. Finally, for each fold, 20, 73, and 7 patients’ data
were used as a test set, training set, and validation set,
respectively. Pain and nonpain data labels were created based
on the VAS, where VAS>0 was defined as pain and VAS=0
was defined as nonpain with labels “1” and “0,” respectively.
Detailed descriptions of the spectrograms and CNN used in this
study are given below.

Spectrogram
Spectrogram creation is a method used for time–frequency
analysis of time series signals. A spectrogram reconstructs 2D
images while maintaining the information contained in 1D time
series data [14]. Spectrograms are useful for visually describing
changes in the frequency characteristics of nonstationary signals,
such as physiological signals over time [15,16]. Spectrograms
can be generated by repeating short-time Fourier transforms
that divide a longer time signal into shorter segments of equal
length and then computing the Fourier transforms separately
on each shorter segment. In this study, 2D spectrogram images
generated from 1D PPGs were used as the pain classifier input
to reflect the whole waveform and change of waveform, not the
specific feature of the PPG waveform. Prior to spectrogram
generation, all PPGs were filtered using both a finite impulse

response bandpass filter with a 0.5-10-Hz passband and a 30-tap
moving average filter. In addition, considering that PPG
amplitude is an arbitrary unit, a normalization process was
performed to reduce the intersubject and intermeasurement
deviations [17]. In the normalization process, z-scores were
obtained by subtracting the mean of the measured values from
each measured value and dividing by the standard deviation.
The spectrogram generation process is illustrated in Figure 1.

Spectrogram images were generated by short-time Fourier
transforms of 10-second PPGs every 10 seconds without overlap
(Figure 1A). At the time, to generate a single spectrogram image,
each 10-second PPG was divided into 6.3-second segments with
a 6.27-second overlap and transformed to the frequency domain
using fast Fourier transform after windowing with a Hamming
window (Figure 1B). The frequency range of the spectrogram
image was set to 0-10 Hz, and the frequency resolution was set
to 0.81 Hz to equalize the number of time frames and frequency
bins, that is, to equalize the numbers of horizontal and vertical
pixels in the spectrogram image, respectively. Finally, 30
spectrogram patches of size 124 × 124 were generated for each
5-minute PPG. Figure 1C shows the averaged spectrograms
without pain (left) and with pain (right). All preprocessing and
spectrogram patches were generated using MATLAB (version
2018a; The MathWorks, Inc.).

Figure 1. Process for generation of a single spectrogram (A), process of generating multiple spectrograms over time using a sliding window (B) and
the average spectrogram during pain (left) and non-pain (right) conditions (C); FFT: fast Fourier transform; PPG: photoplethysmogram.

Convolutional Neural Network
CNNs are useful for image analysis because they have the
advantage of maintaining the spatial information of 2D or higher

inputs. CNNs enable data-driven learning, are highly
representative, and effectively combine the spatial information
of multidimensional inputs [18]; supervised CNNs extract
information more effectively due to class-specific information
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[19,20]. The CNN used in this study has a 2D PPG spectrogram
input and binary-coded labels: “0” is a pain-free state and “1”
is pain state. Figure 2 shows the structure of the CNN developed
in this study. First, in the convolution-max pooling layer
(Conv-Maxpool), 32, 64, and 128 filters are applied to the
spectrogram input to perform a convolution process, and the
spatial characteristics are simplified through max pooling. In
Conv-Maxpool, the filter size of all convolutional layers is 2 ×
2 and the stride is 1. The size of the feature map is reduced by
setting the filter size of the max pooling layer to 2 × 2 and stride
to 2, equal to the filter size. A batch normalization layer and
rectified linear unit (ReLU) activation functions are applied to
the Conv-Maxpool to increase learning speed and efficiency.
Batch normalization is a structure that improves the speed and
stability of neural networks by normalizing interlayer input data
[21], and ReLU improves the expressive power of neural
networks based on nonlinear features [22,23]. The
Conv-Maxpool process is repeated 3 times, resulting in a feature

map size of 15 × 15. The fully connected layer consists of 2
hidden layers and 1 output layer, and the ReLU activation
function and dropout are also applied to the hidden layer to
reduce overfitting [24]. The dropout rate was set to 0.5 in
training, but there was no dropout during testing. Cross-entropy
is employed as a cost function [25], and adaptive moment
estimation (Adam) is used as an optimizer [26]. Finally, the
result is output to 2 nodes, representing “pain free” and “pain,”
and the values are probabilistically expressed using the SoftMax
function [27]. Because the output of SoftMax gives the
probability of the input data being a painful condition with a
value between 0 and 1, it is converted into a pain index as the
“likelihood of pain.” Consequently, the spectrogram–CNN index
is calculated by multiplying the probability value output from
the pain node by 100. The CNN model was implemented and
trained using Python 3.7 (Python Software Foundation) and
TensorFlow 2.0 in the Anaconda environment.

Figure 2. Architecture of the convolutional neural network proposed in this study. X: input, F: filter, C: convolution layer, M: max pooling, N: number
of filters, BN: batch normalisation, ReLU: rectifier linear unit, Conv-Maxpool: convolution-max pooling.

Statistical Analyses
Receiver-operating characteristic (ROC) curves were computed
to compare the sensitivity and specificity of the
spectrogram–CNN index and SPI for detecting pain. Cutoff
values used for calculation of sensitivity and specificity were
computed as “best fit” (highest combined sensitivity and
specificity) [28]. The differences between the spectrogram–CNN
index and SPI in the ROC curves were calculated using the
MedCalc Statistical Software (version 13.3.1; MedCalc
Software). Statistical analyses were conducted using IBM SPSS
(version 22.0; SPSS Inc.). Data are expressed as mean (SD) for
normally distributed continuous variables, median (25%-75%)
for non-normally distributed continuous variables, and count

SPI for categorical variables. P values <.05 were considered to
be statistically significant.

Results

In total, 120 patients were enrolled, of whom 20 dropped out
because of failure of PPG data storage (n=8), failure of SPI data
storage (n=2), abnormal SPI data that could not be included in
the analysis (n=9), and failure to measure VAS after surgery
(n=1). Thus, 100 patients were included in the final analysis.
The characteristics of these patients are summarized in Table
1. All but 1 patient had consciousness values of 2 points
(conscious), as assessed by the modified Aldrete score at the
time of PACU arrival. One patient scored 1 (arousable on
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calling) who later had a value of 2 points upon leaving the
PACU.

Individual changes in the spectrogram–CNN index and SPI
without and with pain are presented in Figure 3. The 7 patients
who had no postoperative pain were excluded from this analysis.
In the case of pain, the mean spectrogram–CNN index and SPI
values increased significantly (baseline spectrogram–CNN
index: 28.5 (SD 22.1) versus PACU spectrogram–CNN index:
65.7 (SD 25.4), P<.01 in paired t test; baseline SPI: 42.5 (SD

16.7) versus PACU SPI: 53.5 (SD 17.8), P<.01 in paired t test).
The area under the curve (AUC) of the ROC and cutoff values
for detecting pain in terms of spectrogram–CNN index and SPI
are listed in Table 2. The spectrogram–CNN index was
statistically superior to the SPI (pairwise comparison of ROC
curves: spectrogram–CNN index versus SPI, P<.01). Moreover,
as shown in Table 2 and Figure 4, the spectrogram–CNN index
showed improved performance measures in terms of balanced
accuracy, sensitivity, and especially specificity.

Table 1. Characteristics of the study population.

Patients (N=100)Characteristic

44/56Male/Female

53.4 (12.5)Age (years), mean (SD)

161.8 (8.5)Height (cm), mean (SD)

62.2 (12.2)Weight (kg), mean (SD)

22/76/2ASA PSa 1/2/3

Type of surgery, n

29Breast

19Colorectal

12Hepatobiliary

30Stomach

10Thyroid

Postoperative pain intensity at PACUb, n

7No (VASc=0)

11Mild (0 < VAS ≤ 30)

58Moderate (30 < VAS ≤ 70)

24Severe (70 < VAS ≤ 100)

aASA PS: American Society of Anesthesiologists Physical Status.
bPACU: postanesthesia care unit.
cVAS: Visual Analog Scale (0=no pain; 100=the most severe pain).

Figure 3. Individual changes (n=100) in the spectrogram-convolutional neural network index (SCI, A) and the Surgical Pleth Index (SPI, B) and without
and with pain. *P<.05 vs. baseline. The black circles represent the average of 5 min of the SCI or SPI observed without and with pain. The red circles
indicate mean values for all patients. PACU: postanaesthesia care unit.
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Table 2. Areas under the receiver-operating characteristic curves (AUCs) and cutoff values for assessing pain in the spectrogram-convolutional neural
network index and surgical pleth index (SPI) in surgical patients.

SPISpectrogram–CNNa indexParameter

Test setValidation setTraining set

0.659 (0.646-0.671)0.757 (0.746-0.768)0.932 (0.921-0.942)0.992 (0.991-0.993)AUC (95% CI)

<.01<.01<.01<.01P value

44485450Cutoff valueb

65.2, 59.568.1, 73.883.1, 88.294.6, 96.4Sensitivity, %, specificity, %

62.471.085.795.5Balanced accuracy, %c

aCNN: convolutional neural network.
bCutoff values used for the calculation of sensitivity and specificity were calculated as “best fit” (highest combined sensitivity and specificity).
cBalanced accuracy is the corrected accuracy of the imbalance of a class set, calculated as (sensitivity + specificity)/2.

Figure 4. Performance measures of spectrogram-convolutional neural network index (SCI, red) and the Surgical Pleth Index (SPI, blue) in terms of
accuracy, sensitivity and specificity. Accuracy means balanced accuracy. Cut-off value of SCI was 48.

Neither spectrogram–CNN index (mild: 69.5 [53.2-87.7],
moderate: 71.8 [40.5-89.3], severe: 74.6 [62.9-84.7], P=.78,
Kruskal–Wallis one-way ANOVA on ranks) nor SPI (mild:
53.5 [SD 21.0], moderate: 51.8 [SD 18.0], severe: 57.9 [SD
15.7], P=.37; one-way ANOVA) could statistically distinguish
between mild, moderate, and severe pain. The frequency
distributions of the spectrogram–CNN index and SPI values
observed without and with pain during the data collection period

are shown in Figure 5. The distribution of SPI values overlapped
for with and without pain, suggesting that the SPI shows several
false positives/false negatives, whereas the distribution of
spectrogram–CNN index values showed a significant difference
(P<.05) in patients with and without pain, suggesting that the
spectrogram–CNN index can distinguish pain more clearly than
the SPI.

J Med Internet Res 2021 | vol. 23 | iss. 2 | e23920 | p. 6http://www.jmir.org/2021/2/e23920/
(page number not for citation purposes)

Choi et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Frequency distribution of the spectrogram-convolutional neural network index (SCI, A and B) and surgical pleth index (SPI, C and D) values
observed without (A and C) and with (B and D) pain. During the data collection period (baseline: 5 min, postanaesthesia care unit: 5 min), the SCI and
SPI values were observed every 10 sec. The vertical red lines show the median frequency (A: 11, B: 82, C: 32, D: 53).

Discussion

The spectrogram–CNN index proposed in this study
outperformed the commercialized SPI pain index in the
postoperative pain assessment of conscious patients. One of the
main reasons for its outperformance is the spectrogram input
containing the PPG’s intact waveform information, making it
possible to use hidden pain-related factors that could not be
provided only by the peaks. Because existing pain assessment
methods, such as the SPI, use only certain features of a PPG
that show significant changes in surgical stimuli, numerous
pain-related information reflected in the PPG may be
overlooked. To overcome these limitations, research has been
conducted on new pain-related features derived from
sophisticated PPG waveform analysis in addition to the heart
rate interval and PPG amplitude reflected in the SPI [5-7].
However, these pain indicators still depend on complex
processes, such as peak detection and feature extraction, which
require accurate peak extraction algorithms and are vulnerable
to signal quality degradation. The proposed PPG spectrogram
input does not require any peak detection or feature extraction
process, thus avoiding problems such as peak misdetection
during preprocessing. In addition, the spectrogram provides
information from almost the whole PPG waveform because
only the domain in which information is represented is

transformed, while the underlying information is retained. This
feature of the proposed model is its differentiating factor from
SPI, which requires a complicated process of extracting pain
features from biosignals, including PPG pulsation start and
systolic maximum detection and verification. These
preprocessing steps are necessary in existing pain assessment
methods, but they are cumbersome and vulnerable, providing
only limited features. Therefore, a simplified preprocessing
process that still provides plentiful feature information can
significantly improve the robustness of pain assessment.

Another key technique proposed in this study is the
discrimination of postoperative pain using machine learning.
Although machine learning–based pain assessment has already
been studied [29-31], it is not suitable for practical clinical
situations because it depends on high-dimensional clinical data,
such as patient records and electroencephalograms, which are
rarely used in postoperative care. However, machine learning
from PPGs, which are frequently used in clinical practice during
postoperative care, has high practical utility. In this study, we
used a spectrogram–CNN combination, which has already been
applied to electrocardiograms and electroencephalograms and
has shown reasonable performance in predicting seizures and
atrial fibrillation [32-35]. The spectrogram converts the data
into 2D, and the CNN has the advantage of extracting the spatial
features of multidimensional data. The combination of these
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techniques thus extends the dimensions of PPG and allows
spatiotemporal analysis, maximizing the use of features inherent
in the signal. Nonlinear classification may be another important
reason for the good performance of the proposed model. While
the SPI is derived from a simple linear combination of
normalized heartbeat interval and normalized pulse wave
amplitude [3,36], the proposed spectrogram–CNN model
performs nonlinear classification using the ReLU activation
function. In addition, the nonlinearity is increased because the
ReLUs are overlapped with each other in a multilayered
structure.

In this study, patient data used for model development and
validation were separated, and fivefold cross-validation was
performed to eliminate interindividual interference and to
generalize the model. Therefore, the proposed
spectrogram–CNN index is expected to show similar
performance in other groups of patients of similar age who did
not participate in model development. However, there may be
a few new variables to consider. In Table 2, performance
measures were approximately 95%, approximately 85%, and
approximately 70% for the training, validation, and test sets,
respectively. The decision criteria also differed with 50 in the
training set, 54 in the validation set, and 48 in the test set,
indicating that overfitting occurred. In a random permutation
test on balanced accuracy, the average accuracy was 49.5 (SD
0.7), and the range of values was 47.6-51.8. Considering that
all balanced accuracies of the training, validation, and test sets
were over 71, it is likely that the overfitting in our result
stemmed from large intersubject variability rather than the model
itself. Overfitting can be interpreted as degradation of the
model’s versatility, but it can also be interpreted as higher
performance, at least in terms of validation accuracy, if sufficient
data are used. Therefore, further studies are required to improve
the reliability and versatility of this index using a large patient
population with diverse body characteristics.

The spectrogram–CNN index may not have been able to
distinguish pain intensity because the number of observations
was relatively small. A previous study showed that SPI
distinguishes postoperative pain intensity [28]; however, the
authors of this previous study analyzed 1300 observations,
whereas we only used 93. Nonetheless, a more fundamental
reason is that the severity of pain was not accounted for when
developing the spectrogram–CNN index. If sufficient PPG data
were provided when learning to classify pain severity, it would
be possible to classify pain intensity.

The database used in this study was shared by 2 research groups.
Another group, independent of this study, has already published
their results. Their pain classifier, based on a deep belief network
using various PPG features, discriminated well between the
presence and absence of pain [37]. Compared to the other study
that extracted various features, ours used a simple spectrogram
containing all PPG information without any complicated feature
extraction procedure and is based on a CNN optimized for the
spectrogram input. CNNs have lead in the machine learning
field because they demonstrated performance improvements in

image recognition in 2012 [9]. Moreover, the previous study
evaluated pain based on full-length data, whereas ours assessed
pain every 10 seconds, the same data display interval as in the
SPI. Therefore, it can be applied to real-time pain assessment,
which is in contrast to the other study.

There are some limitations to this study. First, the SPI was
selected as a comparative index to evaluate the performance of
the spectrogram–CNN index, but its suitability is somewhat
debated. The SPI is neither developed nor recommended for
use in conscious patients. However, when a new analgesic index
is developed, it is essential to evaluate its performance, and this
is commonly done by comparing it with an existing index using
the same data. Although the SPI is not recommended for use in
conscious patients, some studies on conscious patients suggest
that SPI can discriminate between the presence and absence of
pain [28,38]. Between the SPI and another commonly used
commercial analgesic index—the Analgesia Nociception Index
(PhysioDoloris, MetroDoloris)—the AUC–ROC for detecting
postoperative pain in conscious patients was highest for the SPI
[38]. Hence, the SPI was chosen as the comparative index for
this study. Second, neostigmine and glycopyrrolate, when
administered to reverse neuromuscular blockade, can contribute
to PPG signals. As this study was observational, only data
necessary for the development of a new analgesic index were
collected during the normal anesthesia process without
intervention. Neostigmine and glycopyrrolate were used in all
patients because none of them required sugammadex.
Neostigmine is known to be rapidly eliminated from the plasma
after administration, with an average half-life of approximately
25 minutes [39]. We collected postoperative PPG data an
average of 29.4 minutes after administration of these 2 agents.
A previous study reported that baroreflex sensitivity was
restored to its baseline value after approximately 82 minutes of
glycopyrrolate administration [40]. It is possible that
glycopyrrolate has mixed effects on postoperative PPG.
However, because sugammadex usage is not common, it may
be more beneficial to develop an index to distinguish pain based
on data that can be obtained from actual practical conditions.
Further studies are required to evaluate the extent of the effect
of these 2 drugs on postoperative PPG. Third, it is difficult to
determine whether the PPG data collected from the PACU solely
reflect pain. In the conscious state, the sympathetic nervous
system may be activated for other reasons, such as arousal or
anxiety. Anxiety has been associated with reduced heart rate
variability and vagal tone [41]. As we did not evaluate patient
anxiety, we cannot determine its contribution to the PPG data.
Considering the condition of patients who arrived in the PACU
immediately after surgery, the PPG data mostly reflected
immediate postoperative pain without controlling consciousness.

In conclusion, although there were several limitations to the
study design, we confirmed that the newly developed
spectrogram–CNN index can effectively detect postoperative
pain in conscious patients. Further validation studies are required
to assess its feasibility and prevent overfitting to various
populations, including patients under general anesthesia.
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