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Abstract

Background: COVID-19 has spread very rapidly, and it is important to build a system that can detect it in order to help an
overwhelmed health care system. Many research studies on chest diseases rely on the strengths of deep learning techniques.
Although some of these studies used state-of-the-art techniques and were able to deliver promising results, these techniques are
not very useful if they can detect only one type of disease without detecting the others.

Objective: The main objective of this study was to achieve a fast and more accurate diagnosis of COVID-19. This study proposes
a diagnostic technique that classifies COVID-19 x-ray images from normal x-ray images and those specific to 14 other chest
diseases.

Methods: In this paper, we propose a novel, multilevel pipeline, based on deep learning models, to detect COVID-19 along
with other chest diseases based on x-ray images. This pipeline reduces the burden of a single network to classify a large number
of classes. The deep learning models used in this study were pretrained on the ImageNet dataset, and transfer learning was used
for fast training. The lungs and heart were segmented from the whole x-ray images and passed onto the first classifier that checks
whether the x-ray is normal, COVID-19 affected, or characteristic of another chest disease. If it is neither a COVID-19 x-ray
image nor a normal one, then the second classifier comes into action and classifies the image as one of the other 14 diseases.

Results: We show how our model uses state-of-the-art deep neural networks to achieve classification accuracy for COVID-19
along with 14 other chest diseases and normal cases based on x-ray images, which is competitive with currently used state-of-the-art
models. Due to the lack of data in some classes such as COVID-19, we applied 10-fold cross-validation through the ResNet50
model. Our classification technique thus achieved an average training accuracy of 96.04% and test accuracy of 92.52% for the
first level of classification (ie, 3 classes). For the second level of classification (ie, 14 classes), our technique achieved a maximum
training accuracy of 88.52% and test accuracy of 66.634% by using ResNet50. We also found that when all the 16 classes were
classified at once, the overall accuracy for COVID-19 detection decreased, which in the case of ResNet50 was 88.92% for training
data and 71.905% for test data.

Conclusions: Our proposed pipeline can detect COVID-19 with a higher accuracy along with detecting 14 other chest diseases
based on x-ray images. This is achieved by dividing the classification task into multiple steps rather than classifying them
collectively.

(J Med Internet Res 2021;23(2):e23693) doi: 10.2196/23693
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Introduction

Background
The COVID-19 pandemic has been causing significant health
concerns since 2019. Symptoms of the disease include fever,
cough, headache, and severe respiratory complications, which
can subsequently lead to death. When this disease first started
to spread in December 2019, numerous unknown facts were
reported in Wuhan, China, where the first outbreak occurred
[1]. By early January 2020, the government of China and the
World Health Organization recognized SARS-CoV-2, the novel
coronavirus known to cause COVID-19, as a pathogenic virus
that belongs to the same family (Coronaviridae) as the virus
known to cause severe acute respiratory syndrome (SARS). A
SARS outbreak was previously reported in China in 2002-2003
[2].

Medical x-rays (short for x-radiation) are a form of visible light
rays but with higher energy that penetrate the body to generate
images of tissues and structures within the body, including
bones, chest, and teeth. X-ray imaging is a very effective
diagnostic tool and has been used for several decades by
specialists to detect fractures, certain tumors, pneumonia, and
dental problems [3]. In advanced cases, computed tomography
(CT) can be used to produce a series of body images, which is
later assembled into a 3D x-ray image that is processed by a
computer. However, the traditional x-ray is a lot faster, easier,
cheaper, and less harmful than a CT scan [4].

Research has shown that deep learning can be used to make
predictions based on medical images by extracting characteristic
features, including the shape and spatial rotation, from the
images. Convolutional neural networks (CNNs) have played a
very vital role in feature extraction and learning patterns that
enable prediction. For example, a CNN is used to improve
extraction high-speed video-endoscopy when the training data
is very limited [5]. Advancements in image processing tools
have brought about a radical change in the current techniques
for the detection of pulmonary diseases. Researchers are
employing traditional computer vision as well as deep learning
algorithms to achieve satisfactory performance [3]. Several
primary benefits are strongly correlated with the advancement
of radiographic image classification tools. For example, in rural
areas, owing to a shortage of doctors and places where doctors
cannot be reached, such tools can prove useful. Once these tools
become pervasive in the health care industry, radiologists, clinic
practitioners, and even patients may utilize radiographic image
classification tools to monitor and treat several diseases. As a
result, this can reduce the burden on radiologists all over the
world, by abolishing the requirement to examine every x-ray
image for anomalies. Instead, the doctors will only need to focus
on the patients whose x-ray images are flagged by this tool. The
use of such tools can also eliminate the subjective opinion of
doctors, increase the speed of early diagnosis of disease, and
identify the minor details that may be overlooked by the human
eye in some cases.

For this study, owing to computational restraints, we did not
build a model from scratch, as such models require extremely
high-end computers. Rather, we used CNN as a class of deep
neural networks to propose a model to classify COVID-19 x-ray
images from x-ray images of a wide range of chest diseases.
Although the x-ray images of the other diseases are inadequate
for proper training and to achieve state-of-the-art results, we
generalized the data by considering data augmentation. This
mainly rescales the x-ray images and flips them horizontally,
in addition to a few other functionalities such as shift range,
zooming, and rotation.

The strength of this study is that it classifies x-ray images at
two different stages. The first stage involves enhancing the
model to detect COVID-19–specific x-ray images at a faster
speed than x-ray images of other chest diseases. This will result
in a significant increase in the classification speed. Thus,
considering a part of a dataset of chest x-ray (CXR) images for
the analysis will result in low-quality output and unsatisfactory
diagnoses. Accordingly, if the case is not classified as “normal”
or “COVID-19” at this stage, then the classification is continued
to the second stage, which involves classification for 14 other
chest and related conditions (ie, atelectasis, cardiomegaly,
effusion, infiltration, mass, nodule, pneumonia, pneumothorax,
consolidation, edema, emphysema, fibrosis, pleural, and hernia).
This also saves processing power if the x-ray image has been
classified as “normal” or “COVID-19” in the first stage itself.
To further enhance the accuracy of detection, we used UNet to
complete lung and heart segmentation. Because we used a
pretrained model, we were able to independently train 5 different
models for each stage. Models with the best training and test
accuracy were then selected for further analyses.

Based on our findings, we found that ResNet50 is the best model
for classification in both scenarios: classifying 3 classes and 14
classes. Moreover, image segmentation helps in increasing the
classification accuracy by up to 5%. We also trained a model
for all 16 classes and found that classifying for a large number
of classes significantly reduces the overall accuracy of the
model.

The main contributions of this study are as follows:

1. Introduction of new classification pipeline for more
accurate, automated classification in case of a large number
of classes, primarily to increase the accuracy of a specific
class.

2. Use of augmentation and semantic segmentation to increase
accuracy of the model.

3. Comparison between different deep learning models on the
basis of classification in cases of small and large number
of classes.

In this paper, we first review previous studies that used deep
neural networks for the detection of COVID-19 and other chest
diseases. Then, we discuss the datasets used for our experiments
as well as the study methodology, including data preprocessing,
data segmentation, and the setup for classification of the models.
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Finally, we present the results and analyses on the basis of the
models and dataset available.

Previous Work
Recently, with the rapid development of artificial intelligence,
an increasing number of researchers have begun to pay attention
to intelligent, deep learning−based diagnostic techniques. Some
of them have achieved significantly prominent results. In this
section, we first review the current, state-of-the-art techniques
concerning the application of artificial intelligence to chest
diseases in general, and then, we discuss the literature related
to COVID-19 detection using deep neural networks.

Detection of Chest Diseases Based on CXR Images by
Using Deep Neural Networks
Sivasamy and Subashini [6] used a Keras framework to classify
CXR images to predict lung diseases and reported an accuracy
of 86.14%. The accuracy of the model improved as the number
of epochs for training was increased. Wang et al [7] used
pixel-wise annotated digital reconstructed radiograph data to
train an unsupervised multiorgan segmentation model based on
x-ray images. In this case, the gaps in nodules annotated directly
on 2D x-ray images are quite challenging and time-consuming
due to the projective nature of x-ray imaging. Rajpurkar et al
[8] proposed a binary classifier for the detection of pneumonia
from frontal-view CXR images that achieved an f1 score of
0.435. Salehinejad et al [9] used a Deep Convolutional
Generative Adversarial Network (DCGAN) tailored model
designed for training with x-ray images wherein a generator is
trained to generate artificial CXR images. Their model obtained
its best accuracy when trained on an augmented dataset with
DCGAN-synthesized CXRs to balance the imbalanced real
dataset (D3). Chandra and Verma [10] used 5 different models
to identify pneumonia and reported 95.631% as the best
accuracy. The model is limited to analyzing only nonrigid,
deformable, registration-driven automatically lung regions and
segmented region of interest–confined feature extraction.
Previous studies using state-of-the-art techniques have achieved
effective results with one or two cardiothoracic diseases, but
these techniques could lead to misclassification.

A few techniques have targeted all 14 classes of chest diseases.
Wang et al [11] presented the largest publicly available dataset
of CXR images, which has provided a new dimension to the
research community. They achieved promising results using a
deep CNN and suggest that this dataset could be further
extended by using more disease labels. Smit et al [12] proposed
a deep learning−based technique to identify the 14 underlying
chest diseases. They trained the model to input a single-view

chest radiograph and output the probability of each of the 14
observations. Several models were trained to identify the one
with the best accuracy. They used DenseNet121 for their
research and found that it yielded the best accuracy, but it was
limited to the CheXpert dataset and liable to overfitting. A
pretrained DenseNet121 model and feature extraction techniques
were used for accurate identification of 14 thoracic diseases in
the study by Ho and Gwak [13].

Detection of COVID-19 Cases Based on CXR Images
by Using Deep Neural Networks
There are several state-of-the-art studies on deep learning and
machine learning models for COVID-19 diagnosis. A study by
Apostolopoulos and Mpesiana [14] took advantage of CNNs
for the automatic detection of COVID-19 by using CXR images.
They adopted transfer learning to solve for the small image
dataset challenge. Their COVID-19 dataset consisted of 224
sample medical images. Despite the size limitation, their results
showed effective automatic detection of COVID-19−related
diseases. Abbas et al [15] used the CNN-based DeTraC
framework. They also used transfer learning to achieve the best
performance. This model achieved 95.12% accuracy and 97.91%
sensitivity. Chen et al [16] provided a prediction of patients
with or without COVID-19 by using the UNet++ based
segmentation model. Narin et al [17] classified CXR images
using the ResNet50 model and obtained the highest classification
performance with 98% accuracy, using a dataset comprising
only 50 COVID-19 and 50 normal samples. Li et al [18] also
used a ResNet50 model with a dataset comprising 468
COVID-19 samples, 1551 community-acquired pneumonia
samples, and 1445 non-pneumonia samples; this model achieved
90% sensitivity. Using deep learning approaches to extract and
transform features, Li et al proved their model’s efficacy in
COVID-19 diagnosis [18]. Furthermore, Sethy and Behera [19]
used deep learning to extract deep features from x-ray images
and then used state vector machine to classify them into
COVID-19–positive and COVID-19–negative classes; they
achieved an accuracy of 95%. Hemdan et al [20] used transfer
learning and fine-tuning on state-of-the-art networks like VGG
and ResNetV2 to classify COVID-19–positive and
COVID-19–negative x-ray images; they achieved an accuracy
of 90%. Wang et al [21] proposed the M-inception model, a
variant of the inception model. They detected only COVID-19
CT images from all available images and achieved an accuracy
of 82%. Table 1 presents a comparison of previously studies
models using radiographic imaging classification for COVID-19
cases, normal cases, and other chest diseases.
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Table 1. Comparison of models detecting COVID-19 cases, normal cases, and other chest diseases based on medical images (data derived from [22]).

Gaps in classificationMethodologyAccuracy (%)Disease detected, nMedical imageReference

Other chest dis-
eases

NormalCOVID-
19

Used only 3 classes:
COVID-19, pneumonia,
and other

Used transfer learning on
VGG19. MobileNetV2,
Inception, Xception, and
InceptionResNetV2

93700504224X-rayApostolopoulos
and Mpesiana
[14]

Used only 3 classes:
COVID-19, pneumonia,
and normal

Introduced COVID-
Net—the first open-
source COVID-19 detec-
tion system

925526806653X-rayWang et al [23]

Used only 3 classes:
normal, COVID-19, vi-
ral and bacterial pneu-
monia

Used 5 pretrained net-
works and applied 3 bina-
ry classifications for 4
classes of chest x-rays

98N/Aa5050X-rayNarin et al [17]

Although they used x-
ray images of most dis-
eases, they used only 3
classes: COVID-19,
healthy, and disease

Defined 2 models based
on VGG16: one to classi-
fy affected x-ray images
from healthy ones and
the other to classify
COVID-19 from affected
x-ray images. Then, they
localized the affected ar-
eas.

9727533520250X-rayBrunese et al [22]

Used only 3 classes:
COVID-19, bacterial
pneumonia, and healthy

Proposed DRE-Net and
compared its perfor-
mance with VGG-16,
DenseNet, and ResNet

86N/A708777CTbSong et al [24]

Used only 2 classes:
COVID-19–positive
and COVID-19–nega-
tive

Proposed DeCoVNet for
classification

90N/A229313CTZheng et al [25]

Used only 3 classes:
COVID-19, Influenza-
A viral pneumonia, and
normal

Proposed ResNet-18

based CNNc network

86224175219X-rayXu et al [26]

Used only 3 classes:
COVID-19, pneumonia,
and no findings

Proposed DarkCovidNet925001000250X-rayOzturk et al [27]

Classified COVID-19
class from
non–COVID-19 class

Used 10 CNN networks
(ie, AlexNet and ResNet-
101) for classification of
2 classes

99510N/A510CTArdakani et al
[28]

Used only 3 classes:
COVID-19, communi-
ty-acquired pneumonia,
and non-pneumonia

Proposed COV-Net for
classifying 3 classes

96173513251296CTLi et al [18]

Used only 3 classes:
normal, COVID-19,
and SARS

Proposed DeTrac-
ResNet18 CNN that uses
Decompose, Transfer,
and Compose architec-
ture

95.121180105X-rayAbbas et al [15]

Used only binary classi-
fication for COVID-19
detection

Used UNet++ along with
Keras for segmentation
and COVID-19 detection

95.2455N/A51CTChen et al [16]

aN/A: not applicable.
bCT: computed tomography.
cCNN: convolutional neural network.
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Methods

Dataset
The first step involved preprocessing of the data, which includes
segmentation of the lungs and the heart from the whole image,
as an x-ray image contains many unnecessary details. To
perform this segmentation task, we trained the UNet model on
segmented CXR data obtained by the Japanese Society of
Radiological Technology, which were downloaded from their
official website [29], and their corresponding masks, which
were downloaded from the SCR database [30]. This dataset
contains 247 images. For classification purposes, data for

COVID-19 was collected from Cohen et al’s COVID Chest
X-ray dataset [31]. This dataset contains x-ray images of many
other diseases. Furthermore, x-ray images from the datasets
were separated using the available metadata file. Data for the
other 14 chest diseases were provided by the National Institute
of Health (NIH) and can be downloaded from the NIH Chest
X-ray Dataset of 14 Common Thorax Disease Categories [32].
Data available on the NIH Clinical Center website contains
112,120 images, belonging to 15 classes, which include 14
disease classes and 1 normal class—all of which were extracted
through the available metadata file. The number of images per
class is presented in Table 2.

Table 2. Number of images per class in the National Institute of Health Chest X-ray Dataset of 14 Common Thorax Disease Categories [32].

Testing set, nTraining set, nModel and class

Model 1

22455COVID-19

4051995Normal

7304600Other

Model 2

100200Atelectasis

100200Cardiomegaly

100200Consolidation

100200Edema

100200Effusion

100200Emphysema

100200Fibrosis

100150Hernia

100200Infiltration

100200Mass

100200Nodule

100200Pleural thickening

100200Pneumonia

100200Pneumothorax

The data were randomly split into training and testing sets, as
there were very few data related to COVID-19. The idea was
to keep the training set as large as possible given the small
number of images present. Image augmentation compensated
for the lack of data. This was not an issue for model 2 images.
For model 1, however, the lack of data can cause a change in
testing accuracy. To compensate for this issue, we also applied
data augmentation while testing.

Data Preprocessing
Every x-ray image has a different contrast and illumination as
they are taken under different lighting conditions. Therefore,
in the first step of preprocessing, histogram equalization was
applied. CXR images also contain unnecessary details, such as

the collarbone, shoulders, neck, and torso region. To remove
these unnecessary details, lungs and heart segmentation were
applied. For this purpose, the UNet segmentation model was
trained on images from the Japanese Society of Radiological
Technology with their corresponding masks. The architecture
of the UNet model is shown in Table 3. The input image size
fed to the network was 256×256×3. The contraction part acts
as an encoder that extracts the context from the image using
downsampling through the max-pooling layer. The expansive
path acts as a decoder that precisely localizes the segmentation
part using transpose convolution layers. It is an end-to-end,
fully connected network and does not contain any dense layers.
It also restores the image through upsampling.
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Table 3. Architecture of UNet model.

FiltersKernel sizePath, layer, and type

N/AN/AaInput Layer1

Contraction Path

163×3Convolution2

N/AN/ADropout (0.1)3

163×3Convolution4

12×2MaxPooling5

323×3Convolution6

N/AN/ADropout (0.1)7

323×3Convolution8

12×2MaxPooling9

643×3Convolution10

N/AN/ADropout (0.2)11

643×3Convolution12

12×2MaxPooling13

1283×3Convolution14

N/AN/ADropout (0.2)15

1283×3Convolution16

12×2MaxPooling17

2563×3Convolution18

N/AN/ADropout (0.3)19

2563×3Convolution20

Expansive Path

1282×2Transposed convolution21

N/AN/AConcatenate (21, 16)22

1283×3Convolution23

N/AN/ADropout (0.2)24

1283×3Convolution25

642×2Transposed convolution26

N/AN/AConcatenate (26, 12)27

643×3Convolution28

N/AN/ADropout (0.2)29

643×3Convolution30

322×2Transposed convolution31

N/AN/AConcatenate (31, 8)32

323×3Convolution33

N/AN/ADropout (0.1)34

323×3Convolution35

162×2Transposed convolution36

N/AN/AConcatenate (36, 4)37

163×3Convolution38

N/AN/ADropout (0.1)39

163×3Convolution40
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FiltersKernel sizePath, layer, and type

11×1Convolution (Sigmoid)41

aN/A: not applicable.

Data Augmentation
Before feeding the data to the network, image augmentation
was applied to tackle the problem of fewer data, that is, in the
case of COVID-19. For applying augmentation, the rotation
range was set to 90°, the horizontal flip was set to true, and the
vertical flip was also set to true. For each iteration, the image
data generator used a different transformation of the original
images. In the case of COVID-19, we had 445 input images
and 20 iterations; therefore, the data generator used 8900 images
for training in this case.

Classification Models
The main objective of this study was to classify COVID-19
x-ray images from normal x-ray images and those of 14 other

chest diseases. When a single model is trained for classifying
16 different classes, its accuracy tends to decrease, and in the
case of COVID-19 detection, that is not acceptable. To solve
this problem, a new pipeline was formed, which is illustrated
in Figure 1. Two models were trained. The first model was
trained to classify 3 classes: COVID-19, normal, and some other
disease. The second model was trained to classify the 14 other
chest and related diseases. Both models were trained separately.
To automate the process, if the first model classified the x-ray
as “some other disease,” then the second model was called to
further classify the disease as one of 14 other chest diseases,
using a simple “IF” condition. This architecture makes the
classification process easy, as there are fewer features that need
to be classified at the first stage.

Figure 1. Proposed pipeline of classification.

Classifier 1 only needs to learn how to distinguish COVID-19
and normal x-ray images from those of all the other 14 chest
diseases. The rule is simple: the fewer the classes, the fewer
features there are to learn and distinguish, and the greater the
accuracy. This is critical because the classification of COVID-19
is much more important than that of other diseases during the
ongoing pandemic. Finally, the burden of classifying the other
14 x-ray diseases falls on classifier 2, which now has 14 classes
to classify instead of 16. Furthermore, the 2 most important
classes have already been classified by classifier 1. Moreover,
to support the statement that accuracy indeed decreases when
classifying into 16 classes, a third model was trained for
classification into all 16 classes.

For classification purposes, the following 5 models were trained
for both classifications:

NasNetLarge, Xception, InceptionV3, InceptionResNetV2, and
ResNet50.

NasNetLarge was proposed by “Google Brain” in 2018 [33]. It
has two types of architectures—CIFAR10 and ImageNet.
CIFAR10 architecture has N number of normal cells and one
reduction cell repeating after each other; in the end, it has the
SoftMax function. ImageNet has two strides of convolutional
layers with a 3×3 kernel size at the start, followed by two
reduction cells; thereafter, it has the same architecture as
CIFAR10.

Xception was proposed by Google in 2017 [34]. It consists of
one entry flow, eight middle flow, and one exit flow. Entry flow
consists of convolutional and max-pooling layers with ReLU
as the activation function. The middle flow consists of only
convolutional layers with the ReLU activation function. Exit
flow consists of convolutional, max pooling, and global average
pooling layers with the ReLU activation function; in the end,
it has fully connected layers for classification.

InceptionV3 was proposed by Google in 2015 [35]. The basic
architecture of the model is the same, as it consists of
convolutional and pooling layers; in addition, it has three
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inception architectures as proposed previously [35]. Finally, at
the end, it has the logistic and SoftMax function for
classification into 1000 classes.

InceptionResNetV2 was proposed by Google in 2016 [36]. It
has the proposed inception and reduction blocks at the start,
and in the end, it has a pooling layer and dropout layer to prevent
overfitting. It classifies using the SoftMax function.

ResNet50 was proposed by Microsoft in 2015 [37]. It takes
residual learning as a building block and consists of
convolutional layers with an average pooling layer at the end.

Models were taken from Keras library in Python, which were
initialized with ImageNet weights. These models can classify
1000 classes, but we only needed to classify 3, 14, and 16 classes
for classifier 1, classifier 2, and classifier 3, respectively.
Therefore, these models were fine-tuned, and additional layers
were added. Table 4 shows the fine-tuning layers added at the
end of each pretrained model. The input image size given to the
models was 331×331×3.

Table 4. Fine-tuning layers for classifier 1, classifier 2, and classifier 3.

Classifier 3Classifier 2Classifier 1Type

KernelOutputKernelOutputKernelOutput

2×220482×220482×22048Average pooling

N/A8192N/A8192N/Aa8192Flatten

N/A1024N/A1024N/A1024Dense

N/A1024N/A1024N/A1024Dropout (0.5)

N/A1024N/A1024N/A1024Dense

N/A1024N/A1024N/A1024Dropout (0.5)

N/A16N/A1024N/A3Dense

aN/A: not applicable.

All the models explained in the Methods section were trained
and tested on Google Colab with 12 GB of RAM and GPU
(graphics processing unit) assigned by Google Colab.

Results

Initially, the UNet model was trained for segmentation of lungs
and heart. After Training UNet, the model had a training loss

of 16.75%, training accuracy of 87.13%, validation loss of
12.27%, and validation accuracy of 89.64%.

Figure 2 shows some sample segmented CXR images. With
image segmentation, we achieved up to 5% increase in the
accuracy of our models.

Figure 2. Sample segmented chest x-ray images.

After image segmentation was completed and new training data
were obtained, each training model was trained for 20 epochs
with a batch size of 8. The accuracy obtained from training is

shown in Table 5. The table shows that the maximum accuracy
for classifying the 3 classes, including COVID-19 was achieved
by using ResNet50 followed by NasNetLarge. These two models
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yielded accuracy that competes with that of the available
state-of-the-art models for COVID-19 prediction.

Classifier 2 did not show promising results in classifying the
14 other diseases. The main reasons for this were the large
number of classes and the continued overfitting of the model.
The maximum test accuracy achieved was 65.63% with
ResNet50 followed by 61.47% with NasNetLarge.

As described, our proposed model pipeline helps to increase
the accuracy of COVID-19 diagnosis when classifying 16

classes. Table 5 shows that when the 16 classes were combined
and classified, the detection accuracy decreases. In all the cases
except in the case of NASNetLarge and ResNet50 models, the
test accuracy decreased when classifying 16 classes. Moreover,
in the case of the NASNetLarge model, the increase in accuracy
is not very notable. The maximum test accuracy was achieved
with ResNet50, with an average of 71.905% over 10-fold
cross-validation.

Table 5. Average training, validation, and test accuracy achieved by different models through a 10-fold cross-validation.

Test loss (%)Test accuracy (%)Validation loss (%)Validation accuracy
(%)

Training loss (%)Training accuracy (%)Model and classifier

NasNetLarge

32.02889.6631.3291.2533.7891.801st

127.9961.47127.8361.2252.4584.672nd

121.3963.58123.4263.6868.3679.72Combined

Xception

35.9186.5836.2787.3329.2788.121st

133.9261.08133.0461.8848.7390.702nd

301.3947.75397.0822.28208.8929.88Combined

InceptionV3

5.23363.1957.3863.4369.2565.871st

139.9753.75142.2253.5756.4683.912nd

174.9738.83176.2438.31110.3365.52Combined

InceptionResNetV2

75.7963.1976.3562.4680.3265.101st

197.0753.75197.6654.0881.3083.372nd

200.2633.97200.6133.84134.2054.45Combined

ResNet50

20.3292.5223.0994.169.8496.321st

108.2465.63105.6367.5535.8587.832nd

88.9571.9187.0573.1426.1688.92Combined

The results obtained by our proposed approaches compete with
that of state-of-the-art methods (shown in Table 1). Graphs
illustrating the training and validation accuracy and loss for
classifiers 1, 2, and 3 are shown in Figures 3, 4, and 5,
respectively. To further evaluate the results, the AUC (area

under the curve), sensitivity, and specificity results for all the
networks were studied (Table 6). We found that ResNet50
achieved the maximum AUC, sensitivity, and specificity scores
compared to any other model.

J Med Internet Res 2021 | vol. 23 | iss. 2 | e23693 | p. 9http://www.jmir.org/2021/2/e23693/
(page number not for citation purposes)

Albahli & YarJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Graphs illustrating training and validation accuracy (left) and loss (right) over epochs for different models of classifier 1.
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Figure 4. Graphs illustrating training and validation accuracy (left) and loss (right) over epochs for different models of classifier 2.
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Figure 5. Graphs illustrating training and validation accuracy (left) and loss (right) over epochs for different models of classifier 3.
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Table 6. Average training, validation, and test accuracy achieved by different models through the 10-fold cross-validation.

Specificity (%)Sensitivity (%)AUCa (%)Model and classifier

NasNetLarge

93.4290.7397.611st

81.175.3382.152nd

93.8590.1593.88Combined

Xception

91.7888.6495.91st

81.1287.3892.252nd

80.6476.0983.19Combined

InceptionV3

85.5183.289.281st

81.2579.5391.692nd

93.783.2989.85Combined

InceptionResNetV2

77.9274.8880.651st

81.2579.2185.412nd

93.7582.6985.44Combined

ResNet50

95.2293.1498.731st

81.0385.6494.62nd

93.7293.496.9Combined

aArea under the curve.

Discussion

Principal Findings
In this study, we classified normal cases, COVID-19 cases, and
14 other chest diseases based on CXR images. We proposed a
novel, multiclass method for this purpose and used models that
were pretrained on ImageNet dataset to save training time and
resources. Our multilevel approach resulted in an increase in
the classification accuracy. We found that ResNet50 was the
best model for classification, yielding the highest accuracy.

Future Suggestions
This study tried to cover most aspects of detection of chest
diseases, but there is still work to be done. Most importantly,
there is a need for more data for patients with COVID-19, which
could help improve the accuracy of the model. At present, there
is a significant difference in the number of images per class for
the first level of classification.

This model can help in the first level of classification to
determine whether the person has COVID-19 or some other
chest disease, as x-rays are easier and less expensive than other
forms of radiographic imaging and can help determine the
severity of the disease. Although disease severity was not within
the scope of this study, future work in detecting the severity of
the disease can also be an important improvement in the
already-existing model. In addition, techniques such as the

Grad-Cam algorithm can be used to visualize the features in
radiographic images affecting the algorithm and to determine
disease severity. This algorithm will highlight which features
help the algorithm with the classification and which features
likely mislead the algorithm. This algorithm might also be the
key to investigating the low accuracy of the level-2 classifier
and can help improve its accuracy.

Conclusions
Deep learning has played a major role in medical image analysis
and feature extraction, which are applied to the detection of a
wide range of chest diseases. CNN architectures are popular for
their ability to learn mid- and high-level image representations
and to make predictions. Detecting the presence, or absence, of
COVID-19 in a patient is insufficient without addressing other
chest diseases. However, a deep learning system that is trained
to classify a large number of classes—16 in our case—has less
accuracy. This work aimed to deal effectively with this new
pipeline to help with a first-level differential diagnosis of
COVID-19 from other chest diseases. Subsequently, we applied
further enhancement to detect other chest diseases in order to
tackle multi-class chest classification in the detection of
anomalies on x-ray images. This approach yielded satisfactory
results.

Thus, we showed how our proposed models use state-of-the-art
deep neural networks to classify 16 cardiothoracic diseases by
training the models based on x-ray images in the database. Image
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segmentation was applied to remove unnecessary details, and
both classifiers were independently trained on segmented data.
However, our model can classify not only COVID-19 but also

14 other chest diseases, as well as normal x-ray images, with
satisfactory accuracy as compared with previous studies.
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DCGAN: Deep Convolutional Generative Adversarial Network
NIH: National Institute of Health
SARS: severe acute respiratory syndrome
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