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Abstract

Background: Misdiagnosis, arbitrary charges, annoying queues, and clinic waiting times among others are long-standing
phenomena in the medical industry across the world. These factors can contribute to patient anxiety about misdiagnosis by
clinicians. However, with the increasing growth in use of big data in biomedical and health care communities, the performance
of artificial intelligence (Al) techniques of diagnosis is improving and can help avoid medical practice errors, including under
the current circumstance of COVID-19.

Objective: This study aims to visualize and measure patients’ heterogeneous preferences from various angles of AI diagnosis
versus clinicians in the context of the COVID-19 epidemic in China. We also aim to illustrate the different decision-making
factors of the latent class of a discrete choice experiment (DCE) and prospects for the application of AI techniques in judgment
and management during the pandemic of SARS-CoV-2 and in the future.

Methods: A DCE approach was the main analysis method applied in this paper. Attributes from different dimensions were
hypothesized: diagnostic method, outpatient waiting time, diagnosis time, accuracy, follow-up after diagnosis, and diagnostic
expense. After that, a questionnaire is formed. With collected data from the DCE questionnaire, we apply Sawtooth software to
construct a generalized multinomial logit (GMNL) model, mixed logit model, and latent class model with the data sets. Moreover,
we calculate the variables’ coefficients, standard error, P value, and odds ratio (OR) and form a utility report to present the
importance and weighted percentage of attributes.

Results: A total of 55.8% of the respondents (428 out of 767) opted for AI diagnosis regardless of the description of the clinicians.
In the GMNL model, we found that people prefer the 100% accuracy level the most (OR 4.548, 95% CI 4.048-5.110, P<.001).
For the latent class model, the most acceptable model consists of 3 latent classes of respondents. The attributes with the most
substantial effects and highest percentage weights are the accuracy (39.29% in general) and expense of diagnosis (21.69% in
general), especially the preferences for the diagnosis “accuracy” attribute, which is constant across classes. For class 1 and class
3, people prefer the AI + clinicians method (class 1: OR 1.247, 95% CI 1.036-1.463, P<.001; class 3: OR 1.958, 95% CI
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1.769-2.167, P<.001). For class 2, people prefer the AI method (OR 1.546, 95% CI 0.883-2.707, P=.37). The OR of levels of
attributes increases with the increase of accuracy across all classes.

Conclusions: Latent class analysis was prominent and useful in quantifying preferences for attributes of diagnosis choice.
People’s preferences for the “accuracy” and “diagnostic expenses” attributes are palpable. AI will have a potential market.
However, accuracy and diagnosis expenses need to be taken into consideration.

(J Med Internet Res 2021;23(2):e22841) doi: 10.2196/22841
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Introduction

The phenomenon of uneven allocation and distribution of
high-quality doctor resources has existed for centuries with the
history of the modern medical industry, which brings about a
series of problems such as gaps in diagnosis accuracy, speed,
or accessibility in rural areas. According to a recent study, over
12 million patients in the United States have experienced one
or more misdiagnoses, and the misdiagnosis rate is 5.08% [1].
Some developing countries still face the problem of scarcity of
doctors. The World Health Organization (WHO) has suggested
that 2.5 doctors per 1000 people are needed to guarantee primary
health care [2]. However, it has been reported that there were
only 1.9 doctors per 1000 people in 2017 in China, and 45% of
WHO member countries still have less than 1 doctor per 1000
people [3]. Therefore, new medical technology, such as artificial
intelligence (AI) technologies, urgently needs to be improved.

The recent outbreak of an epidemic caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is a severe
threat to public health. The COVID-19 pandemic, with
lockdowns and unprecedented restrictions on movement, brings
a newer angle to the importance of AI diagnosis. With big data
growth in biomedical and health care communities, AI is
increasingly applied to antiepidemic medical practice.

Medical AI can be classified into eight main fields: medical
imaging and diagnosis, medical research, medical risk analysis,
drug mining, virtual nurse assistant, prognostics and health
management, mental health, and nutrition [4,5]. AI diagnosis
and treatment technologies have become increasingly mature
and are expected to become mainstream. As far as we know,
there is no clear proof of how health outcomes or costs
interdepend and correlate [6-8], although AI diagnosis was
assumed certainly to be the higher cost-performance option
from a medical angle. Such a lack of proof of clear superiority
of either diagnosis method gives prominence to the patients’
and medical institutions’ preferences. Thus, the acceptability
may be enhanced by choosing and adapting a diagnostic program
to cater to patients’ preferences.

In addition, the Ministry of Industry and Information
Technology of China demanded an increase in the praxis of
artificial intelligence in the precise prevention and control of
epidemics [9]. AI algorithms combine chest computed
tomography imaging reports with clinical symptoms, medical
history, and laboratory examination to rapidly diagnose patients
as infected by SARS-CoV-2. The AI system slightly reduced

misdiagnosis by radiologists [10]. The COVID-19 detection
neural network, a deep learning model, can precisely detect
SARS-CoV-2 and distinguish it from other pneumonia [11].
Artificial neural network modeling of SARS-CoV-2 morbidity
across the United States illustrated that a single-hidden-layer
multilayer perceptron could interpret nearly 65% of the
correlation with ground truth for the prognostication [12].

A few studies [13,14] have focused on the effect of outpatient
waiting time, diagnosis time, follow-up after diagnosis, etc in
patients’ decision making and concluded that these factors play
a vital role in patients’ trade-off and relative policy making.
However, with the development of AI in medicine and rise of
AI diagnosis, patients start shifting their focus to the accuracy
and expense of AI diagnosis. Thus, we aim to fill the gap that
exists because almost no studies focus on the effects of accuracy
or other attributes of AI diagnosis and clinicians in patients’
choice.

The objectives of this paper are to measure the extent of patients’
preferences for a range of characteristics of an AI diagnosis
scheme in China and to determine what characteristics are more
attractive and make AI a better alternative to defeat traditional
medical methods. A technique that is in common use for
visualizing preferences is the discrete choice experiment (DCE),
in which different alternatives with various attributes are given
in the form of a questionnaire to people who are invited to
choose options. In this paper, we will construct and make a
comparison of these three models: mixed logit (MXL) model,
generalized multinomial logit (GMNL) model, and latent class
model (LCM). Moreover, the importance of attribute levels and
preference heterogeneity must be compared and reported when
people are considering any AI diagnosis service.

Methods

Overview
We designed multiple choices in different scenarios consisting
of 6 different randomly selected attributes using conjoint-related
techniques. Questionnaires were created by Sawtooth software’s
Lighthouse Studio modules (version 9.8.1) for general interviews
and choice-based conjoint (CBC) scenario design. Respondents
were aged 18 to 85 years. Meanwhile, in this data analysis
section, we aimed to visualize and measure the percentage
weight and importance of different attributes with selected
models. From the perspective of public health, McFadden’s
conditional logit [15], which is also known as multinomial logit
(MNL) [16], is widely applied to organize, analyze, and predict
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the data we had and help with further analysis of statistical
significance. However, the foundation of using this model is
that we acquiesce that unobserved heterogeneity of preference
does not exist across respondents. Therefore, we then need to
introduce a MXL model [17] and a GMNL model [18], both of
which take unobserved heterogeneity of preference into account.
The LCM [19] might also be an appropriate model to apply
here, since it divides the data into various groups with fixed
segmented size and the evident probability of latent membership
[20]. With different latent classes, we can clearly distinguish
the most important attributes or attributes’ levels of each class
and summarize these attributes with a significant percentage
weight.

Principle of DCE
Random utility theory [21] is the basic principle of DCE. The
principle assumes that all the choice selectors have M different
choice alternatives, and each choice alternative corresponds to
a utility W. The utility W is consistent with a combination of
fixed and random utility. The stationary utility U can be
explained by some observable elements x, while the random
factor ε represents the influence and interference unobserved
utility and possible error. The goal of choice selectors is to
choose the best combination with the supreme utility; then the
probability of each combination alternative being selected can
be expressed as a function of its fixed utility: P = F(U). The
specific form of the function depends on the distribution of

random effects. In most model settings, the utility that is optical,
Uv, will be expressed as a linear combination of elements x, that
is, Uv = βx. β is a coefficient, and its value and significance
level can be estimated from the observation data.

Selection of Attributes
Based on the relevant literature [22-24], we have assumed that
the patients’preference or satisfaction with the medical choices
mainly depends on some specific features that make up the
essential attributes of our experiment. Moreover, we performed
a pilot test to get the attributes and levels that we need in our
research. Patients in the outpatient queue of the First Affiliated
Hospital of Jinan University (Guangzhou Overseas Chinese
Hospital) and the First Affiliated Hospital of Sun Yat-sen
University were interviewed and invited to have a discussion
of what attributes patients are most likely to attach importance
to. In addition, the possible attributes’ levels are hypothesized
and set in a certain sequence in our questionnaire; for instance,
accuracy ranks from 0% to 100%.

Therefore, in our questionnaire, six attributes have been
contained for our experiment: (1) diagnostic method; (2)
outpatient waiting time before being asked; (3) diagnosis time;
(4) accuracy (ratio of correct diagnosis); (5) follow-up after
diagnosis (whether the outpatient doctor/AI doctor can follow
up and follow up at any time); and (6) diagnostic expenses.
Every attribute and its levels are presented in Table 1.

Table 1. 6 different attributes hypothesized and their levels in discrete choice experiment questionnaire.

LevelsDiagnosis methods

Clinicians’ diagnosis; AI diagnosis + clinicians’ confirmation; AI diagnosisDiagnostic methods

0 min; 20 min; 40 min; 60 min; 80 min; 100 minOutpatient waiting time

0 min; 15 min; 30 minDiagnosis time

60%; 70%; 80%; 90%; 100%Accuracy

Yes; NoFollow-up after diagnosis

¥0; ¥50; ¥100; ¥150; ¥200; ¥250Diagnostic expensesa

aA currency exchange rate of ¥1=US $0.15 is applicable.

Questionnaire and DCE Design
The questionnaire contains two sections. In the first section,
which is also known as demographic questions, we aim to
allocate the respondents’ basic information: age, gender, and
highest education level. In the second section, we use the CBC
function in Sawtooth software to create various combinations
of scenarios for respondents to choose from.

When we use the factorials method [25] to analyze the attributes
to give the combinations of scenarios, we encounter several
obstacles. Since we have 6 attributes that give 3240
(3×6×3×5×2×6) possibilities, we assume that we have 6 random
questions and 100 sets, which also gives 600 different
combinations. The difficulty is how to extract 600 representative
combinations from 3240 combinations and obey two basic
principles [26] at the same time: (1) balance and (2)

orthogonality. Balance means each attribute level appears
equally often within an attribute, and level 1 in attribute 1 equals
level 2 in attribute 2. Orthogonality means each pair of levels
appears equally often across all pairs of attributes. However, it
is almost unrealistic to handle such a huge task. Therefore, we
use Sawtooth software to help us select suitable combinations.
We set six random tasks, one fixed task, and two concepts per
task (excluding “None Option”). Meanwhile, we set the sample
size 500 and assume that 5% of respondents would choose
“None Option” and finally design the test.

The standard error of almost all the attributes’ levels is <0.05.
Since the expense is a continuous variable of which the standard
error could be slightly higher than 0.05, a sample size of 500
should be sufficient for our experiment. One of the CBC tasks
of the DCE questionnaire has been presented in Table 2.
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Table 2. An example scenario of choice-based conjoint in the questionnaire.

NoneDoctor BDoctor AAttributes

Clinicians' diagnosisAI diagnosisDiagnostic methods

200Outpatient waiting time (min)

6080Accuracy (%)

YesNoFollow-up after diagnosis

200150Diagnostic expenses (¥)a

No choiceChoose Doctor BChoose Doctor AWhich method would you choose?

aA currency exchange rate of ¥1=US $0.15 is applicable.

Data Collection Procedure
We sent our website link containing our DCE questionnaire
through social media apps such as Facebook and WeChat. In
addition, we gave respondents some rewards such as Mi bands
or a small cash payment if the respondents could fully complete
the questionnaire.

Statistical Analysis

GMNL Model and MXL Model
With collected data, some models can be applied in our analysis;
first is the GMNL model. We do not use the MXL model or the
scaled-multinomial logit (S-MNL) model here since the GMNL
model, which is developed by Fiebig (2010) [27], nested a MXL
model and scaled multinomial model. Meanwhile, the GMNL
model could accurately describe consumers’ preferences and
heterogeneity. According to Fiebig et al, the probability of
respondent i choosing alternative j in choice situation t is given
as follows:

Here, βi is a vector of an individual-specific parameter and the
individual coefficients of independent variables can be described
as follows:

βi = σiβ + {γ + σi(1 – γ)}ηi

where the β is a constant vector, the “effect” σi in our model is
a parameter of individual-specific scale, and γ is a parameter
that decides how σi and ηi are different in some degrees. With
this equation, when σi equals 1, our GMNL model will become
an MXL model. Meanwhile, when the variance of ηi becomes
0, our GMNL model will turn into a S-MNL model. When σi

equals 1 and variance of ηi equals 0 are both satisfied, the
GMNL model will transform into an MNL model. Sawtooth
will be needed to help run the coefficients of all attributes,
standard errors, and t ratios to calculate P values. Differences
between attributes are also needed to calculate the odds ratios.
We calculate the odds ratio using the following equation:

odds ratio = exp (current effect – reference effect)

LCM
In addition, the LCM will be applied. LCM is a latent variable
model because the latent variable is discrete. According to
Greene and Hensher (2003) [28], the principle of LCM is that
the observable attributes and latent heterogeneity decide the
individual behavior. The heterogeneity changes with the
unobserved factors. This model is used to sort individuals into
a set of classes with a certain segmented size and scale, and
different effects of each class have been estimated for different
attributes. As well, the LCM will help us measure the differences
and similarities of preference across classes of respondents.
Attributes’ importance and part worth utilities will also be
needed for visual analysis and comparison of attributes and
deciding which attribute is the most essential from the people’s
perspective. Additionally, the average maximum membership
probability will help predict the certainty of the class into which
respondents are divided.

Results

Respondents
428 participants (aged 18-85 years) who provided complete
data were included in the analysis. Among those with complete
data, 206 (48.1%) were male and 222 (51.9%) were female,
while 2 of them were pregnant women.

Attributes’ Levels and Utility Report
The average utility values of all the attributes’ levels were
measured using the Utility Scaling Method with zero-centered
differences. The highest utility levels of the six hypothesized
attributes are “AI diagnosis + clinicians’ confirmation” (of
“diagnosis method”), “20 min” (of “outpatient waiting time”),
“15 min” (of “diagnosis time”), “100%” (of “accuracy”), “Yes”
(of “follow-up”), and “¥0” (of “diagnostic expenses”),
respectively. The most important attribute is “accuracy,”
meaning that the majority of respondents ranked that attribute
(Table 3).
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Table 3. The utility report of different attributes’ levels.

UtilityAttributes and levels

Diagnostic methods

−11.51Clinician 

57.64AI + clinician 

−46.13AI 

Outpatient waiting time (min)

12.570 

35.4120 

4.4140 

−27.9960 

−24.4080 

Diagnosis time (min)

−7.020 

4.1415 

2.8830 

Accuracy (%)

−116.3160 

−60.6570 

−2.2480 

59.7590 

119.44100 

Follow-up after diagnosis

27.88Yes 

−27.88No 

Diagnostic expenses (¥)a

47.910 

32.9350 

32.25100 

−5.92150 

−24.91200 

−82.25250 

None

−235.59N/Ab

aA currency exchange rate of ¥1=US $0.15 is applicable.
bN/A: not applicable.

Logit Result of DCE and Attributes’ Percentage
Importance
In general, it is obvious that attribute “accuracy” was the most
important factor and most preferred when facing the diagnosis.

As is presented in Figure 1, the percentage importance of
attribute “accuracy” was 39.29%, which undoubtedly shows
the position of accuracy of diagnosis in people’s minds.
Attributes “diagnostic expenses” and “diagnostic method”
ranked second and third, respectively.
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Figure 1. Percentage importance of attributes in general condition and latent class condition.

The results of the logit analysis of all attributes’ levels are
presented in Table 4. For the diagnosis method, the coefficient
of level “AI + clinician” is positive, which means that the level
“AI + clinician” is positively correlated with people’s preference
and utility. In addition, the coefficients of levels “0 min,” “20
min,” and “40 min” (of “outpatient waiting time”) are positive,
and others are negative. It is clear that people have a preference

for shorter outpatient waiting time. For other attributes’ levels,
people prefer to choose the higher accuracy level, greater
possibility to follow up after diagnosis, and lower diagnosis
expense. However, for the attribute “diagnosis time,” people
unexpectedly prefer a longer diagnosis time rather than the “0
min” option.
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Table 4. The result of logit analysis of preference in general (N=428).

95% CIOdds ratioP valueStandard ErrorCoefficientAttributes and levels

Diagnostic methods

Reference.060.03829−0.07226Clinician

(1.446-1.682)1.559<.0010.03860.37192AI + clinician

(0.738-0.860)0.797<.0010.03926−0.29966AI

Outpatient waiting time (min)

Reference.100.058180.095070

(1.014-1.274)1.136<.0010.058150.2229820

(0.836-1.056)0.939.590.059650.0325340

(0.673-0.847)0.755.0020.0586−0.1862460

(0.687-0.866)0.771.0060.05915−0.1643580

Diagnosis time (min)

Reference.250.03857−0.044460

(0.999-1.162)1.077.440.038530.0300115

(0.984-1.143)1.061.710.038310.0144430

Accuracy (%)

Reference<.0010.06294−0.7438260

(1.253-1.582)1.408<.0010.05957−0.401670

(1.863-2.330)2.084.870.057−0.009780

(2.759-3.461)3.090<.0010.057870.3843190

(4.048-5.110)4.548<.0010.059430.77081100

Follow-up after diagnosis

<.0010.024150.18169Yes

<.0010.02415−0.18169No

Diagnostic expenses (¥)a

Reference<.0010.066320.306780

(0.810-1.050)0.922<.0010.066060.2257250

(0.795-1.032)0.906.0020.066730.20776100

(0.620-0.806)0.707.550.06692−0.04055150

(0.545-0.708)0.621.010.06693−0.16992200

(0.378-0.496)0.433<.0010.06916−0.52978250

aA currency exchange rate of ¥1=US $0.15 is applicable.

For the P value of these attributes’ levels, we assume that if the
P value of a level is less than .05, then this level is statistically
significant; when the P value of a level is less than .001, then
this level is extremely statistically significant. We found that
“AI + clinician” and “AI diagnosis” for “diagnosis methods”
are extremely statistically significant; “20 min” of outpatient
waiting time is extremely statistically significant; “60 min” and
“80 min” are statistically significant; “60%,” “70%,” “90%,”
“100%” of “accuracy” are extremely statistically significant;
both levels of attribute “follow up after diagnosis” are extremely
statistically significant. “¥0’” of attribute “diagnostic expenses”
is extremely statistically significant, and all the other levels of
diagnostic expenses are statistically significant.

The odds ratio is a commonly used indicator in case-control
epidemiological studies. In our analysis and calculation results
(Table 4), we find that some odds ratios of the attributes’ levels
compared to the reference level are greater than one, which
means that the probability of people’s choosing of these levels
is higher than the previous one or the reference. Taking the level
“Clinician” of attribute “diagnostic methods” as the reference,
level “AI + clinician” has an odds ratio of 1.559 (95% CI
1.446-1.682). The odds ratio of level “20 min” (of “outpatient
waiting time”) is 1.136 (95% CI 1.014-1.274) with the reference
of level “0 min.” Levels “15 min” and “30 min” (of “diagnosis
time”) have odds ratios 1.077 and 1.067, respectively, with the
reference of level “0 min” (95% CI 0.999-1.162 and
0.984-1.143, respectively). All the levels of the attribute
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“accuracy” were greater than one, which means the preference
weights increase with the accuracy. Meanwhile, all the odds
ratios of expense compared to the reference are smaller than
zero, which refers to a preference of “free diagnosis” for the
majority of people.

Latent Class Analysis Result
We compared these potential models and selected the model
that maximized the area under the receiver operating
characteristic curve and minimized the Akaike information
criterion (AIC) [29,30] and Bayesian information criterion (BIC)
[31] to penalize for model complexity. According to AIC, 5
classes should be the best choice for our model. However, if
we must choose with BIC, then a 2-class option should be the
most appropriate one, since 2-class has the lowest BIC. Under
such circumstances, we compare ABIC, which means sample
size–adjusted BIC [32] and involves sample size value. After
comparing, the 3-class option has the lowest value of ABIC.
Therefore, the most suitable number of latent classes in our
model was 3 (Table 5 and 6). First of all, we divided all 428
respondents into 3 classes with segment sizes of 174 (40.7%),
30 (7.0%), and 224 (52.3%). The average maximum membership
probability is around 0.87 and the percent certainty was 35.30,

which is relatively low, meaning that there was not much
uncertainty according to the respondents divided into classes.

For class 1, t ratios for attributes “diagnostic expenses,”
“‘accuracy,” and “follow-up after diagnosis” were significant
across all treatment modalities. Attribute “accuracy” was the
most important factor for patients with 52.8%, followed by
“diagnostic expenses” and “follow-up after diagnosis” with
percentage importance 13.51% and 13.10%, respectively (Figure
1). Meanwhile, the span of percentage weights of “accuracy”
is obvious (Figure 2), from −2.33 to 2.52. Meanwhile, the span
of attribute “diagnostic expenses” is from −0.819 to 0.423. The
preference weights of “diagnostic expenses” decrease with the
increasing of the expenses. The preference weight of attribute
“follow-up after diagnosis” is from −0.602 to 0.602. This is
−0.602 for “No follow-up” and 0.602 for “follow-up”, which
is symmetrical. In addition, the odds ratio of level “AI +
clinicians” was 1.247 (95% CI 1.036-1.463), meaning that the
majority of patients prefer durable treatments over a single
treatment. As well, all the levels of attribute “diagnosis time”
with the reference level “0 min” are larger than one. At the same
time, the odds ratio (Table 7) of the levels of attribute
“accuracy” increases with the accuracy rate, meaning that
people’s preference weight increases with the accuracy.
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Table 5. Result of 3 latent classes’ conditional logit analysis.

Class 3, n=224 (52.3%)Class 2, n=30 (7.0%)Class 1, n=174 (40.7%)Attributes and levels

P valueSECoefficientP valueSECoefficientP valueSECoefficient

Diagnostic methods

.0030.050−0.153.540.282−0.175.0460.0830.062Clinician

<.0010.0520.518.770.287−0.085<.0010.0820.282AI + clinician

<.0010.051−0.365.370.2860.260<.0010.085−0.344AI

Outpatient waiting time (min)

.720.077−0.028.430.476−0.385<.0010.1280.5300

<.0010.0790.351.760.422−0.128.240.1240.14720

.250.0800.091.030.3650.819.670.132−0.05740

<.0010.079−0.314.480.455−0.330.450.127−0.09560

.200.079−0.100.960.4140.023<.0010.122−0.52680

Diagnosis time (min)

.680.051−0.021.270.2800.317.170.084−0.1170

.720.0510.018.170.345−0.481.280.0820.08915

.950.0510.003.560.2800.164.730.0820.02830

Accuracy (%)

.010.080−0.209.040.803−1.717<.0010.166−2.33760

.100.078−0.129.220.555−0.693<.0010.131−1.17070

.670.0780.034.450.4570.353.650.112−0.05080

.090.0790.135.170.4060.577<.0010.1221.03690

.030.0790.170<.0010.3701.480<.0010.1692.522100

Follow-up after diagnosis

.040.0310.066.240.2070.250.0030.0590.603Yes

.0350.031−0.066.240.207−0.250.030.059−0.603No

Diagnostic expenses (¥)a

<.0010.0900.398.530.4920.313.0030.1400.4240

.140.0880.131<.0010.4121.831.030.1430.32450

.0090.0900.236.660.506−0.228.040.1420.289100

.250.089−0.102.540.4600.284.330.1490.144150

.170.089−0.123.040.983−2.106.010.146−0.361200

<.0010.091−0.538.860.533−0.093<.0010.144−0.819250

aA currency exchange rate of ¥1=US $0.15 is applicable.

Table 6. Percent certainty and information criteria for model with 3 latent classes.

ValueCharacteristic

35.307Certainty (%)

3580.631Akaike information criterion

3922.719Bayesian information criterion

3735.263Sample size–adjusted Bayesian information criterion
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Figure 2. Latent class percentage weights in class 1. AI: artificial intelligence; RMB: yuan renminbi.
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Table 7. The odds ratios and confidence intervals of attributes’ levels in 3 classes.

Class 3, n=224 (52.3%)Class 2, n=30 (7.0%)Class 1, n=174 (40.7%)Attributes and levels

95% CIOR95% CIOR95% CIORa

Diagnostic methods

N/AReferenceN/AReferenceN/AbReferenceClinician

(1.769-2.167)1.958(0.624-1.920)1.094(1.036-1.463)1.247AI + clinician

(0.732-0.895)0.809(0.883-2.707)1.546(0.564-0.787)0.666AI

Outpatient waiting time (min)

N/AReferenceN/AReferenceN/AReference0

(1.252-1.703)1.460(0.566-2.957)1.293(0.535-0.868)0.68120

(0.963-1.316)1.126(1.628-6.821)3.332(0.429-0.720)0.55640

(0.643-0.877)0.751(0.433-2.580)1.057(0.418-0.686)0.53560

(0.797-1.085)0.930(0.688-3.388)1.504(0.274-0.442)0.34880

Diagnosis time (min)

N/AReferenceN/AReferenceN/AReference0

(0.942-1.149)1.040(2.229-0.885)0.450(1.047-1.444)1.22915

(0.927-1.132)1.024(0.469-1.485)0.858(0.986-1.357)1.15630

Accuracy (%)

N/AReferenceN/AReferenceN/AReference60

(0.930-1.263)1.084(0.938-8.271)2.785(2.484-4.159)3.21470

(1.095-1.485)1.275(3.240-19.417)7.931(7.912-12.258)9.84980

(1.207-1.648)1.411(4.480-21.962)9.920(22.962-37.064)29.17390

Follow-up after diagnosis

N/AReferenceN/AReferenceN/AReferenceYes

(0.824-0.931)0.876(0.405-0.910)0.607(0.267-0.337)0.300No

Diagnostic expenses (¥)c

N/AReferenceN/AReferenceN/AReference0

(0.644-0.911)0.766(2.037-10.222)4.563(0.683-1.199)0.90550

(0.713-1.015)0.851(0.216-1.571)0.583(0.662-1.154)0.847100

(0.509-0.722)0.606(0.394-2.394)0.972(0.565-1.102)0.756150

(0.499-0.707)0.594(0.013-0.612)0.089(0.343-0.607)0.456200

(0.328-0.469)0.392(0.234-1.895)0.666(0.217-0.383)0.289250

aOR: odds ratio.
bN/A: not applicable.
cA currency exchange rate of ¥1=US $0.15 is applicable.

For class 2, the attribute “accuracy,” as well as “diagnostic
expenses,” was relatively important. Meanwhile, “diagnostic
expenses” was (surprisingly) the most important for respondents
among the attributes with a percentage weight of 39.09%,
followed by “accuracy” with a percentage of 31.75% (Figure
1). The span of the percentage weights of these two attributes
has been presented in Figure 3. The percentage weights for
attribute “accuracy” were from −1.717 to 1.480, and −2.10 to
1.830 for “diagnostic expenses” (Figure 3). From P values, we

find that almost all the levels are not statistically significant
except the “100%” level of “accuracy” and level “¥50” of
“diagnostic expenses.” The odds ratio (Table 7) displays that
the AI method is the best of three methods. The odds ratio of
levels of “outpatient waiting time” are all greater than 1, and
patients’ preference weight still increases with the increasing
of “accuracy” as in class 1. For attribute “diagnostic expenses,”
only the level “¥50” has an odds ratio greater than 1.
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Figure 3. Latent class percentage weights in class 2. AI: artificial intelligence; RMB: yuan renminbi.

For class 3, attributes “diagnosis method” and “outpatient
waiting time” were more statistically significant across all the
attributes. For respondents in this class, the percentage
importance of “diagnosis method” and “outpatient waiting time”
were 29.09% and 30.83%, respectively (Figure 1). From Figure
4, we find that the span for diagnostic methods is from −0.364
to 0.518. Meanwhile, the span for diagnostic expenses is from
−0.538 to 0.397. In addition, the odds ratio of level “AI +
clinicians” of attribute “diagnostic method” was 1.985 (95%
CI 1.769-2.167), which is greater than 1, meaning that
respondents in class 3 also prefer durable diagnosis mode rather
than single mode, similar to the condition of class 1. All of the

odds ratios of levels of attributes “outpatient waiting time” and
“accuracy” are greater than 1. Meanwhile, the odds ratio
continues increasing with the increase of accuracy, the same
condition of the previous two classes.

For these 3 latent classes, attribute “accuracy” is the most
preferred factor in two classes (class 1 and class 2), while
“diagnostic expenses” is the most preferred factor in class 3. In
addition, the odds ratio of levels of attribute “accuracy” always
increases with the increasing of accuracy rate, meaning that
people’s preference will always grow with the increase, and
higher accuracy is always preferred.

Figure 4. Latent class percentage weights in class 3. AI: artificial intelligence; RMB: yuan renminbi.
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Discussion

Principal Findings
Several different models were used in our study to research
people’s preference for various attributes, including a GMNL
model and LCM; both models presented with their own merits
and shortcomings.

For the GMNL analysis and the utility report, we found that
“accuracy” was the most important thing for respondents and
most of the levels of attributes “diagnostic methods” and
“accuracy” were statistically significant. From the odds ratio,
most of the respondents have a preference for the AI diagnosis
plus clinicians’ confirmation with outpatient waiting time of 20
minutes, diagnosis time of 15 minutes, and 100% accuracy. We
would expect that the outpatient waiting time of 0 minutes and
diagnosis time of 0 minutes should be preferred. However, the
preferred choice was not 0 minutes. We assume that some people
believe that a longer diagnosis time can give them more
credibility and a feeling of safety. Furthermore, the odds ratio
of 1.559 for “AI diagnosis + clinicians’ confirmation” was
evidently higher than only “AI diagnosis,” which reflects that,
for now, the vast majority of people still cannot totally trust the
AI diagnosis due to the factors of AI uncertainty. AI diagnosis
acting in concert with clinicians will significantly guarantee the
accuracy. Another defect of AI diagnosis is that patients follow
up after diagnosis, which means that patients who cannot receive
follow-up have no alternatives but to head to clinicians as
outpatients, which indirectly results in missing the best patient
treatment time. That also leads to huge inconvenience to both
patients and clinicians. Those who have an evident preference
for only AI diagnosis may as a result of freshness and relatively
higher diagnosis time of AI method, with sacrifice of accuracy
in their mind. Thus, we can still consider the clinicians’
diagnosis to remain irreplaceable, at least in the short term. The
limitation of the GMNL model was also obvious; some
respondents with preferences for other diagnostic methods and
different diagnosis expenses cannot be reflected.

From the LCM, our study finds that respondents who are divided
into 3 classes show different preferences and different patient
profiles. There was slight heterogeneity compared to the GMNL
model. Specifically, respondents in class 1 and class 2 still attach
importance to “‘accuracy”; however, respondents in class 3
mostly pay attention to “diagnostic expenses.” Although medical
insurance and accessibility are quite advanced today, some
patients hardly get access to basic medical diagnosis or
treatment, particularly in some underdeveloped or remote areas
in China. Some old people would rely on their own self-healing
function or immune system [33] rather than go to the hospital
due to their outdated concepts of unaffordable diagnosis and
treatment expenses. Therefore, the acceptability of AI diagnosis
or even modern medical techniques among old people is
palpably lower than among new generations in China due to
the concepts of cost. In addition, we hypothesized that the
numbers of hospitals in remote areas is undoubtedly lower than
those in urban or advanced areas, which results in the people
living in remote areas having to undertake the transportation
time and cost. The long transit time and cost could also

sometimes be fatal to these people since that would also force
them to stay at home and miss the most appropriate diagnosis
and treatment time. To sum up, the promotion and spread of AI
diagnosis cannot ignore the need to set a suitable diagnosis price
or give some discount and bonus according to the wealth status
of patients.

Several previous studies [13] have found that most patients
believe the outpatient waiting time plays a vital role in their
decision-making behavior when faced with various choices of
hospitals and clinicians. In addition, few studies [14] have
attached importance to the quality and quantity of follow-up
after clinical diagnosis. However, all of these studies ignored
the effect of diagnosis accuracy and diagnosis expense in
patients’ trade-offs. Especially in the era of artificial intelligence,
there are few studies addressing the accuracy of AI versus
human clinicians rather than the outpatient waiting time or other
factors. With diagnostic accuracy, clinically, the AI system can
be programmed to probe and mark out some cancer indications
such as prostate cancer and is more accurate than experts [34].
The clinical application could reduce pathology workload in
this epidemic and in future clinical work. An AI system with
expert-level grading performance might contribute a second
opinion, aid in standardizing grading, and provide expert advice
in areas with poor sanitation. As cloud computing capabilities
come closer to life, overcomes limited memory, and central
processing unit power [35]. We believe ever more and more
people will trust the rapid diagnostic capabilities of AI. There
is a lot of SARS-CoV-2–related scientific research undertaken
to use AI to combat this pandemic by deploying new methods
in the development of vaccines and drugs, as well as for public
awareness [36]. Relying on the advantages of AI for medical
auxiliary diagnosis, image analysis, remote consultation, etc
during the outbreak of COVID-19, many AI devices have been
used in first-line medicine. Moreover, AI is reducing cross
infection. It has played an important role in therapeutic
innovation. Health QR Code, which is a fusion of AI and big
data, is a mobile phone app for everyone and uses red, yellow,
and green colors to provide simple and effective intelligent
services for personnel communication and economic and trade
exchanges in the China in the “postepidemic era.”

AI will continue to play an increasingly important role in
controlling the public health crisis to save lives and economic
recovery. AI contact tracing based on mobile communication
technology becomes more mature [37]. The AI systems
combining computed tomography and clinical symptoms can
help to quickly diagnose SARS-CoV-2 patients [10]. A surrogate
rapid diagnosis technique that is based on a deep learning neural
network can be applied for discovering SARS-CoV-2 by
analyzing the visual chest radiography imaging of patients [38].

Limitations

Limitations for Our DCE
Theoretically, the larger the sample size is, the smaller the
changes we will find in the DCE; however, due to various
reasons related to the pandemic, we applied convenience
sampling in the data collection procedure. Thus, our sample
size is relatively small and underrepresentative. Furthermore,
the other significant shortcoming of our DCE data is that our
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statistics do not stand for the point of view of all the people in
China or other people worldwide due to the limited transmission
of our questionnaire. We did not set the diseases as acute or
chronic, which is an exogenous factor that will affect people's
choice of waiting time.

Limitations for AI Diagnosis Propaganda
With AI diagnosis, there exists a requirement for rapid delivery
and logistics of medicine. Furthermore, the conceptual
propaganda for AI diagnosis and treatment are still not in place,
particularly in some rural areas and among some old people
with relatively traditional medical concepts. Confidence and
trust in the AI diagnostic method still have a long way to go.

Conclusion
Segments of patients’ preferences for these diagnosis options
seem to be homogenous and convergent. All the attributes

hypothesized and attributes’ levels are evidently not ignorable
during the implementation and widespread use of AI diagnosis
techniques. People’s preference for “accuracy” was obvious
across different classes. Although “online treatment” has become
more common today, accuracy has been sacrificed in exchange
for so-called convenience, which is totally unwise. In addition,
AI diagnosis technique developers as well as technology sellers,
including hospitals, should take diagnosis expense into
consideration and make pricing rules more flexible in the light
of areas’economic development and individual patients’wealth
status.

AI will definitely have a potential market and bright future,
especially in the ongoing COVID-19 pandemic, since the AI
diagnostic technology can ease the requirements of professional
clinicians worldwide, particularly in rural areas.
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