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Abstract

There is clear evidence to suggest that diabetes does not affect all populations equally. Among adults living with diabetes, those
from ethnoracial minority communities—foreign-born, immigrant, refugee, and culturally marginalized—are at increased risk
of poor health outcomes. Artificial intelligence (AI) is actively being researched as a means of improving diabetes management
and care; however, several factors may predispose AI to ethnoracial bias. To better understand whether diabetes AI interventions
are being designed in an ethnoracially equitable manner, we conducted a secondary analysis of 141 articles included in a 2018
review by Contreras and Vehi entitled “Artificial Intelligence for Diabetes Management and Decision Support: Literature Review.”
Two members of our research team independently reviewed each article and selected those reporting ethnoracial data for further
analysis. Only 10 articles (7.1%) were ultimately selected for secondary analysis in our case study. Of the 131 excluded articles,
118 (90.1%) failed to mention participants’ ethnic or racial backgrounds. The included articles reported ethnoracial data under
various categories, including race (n=6), ethnicity (n=2), race/ethnicity (n=3), and percentage of Caucasian participants (n=1).
Among articles specifically reporting race, the average distribution was 69.5% White, 17.1% Black, and 3.7% Asian. Only 2
articles reported inclusion of Native American participants. Given the clear ethnic and racial differences in diabetes biomarkers,
prevalence, and outcomes, the inclusion of ethnoracial training data is likely to improve the accuracy of predictive models. Such
considerations are imperative in AI-based tools, which are predisposed to negative biases due to their black-box nature and
proneness to distributional shift. Based on our findings, we propose a short questionnaire to assess ethnoracial equity in research
describing AI-based diabetes interventions. At this unprecedented time in history, AI can either mitigate or exacerbate disparities
in health care. Future accounts of the infancy of diabetes AI must reflect our early and decisive action to confront ethnoracial
inequities before they are coded into our systems and perpetuate the very biases we aim to eliminate. If we take deliberate and
meaningful steps now toward training our algorithms to be ethnoracially inclusive, we can architect innovations in diabetes care
that are bound by the diverse fabric of our society.
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Introduction

There is clear evidence to suggest that diabetes does not affect
all populations equally [1]. Among adults living with diabetes,
those from ethnoracial minority communities—foreign-born,
immigrant, refugee, and culturally marginalized [2]—are at
increased risk of poor health outcomes [3-6]. Numerous studies
have reported ethnoracial differences in glycemic control [7,8],
diabetes prevalence [9], risk of diabetes complications [10], and
diabetes-related mortality [11]. Data from the Centers for
Disease Control indicate that non-Hispanic Black people are
2.3 times more likely to die from diabetes than their
non-Hispanic White counterparts [12]. Similarly, young people
living with diabetes from Black or Hispanic backgrounds are
at increased risk of poor long-term glycemic control when
compared to White youth [13]. The social determinants of health
describe the social, economic, and physical conditions in which
people are “born, live, learn, work, play, worship, and age,” as
well as the impact that such environments have on health
outcomes [14]. As a result of the well-accepted contribution of
the social determinants toward diabetes outcomes [15], we know
that ethnoracial minority populations are also more likely to
experience socioeconomic adversity and subsequent challenges
with diabetes management and access to care [16]. This
association likely follows from the increased prevalence of
various diabetes risk factors (eg, low birth weight, physical
inactivity, obesity, smoking) in individuals of low
socioeconomic status (SES) [16-18]. In Canada, where 21% of
the population are foreign-born and live in the nation’s largest
urban centers [2], people with a household income less than
Can $15,000 (US $11,745) are 4 times more likely than those
with a household income greater than Can $80,000 (US $62,635)
to be diagnosed with type 2 diabetes (T2D) [19]. For people
living with type 1 diabetes (T1D), low SES has been associated
with an increased risk of poor glycemic control [20], as well as
higher levels of mortality and morbidity [21].

Innovative technologies are actively being researched and
developed to mitigate the burden of diabetes on patients and
the health care system. Among the potential solutions, artificial
intelligence (AI) appears to be well suited for diabetes
management given that this chronic condition has long been
guided by quantitative data collected by patients, their devices,
and their care providers [22]. These data can be computationally
complex for patients to make sense of on their own to inform
their diabetes management [23]. AI, or the ability for “computers
to think like humans” [24], has revolutionized many consumer
technologies (eg, facial recognition, fraud detection, self-driving
vehicles) and is now gaining momentum in the health care field.
AI technologies are being developed for various areas of
medicine such as medical imaging analysis [25-27],
prognostication [28-30], and clinical decision support [31-33].
In diabetes care, AI is being applied for blood glucose prediction
and control [34,35], identification of adverse events [36,37],
lifestyle support [38,39], and predicting diabetes risk [40,41].

Despite the potential applications of AI in diabetes care, several
factors may predispose these technologies to ethnoracial bias.
The effectiveness of an AI algorithm is largely dependent on
the quality of training data, as well as how accurately training

data represent the population that will ultimately be affected by
the algorithm [42]. As health data have traditionally been
collected on predominantly White populations [43] or have
simply omitted relevant ethnoracial information [44], algorithms
trained on such data are at risk of ignoring race and ethnicity.
Such ethnoracial disparities have long been present in clinical
decision support tools, with various algorithms being arbitrarily
corrected for race with little or no scientific justification [45].
These algorithms are widely used to inform important clinical
actions such as specialist referrals [46,47] and assess candidacy
for particular interventions [48,49]. In AI, where the effects of
biases may be dramatic and difficult to identify [50], careless
incorporation of ethnoracial data may perpetuate health
inequities for those communities in most need. The alarming
potential for clinical decision support tools to be algorithmically
biased in favor of advantaged populations demands careful
evaluation to promote their ethnoracial inclusivity. We believe
that to optimize equitability, AI research should (1) establish a
training population that is representative of the general
population, (2) report the ethnoracial distribution of the training
set, and (3) discuss potential ethnoracial limitations of the
training data. To our knowledge, these simple tenets are not
being met in existing diabetes AI research.

As a digital health research group preparing to build AI-based
diabetes management tools [51], we want to address the
challenges of promoting equity in AI and derive
recommendations that can inform our work and the field at
large. In an effort to better understand whether diabetes AI
interventions are being designed in an ethnoracially equitable
manner, we conducted a rapid case study whereby we assessed
articles curated in an existing literature review of AI-based
diabetes management tools. Our objectives were to (1) review
ethnoracial considerations reported in past articles on AI-based
diabetes support tools and (2) propose a strategy to promote
ethnoracial equity in such tools in the future. This viewpoint
serves to document the findings from our case study and the
recommendations proposed by our group to advance ethnoracial
equity in diabetes AI.

Case Study

Methods
We conducted a secondary analysis of 141 articles included in
a high-impact literature review published in the Journal of
Medical Internet Research in 2018 by Contreras and Vehi
entitled “Artificial Intelligence for Diabetes Management and
Decision Support: Literature Review” [52]. The selected review
included articles describing AI technologies for diabetes
management and decision support, as well as their associated
challenges. We chose this review over comparable syntheses
of the literature based on the short time since publication, the
breadth of diabetes AI interventions included for review, and
the impact that the review has had on informing the diabetes
AI field.

Two members of our research team independently reviewed
each of the 141 articles and selected those reporting ethnoracial
data for further analysis. Articles were selected for analysis if
they included an explicit description of participants’ ethnic
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background, racial background, or both. Articles were excluded
if they were review papers, selected participants from a single
ethnoracial group, or were inaccessible by the research team.
The following criteria were charted for each of the selected
studies: article type, diabetes type, ethnicity distribution, race
distribution, number of participants, and source of data (ie,
electronic medical record, electronic health record).

Results
In screening the 141 articles included in the Contreras and Vehi
review, only 10 (7.1%) were ultimately selected for secondary
analysis in our case study [53-62]. Of the 131 excluded articles,
118 (90.1%) failed to mention participants’ ethnic or racial
backgrounds. The remaining articles were excluded because
they were review papers (n=5), selected participants from a
single ethnoracial group (n=3), or were inaccessible by our
research team (n=5).

The 10 articles selected for detailed analysis are summarized
in Multimedia Appendices 1-3. Most articles were T2D-focused
(n=8), with the remaining articles focused on T1D (n=1) and
gestational diabetes (n=1). The main report types were
retrospective analyses of data pulled from electronic medical
records (n=5) or generated through randomized control trials
(n=2). The reviewed articles reported ethnoracial data under
various categories, including race (n=6), ethnicity (n=2),
race/ethnicity (n=3), and percentage of Caucasian participants
(n=1). Race was typically distributed between White (or
Caucasian), Black (or African American), Asian, American
Indian, and Alaska Native. Ethnicity was generally reported as
Hispanic and non-Hispanic. Among articles specifically
reporting race, the average distribution was 69.5% White, 17.1%
Black, and 3.7% Asian (Multimedia Appendix 1). The 2 articles
that specifically included ethnicity reported 7.2% and 21.3%
Hispanic patients (Multimedia Appendix 2) [53,61]. The average
distribution in articles that merged race and ethnicity was 55.4%
non-Hispanic White, 8.1% non-Hispanic Black, 19.9% Hispanic,
and 8.3% Asian (Multimedia Appendix 3). Only 2 articles
reported inclusion of Native American participants [59,61]. The
sole non-American study was performed in the Netherlands and
included 97.7% Caucasian participants [60].

Several of the selected studies also included specific discussion
of ethnoracial themes. Rohan et al stated that their research was
limited by the homogeneity of their study population and that
the generalizability of their findings should be further
investigated [54]. Two more studies acknowledged that their
study populations were mainly White [58,60], with one stating
that their predominantly White and female demographic was
“not uncommon in behavioral weight loss studies” [58]. Valdez
et al intentionally oversampled racial and ethnic minorities and
identified very few ethnoracial differences in health information
communication patterns [61]. McCoy et al noted that
race/ethnicity did not contribute to their predictions of glycemic
trajectory and proposed that ethnoracial disparities in glycemic
control may reflect differences in access to health care and
medications [57].

Discussion

Ethnoracial Inequities in Diabetes AI
Diabetes AI programs are intended to improve diabetes-related
health outcomes, experience, and expenditure [63,64]. However,
it is unclear whether such systems benefit all populations
equally. In our informal case study of 141 articles related to
AI-based diabetes tools, we identified only 10 articles that
specifically reported the ethnic or racial distribution of their
studied patient population. We believe that this paucity of
ethnoracial data in the reviewed articles significantly limits the
effectiveness of the associated AI technologies. Several
examples of such ethnoracial bias in clinical algorithms have
been previously reported in the literature [42,45]. The long-used
Framingham risk factors, which were modelled using a largely
non-Hispanic White population, have recently been shown to
inadequately capture risk in certain minority groups [65]. The
STONE score to predict the likelihood of kidney stones in
patients with flank pain equates Black race with lower risk [66];
however, an external validation study found no significant
association between non-Black race and increased risk of
developing kidney stones [67]. The Vaginal Birth after Cesarean
(VBAC) algorithm predicts a lower likelihood of successful
vaginal delivery in African American and Hispanic mothers
having previously undergone cesarean section [68], while
ignoring other factors (eg, private insurance status, marital
status) that have been significantly associated with VBAC
success [49]. A recent AI-based tool for classifying images of
skin cancer was reported to perform similarly to trained experts
[69]; however, the training images were predominantly of
light-skinned individuals, and performance was not assessed
on those with darker skin [70]. These examples highlight the
importance of effective ethnoracial considerations in the
development of clinical decision support tools.

Despite the promise of AI, several factors predispose AI
algorithms to negative biases. One limitation of AI models is
the so-called distributional shift, where erroneous predictions
result from a mismatch between the training population and the
population on which the model is used. Such a mismatch can
result from “bias in the training set, change over time, or use
of the system in a different population” [50]. Essentially, the
robustness of AI algorithms is dependent upon the degree to
which the training population represents the target population
[71]. In addition to the distributional shift phenomenon, the
complexity and black-box nature of AI algorithms often
obfuscates underlying errors or biases, specifically when
compared to simpler rule-based systems [50]. The detection of
such biases in AI algorithms often requires careful consideration
of model behavior in response to changing inputs [72]. In the
case of ethnoracial data, the omission of such information could
result in a distributional shift based on ethnicity, race, or both
in resultant models, which may be difficult for researchers to
identify at the time of development.

Given the clear ethnic and racial differences in diabetes
biomarkers, prevalence, and outcomes [7-10,12,73], the
inclusion of ethnoracial data is also likely to improve the
accuracy of predictive models. The predictive value of race and
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ethnicity is well-documented in the literature, where they have
been shown to independently predict health decline for adults
living with diabetes [74,75]. The impact of specific risk factors
for T2D have even been shown to vary for both sex and race,
with the most predictive factors being waist circumference in
Black men, 2-hour glucose from an oral glucose tolerance test
in Black women, and fasting glucose in both White men and
White women [76]. As a result of these associations between
diabetes outcomes and ethnoracial information, the consideration
of ethnoracial data is likely to enhance both the accuracy and
generalizability of resultant AI-based diabetes tools.

In those articles we reviewed that did include ethnoracial
information, there was very little standardization in terms of
how these data were reported (eg, race, race and ethnicity,
race/ethnicity). Race distinguishes individuals based on ancestry
and combinations of physical characteristics, whereas ethnicity
focuses on behavior and culture in addition to physical features
[77]. Inconsistent reporting of ethnic and racial information
hinders the ability to perform meta-analyses across multiple
data sets and may limit ethnoracial equity in future AI
applications [78]. In their writings on eliminating health
disparities, Fremont and Lurie state that data pertaining to race
and ethnicity are collected by a variety of sources, but “the
utility of these data is constrained by ongoing problems with
reliability, completeness, and lack of comparability across data
sources” [79]. Though differences in the reporting of ethnoracial
data are expected across jurisdictions, we propose that authors
attempt to report such data in a manner that is easily comparable
to locally available data. For example, the US census reports
race and ethnicity separately, with ethnicity being used to
determine whether an individual is of “Hispanic origin or not”
and race being categorized as “White, Black or African
American, Asian, American Indian or Alaska Native, Native
Hawaiian or Other Pacific Islander, and other” [80]. Kiran et al
recently assessed Canadian patient perspectives on routinely
being asked about their race and ethnicity through a
sociodemographic questionnaire [81]. They found that patients
were not uncomfortable disclosing their race and ethnicity and
intuitively understood how the data could be helpful for their
health care providers. Their work has subsequently informed
the collection of race-based data during the COVID-19
pandemic [82]. These are just two examples of standards that
will allow for comparison with locally available data and in
turn enable the assessment of ethnoracial generalizability and
cultural competence in diabetes AI algorithms.

In considering the average race distribution of the reviewed
studies, the proportions for White (69.5%) and Asian race
(3.7%) were slightly lower than those values reported in recent
US census data (76.3% and 5.9%, respectively). The opposite
was true for the Black race, which accounted for 17.1% of study
participants but only 13.4% of US census participants. In those
studies reporting race and ethnicity as a combined variable, the
average proportion of non-Hispanic whites (55.4%) was slightly
lower than the census value of 60.1% [83]. These findings likely
follow from the high prevalence of diabetes in the non-Hispanic
Black population, specifically when compared to the
non-Hispanic White and Asian populations [84]. One
particularly worrisome finding was that data from Native

American participants were reported in just 2 studies [59,61],
despite making up an estimated 1.3% of the American
population [83] and being the ethnoracial group with the highest
age-adjusted prevalence of diagnosed diabetes [9]. Poor
Indigenous representation in health and governmental data sets
has been previously reported in the literature [85,86]. In Canada,
where Indigenous peoples account for 4.9% of the population
[87] and are disproportionately affected by diabetes [88], failure
to include Indigenous data when training diabetes AI models
could propagate existing issues of health inequity and structural
racism in this population [89,90].

A Simple Screening Tool to Assess Ethnoracial Equity
in Diabetes AI
Detailed guidelines currently exist for the development of
trustworthy and human-centric AI technologies [91]. However,
we believe there is a need for simple tools to screen the ethnic
and racial generalizability of AI in health care. Based on the
findings from our case study, we have developed a short
screening tool that researchers and clinicians may use to assess
ethnoracial equity in research describing AI-based diabetes
interventions. The rationale and structure of this tool borrows
from the Jadad scale [92], which was conceived by the founder
of our research group over two decades ago and is widely used
to assess the methodological quality of a clinical trial [93,94].
We propose the following set of five questions to consider the
ethnoracial relevance of diabetes AI:

1. Did the research explicitly describe the disease under study
(eg, T1D, T2D, both)? (1a) Did the research describe
ethnoracial differences in disease prevalence, biomarkers,
and outcomes?

2. Did the research clearly describe the sources of data used
in the training data set (eg, electronic medical record,
administrative data repository, research registry)? (2a) Did
the research describe ethnoracial limitations in the sources
of data?

3. Did the research explicitly report the ethnic and racial
backgrounds of individuals in the training data set? (3a)
Are ethnic and racial backgrounds reported in a manner
that is easily comparable to local census data?

4. Do the ethnic and racial distributions in the training data
set accurately represent the population on which the
algorithm will be used? (4a) Did the research articulate
limitations of the ethnic and racial distributions in the
training data set?

5. Did the research describe strategies to mitigate ethnoracial
bias in the algorithm?

Although we feel that our proposed tool will be helpful in
assessing clinical AI algorithms generally, it will be particularly
important in the development of diabetes AI. We believe that
these innovations will fail to serve the diabetes community if
they are not trained on ethnoracially diverse data. As AI-based
systems become integrated into important aspects of diabetes
management, such ethnoracial inequities in model development
could ultimately be dangerous for minority groups whose
biomarkers and outcomes may differ from the general
population. In the Contreras and Vehi review, most studies
focused on T2D self-management, clinical decision support,
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and prediction tools. Each of these dimensions of diabetes care
can be affected by ethnoracial factors. For example, adherence
to T2D medications to achieve euglycemia is demonstrably
driven by cultural beliefs, values, social factors, religion, health
literacy, and language barriers [95,96]. Similar issues are likely
to follow in the T1D space, where AI algorithms are currently
focused on automated insulin delivery systems but will likely
shift toward the above dimensions in the near future [63,97,98].

Addressing ethnoracial bias in diabetes AI has been made even
more critical by the coronavirus disease 2019 (COVID-19)
pandemic [99]. There is growing evidence to support a
“bidirectional relationship between COVID-19 and diabetes”
[100]. Research suggests that diabetes is a risk factor for rapid
progression and poor prognosis of COVID-19 [101,102].
New-onset diabetes is also being reported in previously healthy
individuals diagnosed with COVID-19 [103-105], which may
reflect coronavirus-inflicted damage to insulin-producing cells
[106,107]. We are concerned by these findings from a health
equity lens, given that COVID-19 has been found to

disproportionately affect ethnoracial minorities. The Centers
for Disease Control and Prevention have already determined
that individuals from Black and American Indian or Alaska
Native communities have a rate of hospitalization or death from
COVID-19 that is 5 times greater than that of their White
counterparts [108]. It stands to reason that the increased
prevalence of both COVID-19 and diabetes in ethnoracial
minority groups and the relationship between these two
conditions require ethnoracial considerations in all aspects of
diabetes care.

At this unprecedented time in history, AI can either mitigate or
exacerbate disparities in health care. Future accounts of the
infancy of diabetes AI must reflect our early and decisive action
to confront ethnoracial inequities before they are coded into our
systems and perpetuate the very biases we aim to eliminate [45].
If we take deliberate and meaningful steps now toward training
our algorithms to be ethnoracially inclusive, we can architect
innovations in diabetes care that are bound by the diverse fabric
of our society.
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