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Abstract

Background: Facial expressions require the complex coordination of 43 different facial muscles. Parkinson disease (PD) affects
facial musculature leading to “hypomimia” or “masked facies.”

Objective: We aimed to determine whether modern computer vision techniques can be applied to detect masked facies and
quantify drug states in PD.

Methods: We trained a convolutional neural network on images extracted from videos of 107 self-identified people with PD,
along with 1595 videos of controls, in order to detect PD hypomimia cues. This trained model was applied to clinical interviews
of 35 PD patients in their on and off drug motor states, and seven journalist interviews of the actor Alan Alda obtained before
and after he was diagnosed with PD.

Results: The algorithm achieved a test set area under the receiver operating characteristic curve of 0.71 on 54 subjects to detect
PD hypomimia, compared to a value of 0.75 for trained neurologists using the United Parkinson Disease Rating Scale-III Facial
Expression score. Additionally, the model accuracy to classify the on and off drug states in the clinical samples was 63% (22/35),
in contrast to an accuracy of 46% (16/35) when using clinical rater scores. Finally, each of Alan Alda’s seven interviews were
successfully classified as occurring before (versus after) his diagnosis, with 100% accuracy (7/7).

Conclusions: This proof-of-principle pilot study demonstrated that computer vision holds promise as a valuable tool for PD
hypomimia and for monitoring a patient’s motor state in an objective and noninvasive way, particularly given the increasing
importance of telemedicine.

(J Med Internet Res 2021;23(2):e21037) doi: 10.2196/21037

KEYWORDS

Parkinson disease; hypomimia; computer vision; telemedicine

Introduction

Facial expressions are an essential component of interpersonal
communication [1]. They depend on our ability to voluntarily
and involuntarily contract facial muscles [2], which are
innervated by facial nerves. However, neurodegenerative
diseases can cause cognitive disorders that affect expressivity
[3] and cortical or peripheral nerve traumas [4], and can limit
the production of facial expressions and emotion recognition

[5,6]. This affects the ability to contract facial muscles by
causing hemifacial spasms and can produce involuntary
movements (ie, tics) and muscle weakness or stiffness.

Parkinson disease (PD) is a neurodegenerative disease that
produces a gradual and generalized loss of motor functions,
including the ability to contract facial muscles during
spontaneous and voluntary emotional expressions [7], and
voluntary nonemotional facial movements [8]. This reduced
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ability leads to a loss of facial expressiveness that generates a
signature “mask-like” appearance of the disease, which is also
known as hypomimia. This loss of expressivity is often
confounded with depression [2,9], a common symptom in
patients with PD. However, even nondepressed PD patients
show hypomimia, supporting the hypothesis of a motor control
impairment in addition to the effects of depression [2,9]. A
hypomimia rating is part of the Unified Parkinson Disease
Rating Scale (UPDRS) [10], which is the gold standard clinical
assessment tool. When assessing a patient for hypomimia,
neurologists rate on a 5-point scale as follows: 0 for normal
facial expression, 1 for minimal hypomimia, 2 for slight but
abnormal diminution of facial expression, 3 for moderate
hypomimia, and 4 for severe or complete loss of facial
expression [10].

Disease progression does not seem to produce uniform facial
masking across people. Studies of differential deficits in specific
muscles [7] and sections of the face have documented
asymmetric patterns [11] during posed smiling. However,
previous work was based on constrained laboratory tasks where
facial expressions were either evoked by sensory stimulations
[12] or posed [7,11], limiting the applicability of the results to
spontaneous natural expressivity.

In experimental settings, the quantification of masked facies in
patients with PD has been traditionally performed with manual
scoring [11,13,14]. A method capable of objectively
characterizing variations in naturally occurring facial
expressions that vary with disease progression would allow the
patient state to be continuously evaluated outside of a clinical
setting, opening up the possibility of remote or
telemedicine-based monitoring. Video analysis has started to
demonstrate success in objectively quantifying emotions in
psychiatry [15,16] and neurology [17].

Computational methods based on known face components (eyes,
mouth/lips, action units, skin, and shape) have been proposed
[18-24]. For instance, eye-tracking algorithms [18] have been
successful at quantifying the reduction in emotion recognition
by patients with PD [19]. These methods involve the analysis
of facial movements [22], specific visual features [23], patterns
related to a specific emotion such as disgust [12], or facial
landmarks [21]. Engineered facial features are nevertheless
limited by image quality (distance to camera), pose (nonfrontal
looking participant), or visual occlusions (eg, glasses, hands,
and hats). These challenges [25] can be overcome by learning
features directly from the raw image data using deep convolution
networks that are known to be very effective at extracting
emotions in healthy participants [26] and to outperform classic
feature extraction methods.

Although it is well accepted that PD produces a generalized
loss of the ability to produce facial expressions, it is unclear
how this deficit evolves with disease progression and what are
the effects of dopamine replacement therapy on masked facies
[27]. In this work, we describe a methodology to characterize
PD hypomimia using deep learning. This procedure can be
performed remotely on videos, and thus, it provides a novel
noninvasive digital tool for objective assessment of PD
hypomimia and the changes associated with an on-off drug

motor state. An automated video-based assessment tool like
this one may be valuable for use in telemedicine [28], which
has become increasingly utilized in PD especially following the
onset of the COVID-19 pandemic. Such a resource would also
allow for monitoring of a patient’s motor state at home [29,30]
between in-office neurologist or clinical trial visits [31].

Methods

Algorithm Development
The neural network model was trained using two data sets of
faces, comprising people with PD and controls. The first was
the YouTube Faces Database [32] (created by the Computer
Science Department of Tel Aviv University), which contains
3425 videos of 1595 people (two-thirds of the subjects are male).
The average length of the video clips is 7 seconds. This database
constituted the control database for training the Visual Geometry
Group neural network [33] in this study. The second training
data set was created by performing a search on YouTube using
the search terms “Parkinson’s disease” and “interview.” From
that search, 107 videos of self-identified PD patients (68 males,
middle-aged and older patients) were collected. This latter
YouTube set was randomly partitioned into a 75% training set
(80/107 videos, 50 males) and 25% test set (27/107 videos, 18
males). By design, this training data set incorporated common
image quality challenges (such as varying lightning conditions,
poses, and occasional presence of motion blur).

To preprocess the videos, faces were extracted from each frame
of each video. Thereafter, each image was converted to
grayscale, the intensity was normalized (mean=0.51, standard
deviation=0.25), and the image was resized to a standardized
224 × 224 pixels. The neural network was trained using
stochastic gradient descent.

After training, for each new video in the test set, the algorithm
assigned each frame a score between 0 and 1, based on the
degree of hypomimia that was detected by the algorithm in that
frame. The scores of all of the frames of a video together formed
a density distribution for that video (Figure 1), which
demonstrated the proportion of frames that are assigned each
likelihood of hypomimia. It is important to note that not all
frames are indicative of the disease state, as a patient with PD
may well have some frames where he/she does not exhibit
hypomimia. Thus, the probability distribution for each video
(and thus each subject) had a different shape proportional to the
underlying hypomimia severity. We hypothesize that a PD video
will have more frames with a higher hypomimia score than will
a control video. Similarly, we hypothesize that a patient with
PD in the off drug state will have more frames with a higher
hypomimia score than that same subject in the on drug state.

In order to classify each video, we needed to characterize this
density distribution for each video as a single number. To do
so, we took the fifth quantile (Q) of that video’s frame score
density distribution (other quantiles can be used without loss
of generality as discussed in the Results section). A video that
exhibits low hypomimia should have a positively skewed
distribution, as the bulk of the probability mass will be closer
to 0, and therefore, will have a lower value of Q. In contrast, a
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video that exhibits high hypomimia should have a negatively
skewed distribution, with the bulk of the probability mass closer
to 1, and therefore, will have a higher value of Q. Thus, the
value of Q can be used to characterize how strongly hypomimia
is detected in a given video, by representing how far along the

0 to 1 continuum is required to achieve 5% of the video’s
frames. Using this metric, we hypothesize that control videos
will have a relatively lower Q (more frames concentrated toward
0) and PD videos will have a relatively higher Q (more frames
concentrated toward 1; Figure 2).

Figure 1. The preprocessing pipeline for the input videos. Faces are extracted, greyscaled, and normalized. Then, each frame in the video is assigned
a probabilistic classification assignment from 0 to 1 representing the degree of hypomimia. Thus, each video is represented by a probability distribution
of frame scores. SGD: stochastic gradient descent.

Figure 2. Video scoring. To classify a video, a probability distribution is created for all of a video’s frames, and the fifth percentile of the distribution
is defined as Q. A video that has a Q value above T (ie, closer to 1 or more evidence of hypomimia) is categorized as PD hypomimia; a video with a Q
value below T (ie, closer to 0 or less evidence of hypomimia) is categorized as Control. PD: Parkinson disease.
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Finally, a classification threshold T was selected. Any video
that had a Q value lower than the threshold T was classified as
not PD (ie, 0). Any video that had a Q value higher than the
threshold T was classified as PD (ie, 1). T was selected such
that it maximized classification accuracy in the testing set and
was validated using the separate held-out validation set
consisting of the Alan Alda videos.

Algorithm Testing
The difference in video scores between the PD and control
groups was tested on a set of 54 videos (middle-aged and older
patients, 37 males). Of these, half (n=27) featured people with
self-identified PD, and the other half (n=27) featured people
without PD (controls). The control videos were selected to
include people who self-reported having other neurological or
psychiatric disorders, with the following breakdown: 18 healthy
people, four people with depression, one person with
posttraumatic stress disorder, one person with traumatic brain
injury, one person with bipolar disorder, one person with
schizophrenia, and one person with chronic back pain. For the
videos that were categorized as PD or other disorders,
identification was performed based on the uploader’s self-report
(ie, the title of the video), not a clinical evaluation. However,
many of the videos were created by disease associations,
clinicians, academics, documentaries, or celebrities who publicly
revealed their diagnoses, providing some degree of confidence
of the reliability of the self-report.

Algorithm Validation

Hypomimia and Drug State
The Tufts Clinical data set consists of 35 participants (mean
age 68 years, SD 8 years; 23 males and 12 females; mean total
UPDRS-III score 25, SD 13) with idiopathic PD. The protocol
was run at Tufts Medical Center in Boston, Massachusetts and
was approved by the Tufts Health Sciences Campus Institutional
Review Board (IRB #12371) (the complete study design [34]
and related analyses conducted on the data set [35-37] have
been reported previously). Patients were video recorded by
means of a Microsoft Kinect camera (Microsoft Corp) at 30
frames per second.

Only 33 patients participated in a clinical interview in both their
on and off drug states, with a mean of 3639 frames per video
(approximately 2 minutes), which is similar to the length of the
videos used in the training data set.

All 35 patients performed the UPDRS-III scripted tasks
(including pronation-supination, finger tapping, and walking)
and simulated activities of daily living [34] (including book
carrying, bottle shaking, coat buttoning, cursive writing, and
zipping) during their clinical visit, with a mean of 50,987 frames
per video (approximately 28 minutes).

PD medication state (on or off) was self-reported by the
participant at the start of each session. Medication dosage and
timing was determined by the participant’s typical daily dosage
of levodopa (L-DOPA) therapy. Participants refrained from
taking additional dosages in order to follow this experimental
protocol. Participants were randomly assigned to an order
condition (either completing the protocol in on first or off first).

All participants arrived at the clinic in the off state. If they were
assigned to the off first condition, they completed the
experimental protocol when they arrived in the clinic (off state).
Thereafter, they took their scheduled L-DOPA dose and waited
until the medication’s effects began. They were evaluated by
the neurologist administering the UPDRS every 30 minutes
until they self-reported being in the on medication state or 1.5
hours after the dose (whichever came earlier). Once this
occurred, they completed the experimental protocol a second
time (on state). In contrast, if the participant was assigned to
the on first condition, they took their scheduled L-DOPA dose
once they arrived at the clinic, waited until its effects began (as
described above), and then completed the experimental protocol
for the first time (on state). These participants then left the clinic
and came back for a second scheduled session on a different
day to perform the experimental protocol in the off state.

The UPDRS-III Facial Expression item, which rates the
impairment of facial expressions, was used as the reference
outcome variable in the present analyses. We characterized a
strictly positive UPDRS-III Facial Expression score (ie, a rating
greater than 0) as a positive PD classification by the examining
neurologist. Additionally, we characterized a strictly positive
difference of the UPDRS-III Facial Expression score between
off and on (off minus on) as corresponding to a positive drug
state classification by the neurologist.

Participants should have less dysfunction (and a lower UPDRS
score) when they are in the on medication state than when they
are in the off medication state. The present work investigates
the effectiveness of the proposed computer vision algorithm to
detect hypomimia in these patients, as well as quantify their
medication state (ie, on/off) by detecting hypomimia. In that
respect, if the algorithm is predictive of a patient’s drug state,
the model should predict a lower score for the on state as
levodopa contributes to lowering PD symptoms by increasing
the availability of dopamine to the brain. This hypothesis was
tested by computing the change in score between the off and on
medication states.

Longitudinal Severities of Masked Facies
The longitudinal data set consisted of seven videos of public
appearances of Alan Alda from 1974 to 2019 (age 38-83 years),
in which he was engaged in public speaking. Alan Alda is an
actor, director, and screenwriter who was diagnosed with PD
in 2014. This data set consists of four videos before diagnosis
and three videos after diagnosis, and is used to evaluate the
present algorithm’s ability to quantify hypomimia. In this data
set, a mean of 9642 frames per video (5.3 minutes) was extracted
and analyzed by the algorithm. In these interviews, Mr Alda is
recorded in diverse poses and lightning conditions, making the
longitudinal data set qualitatively similar to the training data
set and Tufts Clinical data set.

Results

Hypomimia Detection (Test Set)
As expected for the PD videos, a greater proportion of frames
were classified as “PD hypomimia” than were for the control
videos. The skewness of the PD subject video distributions was
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significantly smaller than that of the control videos (one-tailed
Mann-Whitney U=212, P=.004), demonstrating that there was
more weight to the right side of the distribution (hypomimia

scores closer to 1) for PD videos than for control videos (Figure
3).

Figure 3. Example test set of PD and control distributions for four videos from the test data set. Two control videos (in blue) and two PD videos (in
red). The distributions of the PD videos have higher weight on score values closer to 1 (negatively skewed) compared to the control videos, thereby
demonstrating greater incidence of hypomimia. PD: Parkinson disease.

We experimentally quantify this difference in skewness by
selecting the fifth quantile Q, which becomes the video score.
The greater the incidence of hypomimia in the frames of a given
video, the higher the quantile Q. Figure 4 shows that a wide
range of quantiles would provide satisfying results on the test
set (all quantiles below 15 achieve an area under the receiver
operating characteristic curve [AUROC] >0.7). We chose the
fifth quantile without loss of generality and applied this choice
to the validation data sets only. A classification threshold
(T=0.0003) was selected to maximize classification accuracy
(70% accuracy or 38/54 videos correctly classified) in the test
set. This threshold was determined on the basis of performance
on these test set videos and then evaluated on the separate
held-out validation data sets (Alan Alda and Tufts Clinical) to
characterize hypomimia cues.

To provide a baseline accuracy measure, two professional
neurologists rated each video in the test data set on the
UPDRS-III Facial Expression score (score between 0 and 4).
The neurologists performed the evaluation on the video, not an
in-person clinical examination, and were told just to focus on
the Facial Expression score and attempt to avoid being
influenced by other cues present in the subject’s behavior, to
the extent possible. Using this scoring system, one neurologist’s
ratings produced an AUROC of 0.64 and the other neurologist’s
ratings produced an AUROC of 0.79. Averaging both
neurologists’UPDRS-III Facial Expression scores produced an
AUROC of 0.75. These scores were taken as an approximation
of baseline classification accuracy that could be achieved using
expert human raters. It is important to note, however, that this
accuracy is an approximation and a true in-person clinical rating
would incorporate substantially more information than just the
UPDRS-III Facial Expression score.
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Figure 4. Test set AUROC (PD vs Control) as a function of the chosen video distribution quantile to use as the “Q” threshold. A wide range of quantiles
achieves AUROC > 0.7 (15th quantile and below). The fifth quantile, selected as our video score threshold, is shown in green. AUROC: area under the
receiver operating characteristic curve; PD: Parkinson disease.

Hypomimia Changes Associated With the Drug State
in the Tufts Data Set (Validation Set)
Finally, we assessed the performance of our algorithm on the
held-out validation sets, after being trained on the training set
and accuracy maximized on the testing set. The first validation
set was the Tufts Clinical data set used to assess hypomimia
changes associated with the drug state. For each patient, we
extracted and analyzed all frames in the video. Our goal was to
quantify PD hypomimia for each patient’s visit and see if on
and off motor states had an impact on hypomimia as captured
by the neurologist’s UPDRS-III Facial Expression score and
our algorithm.

To test if the algorithm was able to correctly classify PD
hypomimia, we computed the score of each clinical interview
video to see if it exceeded the decision threshold T. If the score
was above the threshold, the video was categorized as PD. The
algorithm detected PD in 76% (25/33) of the off drug sessions
(in comparison, the neurologist gave a UPDRS-III Facial
Expression score higher than 0 for 88% [29/33] of these
sessions) and in 67% (22/33) of the on drug sessions (in
comparison, it was 70% [23/33] for the neurologist). This
reduction in facial masking detection between the off and on
drug sessions for both the algorithm and the neurologist can be
attributed to drug efficacy in reducing PD symptoms.

To quantitatively evaluate the difference between the off and
on states, we computed the difference between the off and on
video scores for each participant. The off score generated by
the algorithm was strictly greater than the on score in 63%
(22/35) of the participants during the clinical visit. In
comparison, the neurologist ratings of the UPDRS-III Facial
Expression score were strictly greater in the off state than in the
on state for only 46% (16/35) of participants. However, it is
worth noting that the UPDRS-III Facial Expression score is
integer based and does not allow clinicians to assess changes
in facial expression that are more granular than these integer
ratings. The clinical interview accuracies of the UPDRS-III
Facial Expression score and algorithm were 45% (15/33) and
55% (18/33), respectively.

To quantify the sensitivity of our analysis, we provided a plot
highlighting the differences in detection as given by different
thresholds (the x-axis is scaled by T). Thresholds to separate
the on state from the off state effectively were smaller than T,
which appeared reasonable as we expected the difference
between the on and off states to be more subtle than the
difference between the PD and control groups. More precisely,
a threshold of 0.1 T provided an accuracy comparable to that
of the neurologist (46% accuracy), and a threshold of 0.01 T
led to 60% accuracy (Figure 5).
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Figure 5. On-off sensitivity of the Tufts data set. On-off classification for a clinical visit is displayed as a function of threshold. On-off differences are
far more subtle than PD versus Control differences (on which the model was originally trained). The red line shows the percentage of participants for
which the neurologists rated the UPDRS-III Facial Expression score higher in the off state than in the on state. PD: Parkinson disease; UPDRS: United
Parkinson Disease Rating Scale.

Longitudinal Severities of Masked Facies
We sought to retrospectively validate the algorithm’s ability to
characterize PD symptomology in an individual longitudinally.
The algorithm was applied to seven interview videos featuring
Alan Alda (officially diagnosed with PD in 2014) from 1974
to 2019. There was an increase in the algorithm’s PD
classification before PD diagnosis to after diagnosis. Indeed,

all videos before PD diagnosis were below the optimal threshold
T for positive classification, and all videos after diagnosis were
well above the threshold, highlighting the fact that the algorithm
was able to capture hypomimia cues. Finally, we included a
confidence interval (as given by the third and seventh video
distribution quantiles) associated with the video scores (Figure
6).
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Figure 6. Validation with Alan Alda interviews. All videos after Mr Alda’s PD diagnosis are above the threshold T, whereas videos before his PD
diagnosis are below T (horizontal red line), indicating that the algorithm is sensitive to PD hypomimia symptomatology. Dots show the confidence
interval (third quantile and seventh quantile of the video density distribution). PD: Parkinson disease.

Discussion

Principal Results
In this proof-of-principle pilot study, we used deep learning to
detect PD hypomimia from videos of people with and
without PD. Our method was also able to detect the effect
of dopamine replacement medication in participants during their
clinical visit and to analyze the progression of symptoms in the
actor Alan Alda before and after his diagnosis of PD.

Comparison With Prior Work and an Alternative
Approach
A well-established method to identify facial expressions was
proposed by Ekman and Friesen [38], which describes visual
facial movements related to the muscles involved in the
production of emotions. Known as the Facial Action Coding
System (FACS), this method uses localized image information
and has been previously applied to study parkinsonism
[12,39]. However, the studies did not provide information on
medication state or longitudinal changes of facial expressions
in PD patients.

An alternative approach to investigate the progression of PD as
a function of the ability to move specific facial muscles is to
use electromyography [7]. This approach may be considered
less prone to artifacts of head movement, complexion, and facial
bone structure, but the use of electromyography at a participant’s
home is technically challenging and impractical.

Limitations
There are noteworthy limitations to our work. The training data
set is limited, as in particular, it did not include people in the

full range of relevant ages affected by PD (early onset PD
patients were not represented), which constrains generalizability.
The effect of dopaminergic medication was not taken into
consideration when training the model, as all videos in the
training data sets were classified as either PD or control, with
no consideration of on versus off medication state. There is
uncertainty linked to the video labels in the training data set, as
it relied on the uploader’s self-report (ie, the title of the video),
not a clinical evaluation. Consequently, it is important to validate
the present algorithm with clinically verified participants with
and without PD, as was performed in this work using clinically
validated participants in on and off drug states. Moreover, while
gender and, to a lesser extent, age can be ascertained with some
degree of certainty for subjects in the training data set, additional
demographic information is highly limited, making
generalization to larger test sets potentially susceptible to
demographic or other biases in the training sets. This
observation, coupled with the fact that the longitudinal study is
limited as it was applied on only seven videos of one person,
implies that more extensively curated training data sets as well
as larger testing data sets will be required to validate the
robustness of our method.

Conclusions
Our algorithm may serve as a nonclinical marker for PD
hypomimia and on and off motor states. Unlike the lengthy
physical examination techniques required for the clinical
assessment of PD, which require in-person or video
examinations that must be rated by a trained clinician, the
present automated technique is capable of rating videos of a
patient’s face. This technique has the potential to improve the
ability to continuously monitor the on and off states, even in the
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patient’s home. This can thereby serve as a serial data point for
use in at-home monitoring for PD or at-home assessment in a
PD clinical research study, with little patient burden and minimal
technological requirements.

With a shift toward a greater role of telemedicine, an automated
assessment of hypomimia could serve as a screening tool for

parkinsonism and as a nonobtrusive objective score to assess
on and off states. Further study will be needed to assess the
value of this automated assessment in various clinical settings.
The proposed model was tested on PD hypomimia, but in theory,
it could be applied to other neurological conditions that produce
other face signatures.
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