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Abstract

Background: The dataset from genes used to predict hepatitis C virus outcome was evaluated in a previous study using a
conventional statistical methodology.

Objective: The aim of this study was to reanalyze this same dataset using the data mining approach in order to find models that
improve the classification accuracy of the genes studied.

Methods: We built predictive models using different subsets of factors, selected according to their importance in predicting
patient classification. We then evaluated each independent model and also a combination of them, leading to a better predictive
model.

Results: Our data mining approach identified genetic patterns that escaped detection using conventional statistics. More
specifically, the partial decision trees and ensemble models increased the classification accuracy of hepatitis C virus outcome
compared with conventional methods.

Conclusions: Data mining can be used more extensively in biomedicine, facilitating knowledge building and management of
human diseases.

(J Med Internet Res 2021;23(2):e18766) doi: 10.2196/18766
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Introduction

Univariate and multivariate analysis are the two main
conventional approaches to statistical analysis in the scientific
method. Multivariate analysis in particular is used to determine
the contribution of several factors (risk factors in biomedicine)
to a single event or result. Genome-wide association studies
(GWAS) have been widely used in case-control settings to

identify which genetic variants, known as single nucleotide
polymorphisms (SNPs), are associated with human diseases or
traits [1,2]. In biomedicine, a number of studies have performed
univariate and multivariate analyses based on the results of
GWAS in order to obtain new risk or protective factors.

The 2017 study by our group using this method analyzed two
groups of patients diagnosed with hepatitis C virus (HCV)
infection [3]. One group consisted of patients who experienced
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spontaneous resolution of infection during first 6 months of
infection (acute phase) and the other of patients who developed
chronic hepatitis C. It is important from a clinical point of view
to have tools available to predict HCV outcome (whether
spontaneous resolution or chronic hepatitis C). With this in
mind, one GWAS identified an SNP in the interferon lambda–3
(IFNL3) gene as a factor in spontaneous resolution [1]. That
study showed that patients with the CC IFNL3 genotype had a
greater likelihood of experiencing spontaneous resolution, while
patients with the non-CC IFNL3 genotype were more likely to
develop chronic hepatitis C. In our previous study, we studied
whether haplotypes of the human leukocyte antigen (HLA) and
killer cell immunoglobulin-like receptor (KIR) improved the
predictive capacity of the IFNL3 genotype and found that
different combinations of these genes (HLA-B44, HLA-C12,
and KIR3DS1), together with the IFNL3 genotype, increased
the classification accuracy of HCV outcome. More specifically,
based on this combination of genes, a patient could be classified
as having a genetically unfavorable profile (GUP) or a
genetically favorable profile (GFP) for spontaneous resolution
of HCV infection.

Data mining—the process of extracting hidden associations in
datasets—is a promising trend in biomedicine and important
for identifying factors that are never discovered by conventional
statistical methods [4-6]. A number of studies have demonstrated
the effectiveness of data mining techniques in biomedicine.
Examples include the application of feature selection methods
to reduce the dimensionality of biomedical problems [7],
identification of key genes to improve the accuracy of
classification models [8], and the use of big data techniques in
scenarios where there is a large volume of data [9]. The aim of
our study therefore was to reanalyze the dataset used in our
2017 study [3] using data mining approaches in order to find

models that improved the classification accuracy of the genes
studied.

Methods

Dataset Description and Data Preprocessing
This study was completed using a dataset from our earlier
research [3], which was performed between 2013 and 2017 on
138 individuals, all of whom were HIV/HCV coinfected patients
from the infectious diseases unit at the Hospital Reina Sofía in
Cordoba (Spain). The patients were categorized as chronic
hepatitis C or spontaneous resolution. Patients with spontaneous
resolution were those who had undetectable HCV viral loads
during the acute phase of infection and did not require specific
treatment; patients with chronic hepatitis C were those who had
detectable HCV viral loads after the acute phase and needed
treatment to be cured. Further information about spontaneous
resolution and chronic hepatitis C and an analysis of the IFNL3,
KIR, HLA-B, and HLA-C genes is published elsewhere [3].

The dataset comprises 43 input features from different markers
in every patient. The markers were IFNL3 genotype (1 feature),
HLA-B (17 features), epitope Bw (1 feature), HLA-C (12
feature), and KIR genotype (12 features). The input features of
each marker are shown in Table 1. To prevent great loss of
information, the data from patients with missing values in any
of the input features were completed using the k-nearest
neighbors imputation method (k=3) before conducting the
computational study [10]. This method finds the nearest
neighbors to instances with missing values and fills in the gaps
with the most frequent value in the nearest neighbors. A total
of 46 of 138 patients included in this study had missing values
in the features. The dataset is publicly available [11].
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Table 1. Features of each variable.

KIRdHLA-CHLA-BcEpitope BwbIFNL3a

3DL1C*01B*07Bw4CCe

2DL1C*02B*08Bw6Non-CC

2DL2C*03B*14Bw4/Bw6—

2DL3C*04B*15——

2DL5C*05B*18——

2DS1C*06B*27——

2DS2C*07B*35——

2DS3C*08B*38——

2DS5C*12B*39——

3DL2C*15B*40——

2DP1C*16B*44——

3DS1C*18B*45——

——B*49——

——B*50——

——B*51——

——B*52——

——B*57——

aIFNL3: interferon lambda–3.
bBw: Epitope Bw.
cHLA-B: human leukocyte antigen–B.
dKIR: killer cell immunoglobulin-like receptor.
eCC: Genotype CC.

Determining the Best Subset of Features
To construct the models, we followed a procedure that has been
effectively applied in recent studies [12] for selecting the subset
of factors or input features that best describes the patient [13,14].
We first ranked the features in terms of relevance from highest
to lowest, and then selected the best subset of features. The
relevance of a feature was weighted according to its ability to
distinguish the classes [15].

To avoid bias in the process of estimating feature relevance, 6
well-known feature estimation methods were used: gain ratio
[16], information gain [17], symmetrical uncertainty [18],
consistency [19], chi-squared [20], and relief-F [21]. These
feature estimation algorithms are all supervised learning methods
that use a priori classification to estimate the relevance of
features but do not depend on the effectiveness of a classifier,
so the biases of the learning algorithms do not influence the
feature selection process. The filter methods evaluate the
usefulness of a feature (or set of features) based on measures

of distance, dependency, information, or correlation with data
[15].

To assess the feature weighting methods and better estimate the
relevance of input features, the 10-fold cross-validation
procedure was executed 3 times, and the results were averaged.
The relief-F method was executed with parameter values set at
between 5 and 10 [13,22]. The final ranking of features was
computed as follows: (1) each feature weighting method
provided its own ranking of methods, Rm, with m being each
individual method; (2) for each input feature, an average weight
was computed as the average value of the rankings provided;
(3) a final ranking, Rf, was computed given the averaged weight
values, in which the feature with the highest average weight
was the most important. A flowchart of the process followed
in this study to compute the final ranking is shown in Figure 1.
This procedure was implemented using the open source WEKA
(Waikato Environment for Knowledge Analysis) data mining
software (v 3.9.3) [23].
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Figure 1. Flowchart illustrating the process of computing the final ranking of features.

Once the ranking of features was determined, it was then used
to compute the subset of features that best predicted the class
of a patient when constructing each model. We proposed a
computational method that determined the best subset of features
without evaluating all possible combinations of features. The

combination formula used was 2n–1 (exponential size), with n
being the number of features in the dataset. This method required

evaluation of a maximum of combinations of features.

Given the final ranking of features Rf, Rf
l represented the

subranking of features in which l was the highest ranked feature;
in other words, the subranking of features was formed of l and
all subsequent features in Rf. Figure 2 shows a flowchart of

steps performed for each Rf
l subranking. Finally, each subset

of features was evaluated according to the performance of the
corresponding classifier in predicting whether or not a patient
belonged to each group (chronic hepatitis C or spontaneous
resolution).

Figure 2. Flowchart to create classifiers with optimal subsets of features.

Model Construction
The procedure to select the best ranked subset of features was
performed for each classifier used. We proposed the use of
several classifiers, namely, partial decision trees (PART) [24],
random forest [25], sparse linear discriminant analysis [26],
support vector machines with both linear and Gaussian kernels
[27], and L1-regularized logistic regression [28]. The aim of
the classifiers is to learn from the input features and the
outcome, for any new patient, is a prediction of whether the

patient is categorized as chronic hepatitis C or spontaneous
resolution. The random forest, sparse linear discriminant
analysis, support vector machines, and L1-regularized logistic
regression methods are regarded as noninterpretable (black-box)
models; they usually perform better than white-box models and
the outcome given by the model is always interpretable, even
though it is not easy to understand the steps taken by the model
to create its outcome or prediction. PART, on the other hand,
is a white-box, rule-based classifier, which is more interesting
from the point of view of interpretability of the model. PART
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returns a set of rules, one of which will be activated for each
pattern. With respect to the set of rules, the expert can easily
understand why it predicts each class; hence, although the
performance of the final model is slightly reduced, it can provide
the expert with valuable knowledge.

For the execution of each model, the 10-fold cross-validation
procedure was repeated 3 times, evaluating on the corresponding
test set in each case, thus averaging the values over a total of
30 different executions. For the algorithm parameter search, a
random search of parameters was completed across 30 different
combinations. The models were constructed using the caret
package in R version 6.0-86 (R Foundation for Statistical
Computing) [29].

Selection of Best Models
To determine the effectiveness of the models constructed in the
previous section, the area under the receiver operating
characteristic (AUROC) curve was used. The AUROC of each
model was obtained by averaging the AUROC on the
corresponding test set over all 30 executions. All models with
AUROC > 0.80 were stored for further analysis and study. In
order to obtain a simple and interpretable model with high
precision, we also highlighted and selected the PART model
with the highest accuracy on the whole patient dataset for further
study.

Ensemble learning is a widely used data mining task that
enhances the final predictive performance of the classifier by
combining the predictions of diverse simpler classifiers [30].
The use of ensemble models definitely reduces the
interpretability of simpler models but usually yields much better
classification performance. We proposed, therefore, not only
to use the classifiers built so far but also a combination of some
of them. To select members of the ensemble, we followed a
similar procedure to the one used to obtain the best subsets of
features. First, all single models were ordered according to
classification accuracy over all patients. An ensemble was
created with the first model only and then including the
following model in the ensemble: if the resulting accuracy was
better than before, the model remained in the ensemble,
otherwise it was removed. Once all the models were tried in the
ensemble, the procedure was repeated, but without using the
best model. Finally, the subset of models that performed best
together in the ensemble was returned.

Comparison of Conventional and Data Mining
Methodologies
Once the two models were obtained (the best PART model and
the ensemble), their performance was compared with the results
obtained from the previous study [3]. All the values that defined
classification accuracy for chronic hepatitis C and spontaneous
resolution in the models obtained in this study and the model
obtained in the previous study (IFNL3, HLA-B*44, HLA-C*12,
and KIR3DS1) were compared. These values included correct
classification rate (CCR), positive predictive value (PPV) for
spontaneous resolution, negative predictive value (NPV) for
chronic hepatitis C, sensitivity, specificity, and AUROC.

The methods were compared in two analyses. The first analysis
was based on all patients included in the study (n=138) and

compared the classification accuracy of the IFNL3 genotype
(CC or non-CC) against the models obtained in this study. A
second comparison was then made that included only patients
who had no missing values for the IFNL3, HLA-B, HLA-C,
and KIR genes (n=104). The analysis consisted of comparing
the classification accuracy of the models obtained in this study
and combinations of genes obtained in the previous study. This
combination of genes was used to classify a patient as having
a GUP or GFP.

To avoid overfitting the training data for the models proposed
in this paper, the data were split as follows. The dataset was
partitioned using 10-fold cross-validation and the models trained
using 9 out of 10 partitions, with the remaining one being used
to evaluate the models. This was repeated so that all partitions
were used once as test data. In this way, the models were
evaluated using data from patients that had not been used during
the learning phase, thus evaluating the ability of the models to
generalize to new patients. In addition, the process was repeated
on 3 different occasions using different seeds to create the
partitions so that the results were consistent and not biased by
the partitions created each time. Despite the lack of new data
compared with the previous study, this process, which is
standard in data mining, enables us to better determine whether
the proposed models perform better than the previous one
without this leading to overfitting the available data.

Results

Models Constructed for Spontaneous Resolution
Prediction
After construction of the aforementioned classifiers from optimal
subsets of features, we obtained more than 500 models with an
AUROC greater than 0.80. A list of the models can be found
in Multimedia Appendix 1. We focused first on the PART-1
model, which was constructed with just 4 different features:
IFNL3, HLA-B*44, KIR2DS1, and KIR3DS1 (Multimedia
Appendix 1). This yielded the best performance in terms of
accuracy across all patients and was one of the simplest
classifiers using the PART method, showing a good prediction
performance but also being easy to interpret by experts. This
method comprises a set of interpretable rules that are evaluated
in order until one of them meets the conditions for a given
example, as follows:

• IFNL3 = non-CC AND KIR3DS1 = no AND KIR2DS1 =
no AND HLA.B44 = no: chronic hepatitis C (25.0/6.0)

• IFNL3 = non-CC AND KIR3DS1 = yes: chronic hepatitis
C (20.0)

• HLA.B44 = yes AND KIR2DS1 = no AND IFNL3 = yes:
chronic hepatitis C (12.0)

• HLA.B44 = no AND KIR3DS1 = no AND KIR2DS1 = yes
AND IFNL3 = CC: spontaneous resolution (13.0/2.0)

• HLA.B44 = no AND KIR3DS1 = no AND IFNL3 = CC:
spontaneous resolution (36.0/12.0)

• KIR2DS1 = no: chronic hepatitis C (11.0/2.0)
• KIR3DS1 = no AND HLA.B44 = no: spontaneous

resolution (7.0/2.0)
• KIR3DS1 = yes AND HLA.B44 = no: spontaneous

resolution (7.0/3.0)
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• KIR3DS1 = no: spontaneous resolution (5.0)
• (default rule): chronic hepatitis C (2.0)

Given a patient, the decision algorithm first checks whether the
conditions of the first rule antecedent are met; if they are, the
patient is classified in the given class, otherwise, it tries the
following rule. For example, the model first checks whether
IFNL3 is “non-CC” and whether KIR3DS1, KIR2DS1, and
HLA-B*44 are all “no.” If these conditions are met for the given
patient, the patient is classified as chronic hepatitis C (because
from the available data, 25 of the 31 patients who met these
conditions were from the chronic hepatitis C class). If the patient
does not meet any of these conditions, it checks whether the
conditions for the second rule are met (if IFNL3 is “non-CC”
and KIR3DS1 is “yes”), and so on. If none of the antecedents
is satisfied, there is a default rule at the end for those patients
who do not meet the conditions of any of the rules. Hence the
model is highly interpretable by a clinician, since the model
itself gives the reasons for its outcome.

Following the previously mentioned procedure, we also
combined a subset of 5 models into an ensemble that included
3 random forest models (RF-25, RF-28, and RF-66) and 2 PART
(PART-17 and PART-10). This combination of models was
expected to perform better than the single PART model (and

better than each of the members of the ensemble separately),
although it was less interpretable than is the PART-1 method;
in other words, it was more difficult to understand why this
ensemble model returned each of its predictions. The ensemble
model used a total of 24 features across all the base members:
IFNL3, KIR2DS1, KIR2DS2, KIR2DL2, KIR3DL1, KIR3DL2,
KIR3DS1, HLA-B*14, HLA-B*18, HLA-B*35, HLA-B*38,
HLA-B*39, HLA-B*44, HLA-B*50, HLA-B*57, HLA-C*02,
HLA-C*03, HLA-C*04, HLA-C*06, HLA-C*07, HLA-C*08,
HLA-C*12, HLA-C*18, and Epitope Bw.

Comparison of Accuracy Between the Methodologies
The classification accuracy for chronic hepatitis C and
spontaneous resolution between the two methodologies
(previous paper vs this study) was contrasted, and the results
are set out below. Table 2 shows the results comparing the
performance of the proposed methods and the IFNL3 marker
using all 138 patients in the database. Table 3 compares the
proposed models and the GUP/GFP model proposed in the
previous study [3], in this case using only those patients without
missing values for HLA-B*44, HLA-C*12, and KIR3DS1. Note
that the proposed models are able to make predictions for these
patients, but the GUP/GFP method is not, which is indeed one
of the strengths of the models proposed in this study.

Table 2. Classification accuracy of IFNL3 (previous study) and models obtained (this study). Comparison made from the analysis of 138 patients
without missing values for IFNL3.

AUROCdSpecificity %Sensitivity %NPVc %PPVb %CCRa %Genotype/model

0.7265.478.981.561.671.0IFNL3e CCf/non-CC

0.8574.884.387.369.678.6PARTg-1

0.8983.781.286.877.782.5Ensemble

aCCR: correct classification rate.
bPPV: positive predictive value for spontaneous resolution.
cNPV: negative predictive value for chronic hepatitis C.
dAUROC: area under the receiver operating characteristic curve.
eIFNL3: interferon lambda–3.
fCC: genotype CC
gPART: partial decision trees.

Table 3. Classification accuracy of genetically unfavorable profile/genetically favorable profile (previous study) and models obtained (this study). This
analysis was performed on the 104 patients without missing values for any of the genes IFNL3, HLA-B, HLA-C, and KIR.

AUROCdSpecificity %Sensitivity %NPVc %PPVb %CCRa %Profile/model

0.7675.776.384.764.476.0GUPe/GFPf

0.8574.784.387.369.680.0PARTg-1

0.8983.781.286.877.784.8Ensemble

aCCR: correct classification rate.
bPPV: positive predictive value for spontaneous resolution.
cNPV: negative predictive value for chronic hepatitis C.
dAUROC: area under the receiver operating characteristic curve.
eGUP: genetically unfavorable profile.
fGFP: genetically favorable profile.
gPART: partial decision trees.
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In both cases, the proposed models using the data mining
techniques outperformed the earlier study. The ensemble method
returned a better performance than PART-1 on most evaluation
metrics, although the virtue of PART-1 is that it is an
interpretable model (see rules) and the clinician could obtain
useful knowledge from the list of decision rules. In the case
where all 138 patients were used, the ensemble raised the CCR
in the model from 71.0% in the previous study to 82.5% and
the AUROC from 0.72 to 0.89. In the comparison using 104
patients without missing values in their GUP features (see Table

3), the ensemble model likewise increased accuracy from 76.0%
in the previous study to 84.8% and the AUROC from 0.76 to
0.89, thus consistently demonstrating a good level of
performance relative to the standard approaches to this kind of
data analysis.

Table 4 presents the results of all the metrics of each member
in the ensemble method. The results demonstrate that combining
the predictions of simpler but less accurate models leads to
better overall performance.

Table 4. Classification accuracy of models included in the ensemble. Results obtained from the analysis of 138 patients without missing values for
IFNL3.

AUROCdSpecificity %Sensitivity %NPVc %PPVb %CCRa %Model

0.8883.569.479.574.977.1rfe-25

0.8881.868.478.672.975.7rf-28

0.8578.873.781.270.276.0rf-66

0.7979.178.784.674.178.6PARTf-17

0.8576.281.485.972.678.3PART-10

aCCR: correct classification rate.
bPPV: positive predictive value for spontaneous resolution.
cNPV: negative predictive value for chronic hepatitis C.
dAUROC: area under the receiver operating characteristic curve.
erf: random forest.
fPART: partial decision trees.

Discussion

Principal Findings
In our previous study, we proposed a simple tool for the
prediction of spontaneous resolution and chronic hepatitis C
based on IFNL3 genotype and genetic profiles (GUP/GFP)
using a combination of HLA-B, HLA-C, and KIR genes. In this
study, a data mining methodology was followed to extract
relevant hidden features, making it possible to identify subsets
of relevant features that would provide greater precision when
classifying patients into those who will go on to develop chronic
hepatitis C and those who will experience spontaneous
resolution of HCV infection. More specifically, in this study
we present two models able to predict HCV outcome in each
patient using just a subset of features: a simpler, interpretable
one using just 4 features and a more complex one using 24
features. The study of both PART and ensemble models
demonstrated that they yielded a much better predictive
performance than the tool used in the previous study according
to a number of different evaluation metrics such as CCR, PPV,
NPV, sensitivity, specificity, and AUROC.

The factors analyzed in our previous study using conventional
univariate and multivariate analysis showed that there was a
strong association between IFNL3, HLA-B*44, KIR3DS1, and
HLA-C*12 and the probability of developing chronic hepatitis
C [3]. This study confirmed that the same factors were also
important for HCV outcome (most of them are included in the
PART-1 model and all of them in the ensemble model). In our
previous study, however, we did not find any association with

KIR2DS1, which is used in both models to predict which class
the patient belongs to. This demonstrates that data mining is
able to detect complex associations between factors, going
beyond the analysis of individual factors commonly used in
biomedicine. It is also interesting that the data mining
methodology was able to identify genetic patterns hidden in
univariate and multivariate analysis on the basis of a total of
138 patients. In the context of GWAS, many studies have found
SNPs associated with pathologies without finding the
mechanism or molecular basis to explain the associations, since
the etiology of most human diseases is multifactorial and
involves numerous genes. In this context, the data mining
approach could facilitate the discovery of previously hidden
genetic patterns in studies with high-dimensional data.

Limitations
There are, however, certain differences in terms of the clinical
applicability of the data mining approach depending on the type
of model. In this study, for example, using PART, we were able
to obtain an interpretable model (as in the previous study) and
also a higher predictive performance. With the ensemble model,
we obtained a higher predictive performance but lost
interpretability (black-box model). Hence, if we are aiming to
obtain the best possible predictive performance for patients, we
should focus on the ensemble model. If the interpretability of
the model is also of interest, since it gives the clinician useful
information, the PART model would be preferred. More studies
would be necessary to balance the accuracy of models against
suitability for implementation in clinical decision making.
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Conclusion
Performance of data mining techniques in this study identified
genetic patterns that were hidden by the conventional

methodology using two models that increased the classification
accuracy of HCV outcome. The data mining methodology could
be used as an alternative approach in biomedicine, facilitating
knowledge in the management of human diseases.
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