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Abstract

Background: Acute diseases present severe complications that develop rapidly, exhibit distinct phenotypes, and have profound
effects on patient outcomes. Predictive analytics can enhance physicians’ care and management of patients with acute diseases
by predicting crucial complication phenotypes for a timely diagnosis and treatment. However, effective phenotype predictions
require several challenges to be overcome. First, patient data collected in the early stages of an acute disease (eg, clinical data
and laboratory results) are less informative for predicting phenotypic outcomes. Second, patient data are temporal and heterogeneous;
for example, patients receive laboratory tests at different time intervals and frequencies. Third, imbalanced distributions of patient
outcomes create additional complexity for predicting complication phenotypes.

Objective: To predict crucial complication phenotypes among patients with acute diseases, we propose a novel, deep
learning–based method that uses recurrent neural network–based sequence embedding to represent disease progression while
considering temporal heterogeneities in patient data. Our method incorporates a latent regulator to alleviate data insufficiency
constraints by accounting for the underlying mechanisms that are not observed in patient data. The proposed method also includes
cost-sensitive learning to address imbalanced outcome distributions in patient data for improved predictions.

Methods: From a major health care organization in Taiwan, we obtained a sample of 10,354 electronic health records that
pertained to 6545 patients with peritonitis. The proposed method projects these temporal, heterogeneous, and clinical data into
a substantially reduced feature space and then incorporates a latent regulator (latent parameter matrix) to obviate data insufficiencies
and account for variations in phenotypic expressions. Moreover, our method employs cost-sensitive learning to further increase
the predictive performance.

Results: We evaluated the efficacy of the proposed method for predicting two hepatic complication phenotypes in patients with
peritonitis: acute hepatic encephalopathy and hepatorenal syndrome. The following three benchmark techniques were evaluated:
temporal multiple measurement case-based reasoning (MMCBR), temporal short long-term memory (T-SLTM) networks, and
time fusion convolutional neural network (CNN). For acute hepatic encephalopathy predictions, our method attained an area
under the curve (AUC) value of 0.82, which outperforms temporal MMCBR by 64%, T-SLTM by 26%, and time fusion CNN
by 26%. For hepatorenal syndrome predictions, our method achieved an AUC value of 0.64, which is 29% better than that of
temporal MMCBR (0.54). Overall, the evaluation results show that the proposed method significantly outperforms all the
benchmarks, as measured by recall, F-measure, and AUC while maintaining comparable precision values.
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Conclusions: The proposed method learns a short-term temporal representation from patient data to predict complication
phenotypes and offers greater predictive utilities than prevalent data-driven techniques. This method is generalizable and can be
applied to different acute disease (illness) scenarios that are characterized by insufficient patient clinical data availability, temporal
heterogeneities, and imbalanced distributions of important patient outcomes.

(J Med Internet Res 2021;23(2):e18372) doi: 10.2196/18372

KEYWORDS

data analytics; neural networks; phenotype; deep learning; electronic health records

Introduction

Background
Acute diseases and illnesses require timely and specialized care
of patients whose conditions change rapidly, often within 48
hours of admission [1]. These diseases tend to evoke serious
complications that develop quickly and can become fatal. Severe
complications hinder patient recovery, substantially reduce their
quality of life, create long-term impairments, and even cause
death [2]. In general, a complication may have multiple subtypes
or phenotypes, which signify and display distinct disease
presentations [3,4]. Because phenotypes involve distinct
symptoms and manifestations that require specific interventions,
effective predictions of crucial complication phenotypes are
crucial for physicians’ timely diagnoses and therapeutic
treatments to improve patient management and reduce mortality
rates.

Several data-driven techniques aim at identifying phenotypic
expressions from electronic health records (EHRs) and use them
to predict important clinical events, such as complications [5].
Predictive analytics helps advance such data-driven approaches
to predict complication phenotypes; however, this ability
presents various challenges in acute disease scenarios for several
reasons. First, in the early stages of an acute disease, essential
clinical features and characteristics (eg, risk factors) associated
with complication phenotypes may not be sufficiently available
to predict the phenotypic outcomes. This data insufficiency
constraint can greatly reduce the predictive utilities of
data-driven techniques [6]. Second, patients undergo various
laboratory tests, medical examinations, and therapeutic
treatments, which are administered at different frequencies and
time intervals. The resulting temporal heterogeneities (eg,
pattern, time interval, frequency) create additional difficulties
for phenotype predictions. Third, for any particular acute
disease, crucial complication phenotypes may arise in a
relatively small proportion of patients, further causing
imbalanced distributions of patient outcomes.

Objectives
To address these challenges for effective complication
phenotype predictions, we propose a novel recurrent neural
network (RNN)-based method that incorporates a latent regulator
(RNN-LR). Our method generates a temporal feature space
representation with a recurrent neural network to cope with
temporal heterogeneities in patients’ conditions and disease
progression and then uses the latent regulator to mitigate the
data insufficiency constraint. We used a data set of 6545 patients
with peritonitis to evaluate the ability of the proposed method

to predict acute hepatic encephalopathy (AHE) [7] and
hepatorenal syndrome (HRS) [8]—two crucial phenotypes of
hepatic complications that can develop after surgical procedures
for peritonitis (eg, laparotomy). Although only a small
proportion of patients with peritonitis develop these phenotypes,
they are life threatening and difficult to predict [7,9].

The following three benchmark methods are evaluated in our
study: temporal multiple measurements case-based reasoning
(MMCBR) [10], time-aware long short-term memory (T-LSTM)
network [11], and time fusion convolutional neural network
(CNN) [12]. The results show that the proposed method
significantly outperforms all the benchmarks, as measured by
recall, F-measure, and area under the curve (AUC) while
maintaining comparable precision values. Although our
illustrative evaluation focuses on complication phenotypes of
peritonitis, the proposed method is generalizable and applicable
to predict phenotypes of other acute diseases that are
characterized by insufficient patient clinical data availability,
temporal heterogeneities, and imbalanced distributions of patient
outcomes.

Previous Work
Diseases can exhibit distinct phenotypic expressions [13]. For
example, macrovascular disease spans six phenotypes, each
associated with distinct anthropometric, clinical, and laboratory
parameters [14]. Patients diagnosed with a particular disease
can have complications pertinent to multiple phenotypes.
Supported by accurate predictions of crucial complication
phenotypes, physicians can improve their clinical decision
making and patient management. To that end, predictive
analytics empowers in-depth analyses of the rich patient clinical
data in EHRs for the improved care and management of patients
with acute diseases and illnesses [5,15].

Peritonitis
Peritonitis, an acute disease, is caused by the inflammation of
the peritoneum [1] and often develops from bacterial or fungal
infections [16]. Upon diagnosis with peritonitis, patients need
immediate treatment (typically within 3 days), because it can
progress rapidly and develop into life-threatening sepsis or
septic shock [1]. Patients with peritonitis have higher mortality
rates than those without peritonitis [17]. Several factors, such
as age, sex, clinical conditions, and the living environment are
associated with peritonitis-related mortality [17].

As two crucial phenotypic expressions of hepatic complications
after peritonitis surgery, AHE and HRS can cause severe patient
outcomes [7,18]. For patients with peritonitis who also have
liver cirrhosis, intestinal bacterial overgrowth inside the body
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is responsible for hyperammonemia, which leads to AHE [19].
Similarly, HRS is a crucial complication phenotype of peritonitis
with advanced cirrhosis too, that is characterized by renal failure
and major disturbances in the circulatory function [8]. The
underlying mechanisms of HRS may result from complex
changes in splanchnic and general circulation, as well as
systemic and renal vasoconstrictors and vasodilators [20]. Both
phenotypes are clinically important; however, AHE is more
severe than HRS because it can deteriorate in a matter of hours.

In general, AHE is diagnosed by liver specialists, whereas HRS
is diagnosed by liver specialists and nephrologists. Clinically,
the determination of each phenotype depends on laboratory
results and the patient’s condition. Patients with AHE typically
have hyperammonemia, hyperbilirubinemia, and central nervous
system symptoms. Patients with HRS often display splanchnic
arterial vasodilation and inflammation, which cause ascites and
renal function impairment. Patients with AHE should receive
lactulose and neomycin enema, which are infrequently used for
other conditions according to the national health reimbursement
policies in Taiwan. Thus, the occurrence of AHE can be assessed
by the patient’s condition. Patients with HRS are usually
prescribed albumin and terlipressin, which can then be used to
determine the occurrence of HRS. Each phenotype has a
particular ICD-9 code: 572.2 for AHE and 572.4 for HRS.

The heterogeneity and variability in manifestations of hepatic
encephalopathy among patients make it difficult to assess or
predict patient conditions [21,22]. Previous studies have shown
that AHE may be present in 50%-70% of patients with
peritonitis who have cirrhosis, including those with
abnormalities detectable only with psychometric testing [23].
The clinical manifestations of AHE include brain dysfunction
and deep coma [7]. This phenotype represents a vital disease
entity because the risk of dying within a year exceeds 60% after
its development [24]. Furthermore, patients with spontaneous
bacterial peritonitis have an estimated 30% chance of developing
HRS [20]. Clinically, the only curative treatment for AHE and
HRS is liver transplantation, but systemic infection is a
contraindication to liver transplantation. Without timely
detection and proper interventions, AHE and HRS can develop
rapidly, create patient impairments, lead to life-threatening
conditions, and have alarming mortality rates [7,9]. These
phenotypes have unique clinical characteristics and features
that can be analyzed with data-driven analytics for prediction.
Overall, existing data-driven techniques for phenotype
predictions can be classified as rule-based, machine
learning–based, or deep learning–based. We review the
representative studies of each in the upcoming sections.

Rule-Based Phenotype Predictions
Rule-based techniques [25-29] use clinically important features
to depict the underlying phenotypes. A typical rule-based
technique iteratively updates heuristic rules until its sensitivity
and specificity satisfy the prespecified thresholds. Developing
heuristic rules is labor intensive and time consuming because
it requires iterative rule generation and substantial involvement
from human experts. The prediction of disease phenotypes
entails the extraction of clinically important features; essential
features and their combinations in turn indicate the underlying

disease phenotype. Guided by domain knowledge, previous
research has developed heuristic rules to extract essential
features (eg, medications, laboratory results, diagnoses) from
EHRs for phenotype predictions, and then updated the extracted
rules iteratively until sensitivity and specificity reached the
prespecified levels. For example, the rule-based eMERGE
technique uses EHRs, in combination with DNA biorepositories,
to identify diabetic phenotypes and medication-induced liver
lesions [29].

Machine Learning–Based Phenotype Predictions
Machine learning techniques coupled with EHRs can support
and enhance the care and management of patients with
peritonitis. For example, by integrating cellular and soluble
biomarkers, support vector machines and tree-based algorithms
can help physicians in predicting pathogen-specific immune
responses of patients with peritonitis and guide them to
formulate optimal antibiotic and operative therapies [30].
Previous research has also applied machine learning algorithms
to predict phenotypes [5,28].

Existing machine learning–based techniques can be categorized
as clustering analysis, graph-based learning, and probabilistic
modeling. Techniques that rely on clustering analysis create
phenotype clusters, such that patients in the same phenotypic
cluster are more similar to one another than to patients in a
different cluster. In essence, clustering analysis–based
techniques [5,31] generate patient clusters so that patients with
similar phenotypic expressions are in the same cluster. They
usually use cross-sectional patient data to produce distinct
clusters at a given time or analyze longitudinal clinical data to
infer phenotypes that remain consistent over time [5]. However,
existing clustering algorithms cannot deal robustly with
high-dimensional patient data, and their applications are
restricted to smaller, more homogenous data sets [5]. Most
clustering-based techniques are applied to patient data at a single
time point. Thus, clustering analyses of temporal data would
require multiple applications of the chosen technique at different
time points [31], further creating instability in the resulting
phenotype clusters.

Graph-based techniques [32-34] can cope with temporal
heterogeneities in longitudinal patient data (eg, pattern, time
interval, frequency). They often assume sequential linkages of
distinct clinical events and represent those events as temporally
connected nodes in a graph [32]. However, this assumption does
not always hold clinically. For example, patients frequently and
concurrently receive multiple laboratory tests, treatments, or
therapeutic procedures. Moreover, the graph construction
process does not include laboratory results (values) that can be
essential for inferring clinical outcomes [32]. In addition,
probabilistic modeling can uncover the underlying phenotypes.
For example, Pivovarov et al [35] propose UPhenome—an
unsupervised, generative probabilistic model that can learn
phenotypes from heterogeneous patient data. To identify chronic
obstructive pulmonary disease subtypes that are similar in
progression characteristics, Ross et al [36] develop a novel
Bayesian nonparametric model that uses disease trajectory to
represent the underlying biological or genetic similarity within
the subtype.
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The crucial peritonitis complication phenotypes that we
study—AHE and HRS—can occur rapidly without any
predictive signs, thereby hindering the use of conventional
machine learning techniques for predictions. Recent
advancements in deep learning promise better predictions of
patient outcomes [37,38] because they can learn from clinical
sequences to account for complex patterns and relationships in
sequential inputs. To illustrate, representation learning can
extract complex relationships and nonlinearities among temporal
events. Moreover, deep learning architectures, such as recurrent
and convolutional neural networks, can be applied to better
predict patient outcomes [39-41]. In the following sections, we
review representative deep learning–based techniques that can
deal with high-dimensional and temporally heterogeneous
patient data.

Deep Learning–Based Phenotype Predictions
The use of predictive analytics for clinical decision support and
patient management often involves large amounts of
heterogeneous patient clinical data and needs to consider
temporal relationships [42]. Fueled by fast-growing
computational power and proliferating EHRs, deep learning has
been applied in a broad array of diagnostic tasks, including
those related to phenotypes [43,44]. For example, reconstructed
RNNs with rectified linear units can impute missing values in
genotype data to predict phenotype sequences [45]. Deep
autoencoder techniques for unsupervised feature learning help
clinicians in identifying acute leukemia phenotypes [46]. By
combining latent representation learning of deep neural networks
and causal inferences, Kale et al [40] discovered latent
phenotypes that are causally predictive of clinical outcomes in
patients in the intensive care unit. Moreover, deep RNNs can
model multivariate clinical time series in a large data set and
then transfer the knowledge to the limited labeled instances to
classify the phenotypes of patients in the intensive care unit
[47]. Existing literature suggests the value and feasibility of
using deep learning in different diagnostic tasks and clinical
contexts.

Particularly, EHRs contain rich, longitudinal patient clinical
data that can be modeled as RNNs that can represent patients’
records in an accurate and robust way [48]. These networks are
effective for modeling patient (clinical) records as temporal
logs of diagnostic results. For a particular patient, the state of
disease or illness at time t is a summary of the diagnostic records
before t. With each record represented as a feature vector, the
vectors at different time points can provide sequential inputs to
an RNN. The outputs at time t+1 can be used to produce a vector
that represents the patient’s state at t+1. Such patient-level
vector representations can be further input into other (hidden)
layers of the neural network to predict clinical outcomes (eg,
readmission, mortality, complications). For predictive analytics
in clinical scenarios, RNN-based deep learning architectures
may be advantageous over traditional machine learning
techniques. For example, an RNN can reduce or prevent adverse
drug events by integrating heterogeneous, multidimensional
drug data from different sources [49]. In addition, by coping
with various clinical and temporal data, an uncertainty-aware
convolutional RNN can predict patient mortality, with
uncertainty denoting the irregular time intervals in patients [50].

Cost-Sensitive Learning
Many clinical diagnoses feature relatively few crucial cases
among patients, which need to be properly addressed by
data-driven techniques for prediction. If a sample has a
substantially fewer number of minority class cases, standard
classifiers generally cannot perform well because their
predictions tend to steer toward the majority class. Cost-sensitive
learning can address the imbalanced distributions of patient
outcomes in a sample. It considers the misclassification cost
(and possibly other costs) by assigning a high penalty (cost) to
the misclassifications of a minority-class instance, without
modifying the original data distribution in the sample [51]. Such
learning essentially shifts the bias of a classification model in
the favor of the minority class. By adjusting the costs associated
with different misclassified labels [52], and with the goal of
minimizing the total cost, cost-sensitive learning can produce
greater predictive utilities. In many clinical scenarios, the
minority class is relatively more important and has a higher
misclassification cost. However, the overall performance of a
classification model, whether machine learning– or deep
learning–based, can be dominated by the majority-class
instances. This issue may be addressed by combining evaluation
results (eg, F-measure, AUC) and the costs associated with
different outcome classes (eg, complication phenotypes) to
optimize the cost parameter for effective classifications [51].

Research Gaps
This review of extant literature reveals several gaps. First,
existing prediction techniques may be inadequate or ineffective
for acute disease scenarios because previous phenotype research
focuses largely on patients with chronic diseases [53,54], whose
clinical conditions change less drastically than those of patients
with acute diseases. In addition, patients with chronic diseases
usually have fewer complications that develop rapidly and have
more clinical data available for predictions compared with
patients with acute diseases. Second, most previous research
works [5,40,46,55] tend to overlook the data insufficiency
constraint, which limits the use of early disease stage patient
data to build effective computational models for predicting
complication phenotypes. Several studies have identified disease
phenotypes by assuming full patient data availability [40,46];
however, clinical data captured in the early stages of an acute
disease may lack essential information for predicting
complication phenotypes. Some important clinical characteristics
and factors of complication phenotypes may be available in the
early stages but are not sufficiently informative for predicting
phenotypic outcomes. Third, complication phenotypes associated
with an acute disease often have an imbalanced distribution of
different outcomes. Fourth, the clinical efficacy of data-driven
techniques for complication phenotype predictions still requires
adequate empirical evaluations, especially in acute disease
situations that feature data insufficiencies and imbalanced
distributions of patient outcomes.

Effective complication phenotype predictions need to address
these challenges and consider patients’ heterogeneities and
disease progression variations over time while coping with the
data sufficiency constraint. We propose a deep learning–based
method that leverages temporal feature space representation to
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address temporal heterogeneities in patient data. Although
previous research works have acknowledged the importance of
unobserved latent factors for influencing phenotypes [40,56],
few studies have explicitly considered such factors for
phenotype predictions. As a remedy, we incorporate a latent
parameter matrix to account for unobserved (subsequent) patient
condition and disease progression variations. In addition, our
method addresses missing values in patient data and includes
cost-sensitive learning, which can address imbalanced outcome
distributions by combining evaluation results (F-measure and

AUC) and the cost associated with each complication phenotype
to optimize cost parameters for an improved predictive
performance.

Methods

We elaborate on the proposed method in Figure 1. As shown
in the figure, this method involves data preparation, temporal
feature space representation, model construction, and model
evaluation.

Figure 1. Overall processing of recurrent neural network-latent regulator. EHR: electronic health record.

Data Preparation
Missing data prevail in many clinical scenarios and create
fundamental challenges for predictive analytics [57]. Patients
with acute diseases are often closely monitored with various
laboratory tests, but missing values arise when the test results
are not properly and consistently recorded because of the
physician’s preference, recording errors, or other reasons. For
data preparation, we perform expert-guided feature selection to
identify the clinical attributes and laboratory tests that are
essential to a severe complication and then employ a deep
autoencoder-based model to impute missing values for these
features. The deep autoencoder model [58] identifies patients
similar to the focal patient and uses their attribute values to infer
and replace the patient’s missing values [59]. Because only a
relatively small proportion of patients may develop severe
complications, we apply the SMOTEENN (Synthetic Minority
Oversampling Technique–Edited Nearest Neighbors) algorithm
[60] to address the imbalanced distributions of different outcome
classes.

Temporal Feature Space Representation
Patient data, including vital signs and laboratory results, are
longitudinal and pertain to different clinical events over time.
A clinical sequence reflects the patient’s disease progression
and has heterogeneous characteristics that may prevent clinically
actionable insights. To extract acute disease progression from
sequential (clinical) events, we apply sequence embedding,
which is a feature leaning technique that projects sequential
events into vectors of numeric numbers. In general, patients
sharing similar clinical conditions are closer in distance than
otherwise. Therefore, we used a temporal representation to
depict each patient’s disease progression. We assume that a

patient p has a set of temporal clinical events 

that occur between time and . At each time

point , a patient may have multiple temporal
features (eg, test results, diagnoses), denoted by

, where m indicates the number of

diagnosis categories at . In addition, each patient has

demographic data (eg, sex, age), represented as ,
where P is the total number of patients. With observed clinical
(event) sequences, we can construct a temporal feature

representation ( ) for that patient:

Where is a function that can project the temporal clinical

sequences to the temporal feature representation ( ).

Model Construction
Variations that exist in patients’ conditions and disease
progression cannot be fully explained by patients’demographics,
laboratory results, and therapeutic (surgical) data [61].

Therefore, we include an additional parameter matrix , which
serves as a latent regulator to account for disease progression
information or underlying mechanisms related to complication

phenotypes. In addition, refers to the disease progression
space and comprises information extracted from clinical data

available in early disease stages; that is, is the temporal
feature space extracted from patients’ clinical data. The data
available in the early stages of an acute disease are usually
limited and cannot reveal a patient’s subsequent progression or
effectively predict complication phenotypes. To alleviate this

constraint, acts as a latent regulator, independent of the

disease progression space ( ) to account for unobserved
variations in the subsequent patient condition and disease
progression.

We assume a combined effect of and , for which is
generalized with iterative clinical feature updates, according to
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where γ is the learning rate, and indicates the minimum

number of iterations required to converge . During model

learning, gradually converges to a stable range, as depicted

in . For testing, the parameter matrix ( )
facilitates phenotypic predictions for individual patients.

Although severe complications represent the minority class in
patient data, they have profound effects on patient outcomes
and health care costs. Hence, we employ cost-sensitive learning
to better predict the minority class, according to the respective
misclassification costs, by applying the cost matrix to penalize
incorrect predictions (misclassifications). Figure 2 presents the
proposed RNN-LR method.

Figure 2. Proposed latent regulator-embedded recurrent neural network method.

Our method minimizes the expected costs of incorrect phenotype
predictions, calculated as:

where is the learning function of and reveals the
combined effect of disease progression and a latent regulator
on prediction, K denotes the total number of classes, c(k, i)
indicates the cost of misclassifying an instance of class k as

class i. estimates the probability of class i, given

( ). As shown in Figure 2, and serve as input to
the second multilayer neural network and thereby are mapped
into the phenotype space. We use a SoftMax function to estimate
the probability that an instance is classified as each distinct
outcome class. In the output layer, the ith node contains weight

( ) and bias ( ). For each phenotype outcome class, the

probability of phenotype i, given can be calculated as:

Finally, we employ cross-entropy as a loss function to learn and
optimize the model parameters:

Thus, parameters get updated through Adam optimizer and back
propagation.

Data

Data Sources
We obtained a clinical data set from the Department of
Laboratory Medicine at the Chang Gung Memorial Hospital,
which is accredited by the Taiwan Accreditation Foundation
and approved by the American College of Pathologists [62,63].
This data set consists of 10,354 records pertaining to 6545
patients who underwent peritonitis surgery between 2003 and
2015. Designated professionals at the hospital integrated patient
records in EHRs, according to the common format of the Chang
Gung Research Database (CGRD) that provides standardization
and facilitates data extraction, transformation, and loading for
analyses [64].

The CGRD links directly to the National Health Insurance
Research Database (NHIRD), which informs reimbursement
decisions [62,63]. To prevent fraud and contain costs, the
National Health Insurance Administration of the Ministry of
Health and Welfare performs frequent, random audits. Thus,
the data in the NHIRD and CGRD are reliable and accurate.
Information systems professionals at the hospital also assessed
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the data conversion process and integrity to ensure that all
patient records (including diagnoses and laboratory results) are
correctly transferred to the CGRD without errors or losses [64].
Experienced personnel from the Research Institute of Chang
Gung Memorial Hospital assisted us in compiling the data set.
In particular, they performed data preprocessing and
consolidation to ensure that each patient’s records were collected
within the same time interval.

Data Processing and Details
In the data set, each laboratory test has a time stamp that
indicates when the results are available (reported). We used the
date of peritonitis surgery as the starting point and collected
patient data over the next 3 days. This procedure ensured that
all patient records were collected within the same time interval
after surgery. Each patient had at least one clinical record within
the three-day window. Specifically, 3665 patients had 1 clinical
record, 1951 patients had 2, and 929 patients had 3 clinical
records. Each record contains the patient’s demographic and

clinical data (eg, age, sex, comorbidity) and potentially multiple
laboratory results, which we used to predict the complication
phenotypes (AHE, HRS, or neither).

Table 1 summarizes the patient demographic and clinical
variables in the data set. We adopted the International
Classification of Diseases, Ninth Revision, Clinical Modification
comorbidity coding algorithm [65] to define the Charlson
comorbidities in administrative and clinical data. Accordingly,
the comorbidity types in our study span 17 categories, from
mild liver disease to moderate or severe liver disease to
myocardial infarction. Among the 6545 peritonitis patients in
the data set, 41 developed AHE, and 174 developed HRS, that
is, the distribution of different outcome classes (AHE, HRS, or
neither) is highly imbalanced. Furthermore, AHE and HRS have
profound implications for patient outcomes and mortality. For
example, 9 of the 41 patients with AHE in the sample died, with
a mortality rate of 22%; patients with AHE or HRS had an
average length of stay of 25 days (hospitalization), whereas
patients without these phenotypes had an average of 17 days.
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Table 1. Summary of patient demographic and clinical variables in the peritonitis data set.

DescriptionValue or rangeTypeVariables

Variable name

Patient IDUnique patient ID.StringPatient_ID

Inpatient IDUnique inpatient IDStringInpatient_ID

Male or female0 or 1IntegerSex

Patient’s age(0-102)IntegerAge (<20, 20-60, or >60 years)

Inpatient variables

The number of hospitalizations before peritonitis
surgery

(0-136)IntegerDGTMa

17 classified comorbidities that include liver disease,

according to ICD-9b coding algorithms [65]

[Mild liver disease, …,
Renal disease]

StringComorbidities (including malignant tu-
mor)

Seven categories in total (adopted from ICD-9-CMc):
cholecystitis or cholangitis, appendicitis, hollow organ

0, 1, 2, 3, 4, 5, or 6StringOperation category

perforation, bowel ischemia, intestinal obstruction,
hernia with bowel gangrene, hernia with bowel obstruc-
tion

Whether a patient has pneumonia0 or 1IntegerComplication pneumonia

Whether a patient has UTI0 or 1IntegerComplication UTId

Whether a patient has SSI0 or 1IntegerComplication SSIe

Laboratory test results

Serum albumin level(0.19-5.5g per dL)FloatAlbumin

Serum amylase(5-11873 U per L)FloatAmylase

Levels of B-type natriuretic peptide(21.49-4942 pg per ml)FloatBNPf

Blood urea nitrogen(1-281 mmol per L)FloatBUNg

Band neutrophil(0.3-76)FloatBandh

Calcium in blood(0.8-14.49 mg per dL)FloatCai

Serum creatinine(0.07-34.2 mg per dL)FloatCRj

C-reactive protein test (0.2-679.2 mg per L)FloatCRPk

Hematocrit test (proportion of red blood cells in the
blood)

(1-63.2%)FloatHematocrit

International normalized ratio of prothrombin time(0.79-12)FloatINRl

Blood potassium test(1.60-18.86 mEq per L)FloatKm

Level of lactic acid (5.49-240.6 mmol per L)FloatLactate

White blood cell count(0.2-141.5×109 per L)FloatLeukocyte (WBCn)

The number of platelets in blood(0.7-1373×109 per L)FloatPlatelets

Prealbumin in blood(2-44.59 mg per dL)FloatPrealbumin

Blood test to diagnose sepsis(4.56-45.49 µg per L)FloatProcalcitonin

Total amount of bilirubin in blood(0.1-56.54 mg per dL)FloatTotal bilirubin

Blood sodium test(10-190 mEq per L)FloatNao

Target variable (crucial complication phenotype to be predicted)

AHEp, HRSq, or NeitherCategoricalComplication phenotype

aDGTM: number of hospitalization before peritonitis surgery.
bICD-9: International Classification of Diseases, Ninth Revision.
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cICD-9-CM: International Classification of Diseases, Ninth Revision, Clinical Modification.
dUTI: urinary tract infection.
eSSI: surgical site infection.
fBNP: B-type natriuretic peptide.
gBUN: blood urea nitrogen.
hBand: bandemia.
iCa: calcium.
jCR: creatinine.
kCRP: C-reactive protein.
lINR: international normalized ratio.
mK: potassium.
nWBC: white blood cell.
oNa: sodium.
pAHE: acute hepatic encephalopathy.
qHRS: hepatorenal syndrome.

For the 41 patients with AHE in the sample, the complication
phenotype occurred between 6 and 17 days after peritonitis
surgery, with a mean of 13 days. For the 147 patients with HRS,
the complication phenotype developed between 4 and 47 days
after the surgery, with a mean of 14 days. In their clinical trial,
Huang et al [66] reported a survival curve that indicated that
most patients discontinued antibiotic treatment within 3 days
after peritonitis surgery, suggesting that AHE and HRS seldom
occur within those 3 days. In general, complication phenotypes,
including AHE and HRS, arise approximately 2 or 3 weeks after
peritonitis surgery [66,67]. For example, HRS is characterized
by a rapid, progressive impairment of renal function.
Furthermore, it develops, on average, about 2-3 weeks after
peritonitis surgery [68,69]. Similarly, patients develop AHE
approximately 2 weeks after peritonitis surgery [70,71]. The
combined evidence from the relevant literature and clinical
findings indicates the appropriateness of using the data available
3 days after surgery to predict subsequent AHE and HRS
occurrences.

Descriptive Statistics
We provide some descriptive statistics related to gender, the
number of hospitalizations before peritonitis surgery, and

different complication phenotypes (ie, AHE, HRS, and neither)
in the data set. The average number of hospitalizations before
surgery was slightly lower for AHE and HRS than for neither:
2.6 for AHE, 2.4 for HRS, and 2.7 for neither. Both male and
female patients had a similar number of hospitalizations:
approximately 2.5 times. Female patients with neither of the
diseases had more hospitalizations (about 3.2 times) than their
male counterparts. These differences in part reflect the risk:
both AHE and HRS may arise abruptly, even without many
previous hospitalizations.

We also analyzed the relationships of sex, complication
phenotypes, and the length of stay after surgery. As shown in
Figure 3, both AHE and HRS induce longer lengths (20 days+)
after surgery, whereas for neither, the length of stay was
approximately 17 days. The longer length of stay associated
with AHE and HRS again underscores the importance of
phenotype predictions. For AHE, male patients had a longer
length of stay than female patients, but we observed an opposite
pattern for HRS.
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Figure 3. Analysis of sex, complication phenotype, and the length of stay in the data set.

Evaluation Design

Benchmark Techniques
In total, three prevalent techniques were included in the
evaluation as benchmarks: temporal MMCBR [10], time fusion
CNN [12], and T-LSTM [11]. First, temporal MMCBR performs
clustering analyses to identify similar (patient) temporal
sequences in a sample [10]; therefore, it can handle temporal
patient data that vary in their time intervals and granularity.
Second, time fusion CNN, a deep learning–based technique,
learns patient representations and measures pairwise similarity
in temporal patient data to capture important characteristics
specific to individual patients [12]. Third, patient subtyping
through T-LSTM, another deep learning–based technique, can
cope with patient data that feature temporal heterogeneities by
employing autoencoders to learn patient representations, which
helps cluster patients into subtypes [11]. Our benchmarks do
not include graph-based techniques because concurrent
laboratory tests in the data set make them inadequate for
representing patient conditions and disease progression in a 2D
graph. We also exclude probabilistic modeling that offers limited
predictive utilities in situations involving imbalanced samples.
In the evaluation, the proposed method and all benchmark
techniques employed the same cost-sensitive matrix.

Implementation and Parameter Tuning
All the evaluations were performed on a computer with a
dual-core processor of 2.7 GHz and 8 GB of memory, running
macOS Catalina. We used the SMOTEENN algorithm from the
Python imbalanced-learn library and applied the Python Shapley
Addictive Explanations (SHAP) package to obtain SHAP values
for the feature importance analysis. The proposed method and
benchmark techniques were implemented using PyTorch. Our
method constructs an 8-layer RNN to map the disease
progression space with a latent regulator and adopts a multilayer
perceptron neural network with three dense layers to predict
complication phenotypes. Specifically, the RNN embedding
produces a 2D vector, 8×8 in size, which depicts the temporal
disease progression space. We randomly split the data set into
80% for training and 20% for testing. The testing set had 12
AHE cases, 35 HRS cases, and 1262 neither cases. For
misclassified labels, we set the initial cost parameter for each
phenotype (AHE or HRS) to 200, in line with a related research
[72]. We performed a series of parameter tuning analyses, and
then used the results to determine essential hyperparameter
values (Table 2), including an optimal number of layers for each
neural network.
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Table 2. Essential hyperparameters used in the proposed method.

ValueParameter

0.01Learning rate (γ)

8×8Latent regulator size

0.2Drop rate

8Number of layers

16Units in each layer

0.005Weight decay (λ)

A clinical record contains the results of the laboratory tests
prescribed by the physician, that is, a record has one timestamp.
As noted, patients in the data set have different numbers of
records within the 3-day window after peritonitis surgery, which
are used for model construction. Because the proposed RNN-LR
method requires the same number of clinical records for each
patient, we employed zero padding to ensure that each patient
had three sequential records. As a result, the data set contains

a total of 19,635 clinical records: 6545 patients × 3 (sequential)
records. We illustrate the zero-padding process in Figure 4. If
a patient has only one clinical record within the 3-day window,
we place that record at the end of the sequence and fill the first
2 records with zeroes, according to the length of the longest
sequence (three). Hence, our method uses input sequences of
the same length for model training.

Figure 4. Use of zero padding to prepare clinical records for the proposed recurrent neural network-latent regulator method.

We used the ReLU for activation and the cross-entropy function
for optimization. Finally, the Adam optimizer was applied to
update the model parameters. Figure 5 presents the learning
curves of the proposed method versus benchmark techniques

[73]. As shown, the hyperparameters appear to converge toward
optimality after 100 epochs. Notably, our method consistently
achieves a greater AUC than the benchmark techniques after
60 epochs.
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Figure 5. Analysis of learning curves of the proposed method versus benchmark techniques. AUC: area under the curve; CNN: convolutional neural
network; MMCBR: multiple measurement case-based reasoning; RNN-LR: recurrent neural network-latent regulator; T-LSTM: time aware long
short-term memory.

Performance Measures
We evaluated predictive performance in terms of recall,
precision, F-measure, and AUC. In line with previous research
works [74,75], we adopted the one-against-all strategy to
examine the respective techniques across different performance
measures and outcome classes. To illustrate, we combine HRS
and neither as a single class to calculate the precision, recall,
and F-measure while evaluating AHE predictions. This approach
reduces 3 outcome classes to 2 (AHE and no AHE), with AHE
as the positive class and no AHE as the negative class. Similarly,
we consider HRS as the positive class and no HRS as the
negative class while assessing HRS predictions. Recall, or
sensitivity, indicates the fraction of correctly predicted positive
observations among all actual positive-class observations,
calculated as:

Precision, or positive predictive value, denotes the ratio between
the correctly predicted positive (or negative) observations and
the total predicted positive (or negative) observations, calculated
as:

A high recall value reflects the ability to predict patients who
will develop AHE or HRS, whereas a high precision value
signals a low false positive rate. The F-measure is the harmonic

mean of precision and recall, with 1 indicating the best
performance and 0 indicating the worst [76], calculated as:

Finally, the AUC depicts a technique’s overall ability to
distinguish different outcome classes across various threshold
values. Because we apply the one-against-all strategy in the
evaluation, the AUC reveals a technique’s performance relative
to a random classification, without any biases associated with
the sample size used in the evaluation.

Results

Imputation Performance
We evaluated the performance of several prevalent missing
value imputation techniques: multivariate imputation by chained
equations [77], SoftImput [78], a K-nearest neighbors technique
[79], and a deep autoencoder model [58]. To compare their
effectiveness, we randomly removed 20% and 30% of the
laboratory results from the data set, applied each technique to
impute the missing values, and then calculated the normalized
root mean squared error between the predicted and holdout
values. The NRMSE is the difference between the imputed and
the holdout values divided by the average value of the complete
data. As shown in Table 3, the deep autoencoder model, which
we incorporated into the proposed method, consistently exhibits
the best imputation performance consistently.
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Table 3. Missing value imputation performance of respective techniques.

NRMSEaTechnique (reference)

30% imputation performance20% imputation performance

0.88860.8479MICEb [77]

0.90440.8546SoftImpute [78]

1.00441.0209KNNc-based imputation [79]

0.84530.7926Deep autoencoder model [58]

aNRMSE: normalized root mean squared error.
bMICE: multivariate imputation by chained equations.
cKNN: K-nearest neighbors.

Prediction Performance Evaluation
Table 4 presents the results of prediction evaluation. Overall,
the proposed method outperforms all the benchmarks for
predicting AHE and HRS, as measured by recall, F-measure,
and AUC. Because recall indicates the ability to identify patients
who are likely to develop AHE or HRS, it is arguably more
important than precision. For predicting AHE, our method
achieves 27%-147% improvements in recall, 26%-64% in AUC,
and 56%-100% in the F-measure compared with the
benchmarks. For HRS predictions, we observed 5%-300%
improvements in recall, up to 19% improvement in AUC, and
up to 30% in the F-measure. The recall level achieved by our

method, recorded at 0.42 for AHE and 0.40 for HRS, is
significantly higher than that of the best-performing benchmark
(T-LSTM). Similarly, the AUC values attained by the proposed
method, 0.82 for AHE and 0.64 for HRS, are significantly
greater than those of T-LSTM or time fusion CNN. Jointly, the
F-measure and AUC values attained by the proposed method
indicate its greater effectiveness in predicting the crucial
complication phenotypes than the benchmark techniques because
of its high recall and comparable precision. Together, these
results reveal that the proposed method can help physicians
concentrate on patients who are more likely to develop severe
complications.
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Table 4. Prediction performance of the proposed method versus benchmark techniques.

AUCaF-measureRecallPrecisionTechnique and outcome class

Temporal MMCBRb

0.500.180.170.20AHEc

0.540.100.100.09HRSd

0.540.960.960.97Neither

Time fusion CNNe

0.650.180.330.12AHE

0.670.100.380.06HRS

0.630.880.810.97Neither

T-LSTMf

0.650.140.330.09AHE

0.680.090.270.05HRS

0.630.900.840.97Neither

RNN-LRg

0.820.280.420.21AHE

0.640.130.400.08HRS

0.660.910.850.98Neither

aAUC: area under the curve.
bMMCBR: multiple measurement case-based reasoning.
cAHE: acute hepatic encephalopathy.
dHRS: hepatorenal syndrome.
eCNN: convolutional neural network.
fT-LSTM: time aware long short-term memory.
gRNN-LR: recurrent neural network-latent regulator.

We performed paired t tests to examine whether the performance
improvements achieved by our method over benchmark
techniques are significant. Specifically, we independently
evaluated each technique 100 times, and then used the results

to test the significance of the performance differentials. As
shown in Figure 6, the improvements in the weighted F-measure
and AUC associated with our proposed method are statistically
significant at P<.05. Table 5 details the paired t test results.

Figure 6. Predictive performances of our method versus benchmarks, 100 evaluation trials. AUC: area under the curve; CNN: convolutional neural
network; MMCBR: multiple measurement case-based reasoning; RNN-LR: recurrent neural network-latent regulator; T-LSTM: time aware long
short-term memory.
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Table 5. Paired t test results of improvements by our method over benchmark techniques.

Weighted F-measureAUCbProposed method

(RNN-LRa)

Temporal MMCBRTime fusion CNNT-LSTMTemporal MMCBReTime fusion CNNdT-LSTMc

<.05<.001<.001<.001<.001<.001P value

aRNN-LR: recurrent neural network-latent regulator.
bAUC: area under the curve.
cT-LSTM: time aware long short-term memory.
dCNN: convolutional neural network.
eMMCBR: multiple measurement case-based reasoning.

Table 6 presents the confusion matrix created by testing the
case predictions with our method. Because neither account for

the majority of the peritonitis sample, we observe a tendency
to predict AHE or HRS as neither.

Table 6. Confusion matrix of test sample predictions by the proposed method.

Predicted outcome classActual outcome class

Predicted HRSbPredicted AHEaPredicted neither

165181079Actual neither

057Actual AHE

14120Actual HRS

aAHE: acute hepatic encephalopathy.
bHRS: hepatorenal syndrome.

The relatively low precision values of both our proposed method
and the benchmark techniques can be attributed to the highly
imbalanced outcome class distributions: AHE and HRS cases
only account for 0.6% and 1.1% of the sample, respectively.
Figure 7 depicts the precision-recall curves that reveal their
trade-off across different thresholds. Although both AHE and
HRS have low precision and recall values because of their
imbalanced distributions in the sample, a higher recall value

for each phenotype could be achieved at the cost of a lower
precision rate. Because AHE cases account for 0.6% of the
sample, our method, in the best scenario, can correctly predict
20% of AHE cases, hence representing a substantial
improvement over random guessing. For both AHE and HRS,
the low AUC values do not necessarily convey poor
performance; rather, they indicate that the imbalanced
distributions make accurate phenotype predictions very difficult.
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Figure 7. Precision-recall curves for the proposed method regarding acute hepatic encephalopathy, hepatorenal syndrome, and neither of these conditions.

Value of Latent Regulator to Predictive Power
We incorporate a latent regulator in the RNNs as an important
novelty of the proposed method. We therefore specifically
examined its value regarding our proposed method’s predictive
utilities. Table 7 summarizes the model’s predictive power, with
and without the latent regulator. The method is more effective
for predicting AHE if it includes the latent regulator, as indicated

by the 40% improvement in recall, 24% in AUC, 31% in
precision, and 33% in the F-measure, compared with its
application without the regulator. For HRS, incorporating the
latent regulator leads to an improvement of 7% in AUC, 14%
in precision, and 18% in F-measure. These comparative results
confirm that the value of the latent regulator (latent parameter
matrix) is relative to techniques that only rely on available
patient data.
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Table 7. Predictive performance of the proposed method, with versus without the latent regulator.

Our method (RNN-LRa)Our method without latent regulatorPerformance measure

HRSAHENeitherHRScAHEbNeither

0.080.210.980.070.160.97Precision

0.400.420.850.260.300.89Recall

0.130.280.910.110.210.93F-measure

0.640.820.660.600.660.58AUCd

aRNN-LR: recurrent neural network-latent regulator.
bAHE: acute hepatic encephalopathy.
cHRS: hepatorenal syndrome.
dAUC: area under the curve.

Ablation Analysis
Furthermore, we analyzed the proposed deep learning–based
method with deep SHAP [80] to reveal the elements that
contribute more predictive power. In essence, SHAP follows a
game theoretic approach to analyze the output of a predictive
model and indicate the marginal contributions of different
features to predictions [80]. We categorized the predictors of

our RNN-LR method as clinical indicators (eg, patient’s age,
sex, and albumin level), RNN architecture (data representations
in different units of RNN-LR output), and latent regulator
(vectors in the parameter matrix), as shown in Figure 8. Having
specified the different types of predictors, we used deep SHAP
to identify variables that contribute more to our proposed
method’s ability to predict complication phenotypes accurately.

Figure 8. Different predictors in our method and their contributions to predictive power. RNN: recurrent neural network; RNN-LR: recurrent neural
network-latent regulator; Na: potassium.

In Figure 9, we sort the different features according to the mean
SHAP values, which are approximations of their contributions
to the predictions. As shown in the figure, RNN unit 6
contributes most to the method’s predictive utilities; that is, the
sixth unit of the deep learning output provides the most valuable
information to predict complication phenotypes. This feature
is derived from diagnostic clinical outcomes (Table 1) and
conveys the value of patient representation. Overall, the SHAP
values indicate that 7 of the top 20 predictors relate to the RNN

architecture, that is, the method’s architecture provides more
important information to predict crucial complication
phenotypes than clinical indicators or the latent regulator. Also,
hidden 1 refers to the first column vector of the latent regulator
and is the fourth most important predictor, which confirms that
the latent regulator contains important information for predicting
AHE and HRS. Bowel ischemia and malignancy are two
important clinical indicators for predicting crucial complication
phenotypes.
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Figure 9. Mean SHAP values of different predictors in the proposed recurrent neural network-latent regulator method. RNN: recurrent neural network.

Summary
The evaluation results demonstrate the advantages of the
proposed method (RNN-LR) over several prevalent techniques.
Our method outperforms temporal MMCBR [10] because it
employs a recurrent neural network to learn the underlying
features of the patient’s condition and disease progression, rather
than relying on available clinical data to perform clustering
analyses. Time fusion CNN measures pairwise similarity in
patient progression to predict complication phenotypes. In the
presence of substantial missing values in patient data, as
illustrated in our sample, pairwise similarity may not effectively
capture clinical progression variations, which confines the
predictive power of time fusion CNN [12]. Patient data, such
as laboratory results, are gathered at different frequencies and
time intervals. To address such temporal heterogeneities,
T-LSTM learns patient representation from input (patient) data
with different time intervals [11]. The proposed method instead
imputes missing values in patient data to generate same-length
input (data) sequences and achieves better predictive
performance than T-LSTM. In particular, the use of a latent
regulator, as an additional parameter matrix, to mitigate the
information insufficiency constraint helps in capturing the
underlying relationships of clinical factors to produce better
predictions, together with the available patient clinical data. In
summary, the proposed deep learning–based method addresses
imbalanced outcome distributions in patient data and considers
patient-level temporal heterogeneities to predict AHE and HRS
by incorporating both a latent regulator and cost-sensitive
analysis to extend back-propagation learning in deep neural
networks.

Discussion

Principal Findings
This study offers several implications for health informatics
and improved acute disease patient management. First, data
insufficiencies represent a challenge to physicians’ patient care
and management. This study highlights the promising use of a
latent parameter matrix to alleviate this constraint by
demonstrating its feasibility and clinical value in the prediction
of crucial complication phenotypes. This latent parameter matrix
can be modified or extended to accommodate other variables
or hidden risk factors to more effectively predict important
patient outcomes. Second, patient data are temporally
heterogeneous, which creates another difficulty for clinically
using EHRs and predictive analytics. Such heterogeneities can
be addressed with effective missing data imputations that learn
temporal feature representations from patient data to render
increased predictive utilities. Unlike many existing techniques
that overlook temporal heterogeneities or inconsistencies in
patient data [56,81], we illustrate that an explicit incorporation
of an effective representation for temporal heterogeneities can
improve predictive performance. Third, imbalanced distributions
of patient outcomes prevail in clinical scenarios, which creates
an additional difficulty for leveraging predictive analytics in
health care. Although only a small proportion of patients develop
severe complication phenotypes, the outcomes can be harmful
or even fatal. We demonstrate the value of cost-sensitive
learning for an increased efficacy in crucial phenotype
predictions (AHE or HRS). Effective patient representation,
such as short-term temporal representations from limited
observed patient data, and a latent regulator jointly enable
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patient information abstraction at multiple levels to predict
complication phenotypes more accurately.

Our research also has important implications for clinical
practice. Health care is going through a paradigmatic shift from
reactive care to preventive care. Predicting important clinical
events and patient outcomes, especially among patients with
acute diseases, is critical to the quality of care and cost
containment in patient management. The proposed method can
be applied to develop advanced clinical decision support systems
that assist physicians at the point of care. For example, a timely
detection of patients who are likely to develop severe
complications is critical but challenging. Through support by
decision support systems enabled by the proposed method,
physicians can identify at-risk patients and perform thorough
monitoring and timely interventions to improve those patients’
outcomes and well-being. Our method can also benefit health
care organizations in their resource planning and allocation. For
example, effective phenotype predictions can help a hospital
distinguish patients who are likely or not likely to develop
serious complications, so their readmission risk or length of
stay can be reduced. Such benefits have important implications
for resource utilization efficiency and cost containment in patient
care and management.

Conclusions and Future Research
We have developed a deep learning–based method to predict
crucial complication phenotypes of an acute disease.
Furthermore, we have evaluated the proposed method and
several prevalent benchmark techniques with a peritonitis data
set by comparing their predictions of AHE and HRS. The
empirical results reveal the advantageous predictive power of
our method, which can address challenges pertaining to data
insufficiency, temporal heterogeneity, and imbalanced outcome
distributions. This study makes several contributions to the
predictive analytics for an improved care and management of
patients with acute diseases. First, we demonstrate the feasibility
and clinical value of using a latent regulator to cope with
insufficiencies in available patient data to improve phenotype
predictions. The latent regulator, incorporated in the proposed
method, can be expanded to model other external variables and
hidden risk factors for predicting different complication
phenotypes. Second, our proposed method incorporates missing
data imputation and addresses temporal heterogeneities that

exist in patient data, a fundamental challenge in using EHRs
and predictive analytics for patient care and management. As
we illustrate, temporal feature representation can be learned
from patient data to provide increased predictive utilities. Third,
imbalanced data prevail in clinical scenarios. Although only a
relatively small proportion of patients develop severe
complication phenotypes, the outcomes can be fatal. Toward
that end, the proposed method reveals the value of cost-sensitive
learning to address the data imbalance issue and demonstrates
greater effectiveness to predict the minority class (eg, AHE and
HRS), which is clinically important.

This study has several limitations that warrant continued
research attention. First, the sample for the evaluation was
relatively limited in size with respect to the disease category.
Continued research should re-examine the proposed method
with additional, diverse patient samples and different acute
diseases. Second, we rely on domain experts to guide clinical
feature extraction in this study. We acknowledge that some
potentially important factors might be overlooked by domain
experts. In addition, other complications may involve more
complex risk factors, such as patient comorbidity, disease
progression, and environmental factors. Thus, further research
should explore how representation learning might identify
features automatically from various patient clinical and
behavioral data. Third, a predictive model’s ability to generate
interpretable results is desirable and important; however,
interpreting the proposed method’s predictions is difficult
because its deep learning model maps input variables (eg,
laboratory results, sex, age) to a numerical output variable
through multiple layers. The complex structures make its
prediction results difficult to interpret, unlike rule- or inductive
decision tree–based techniques that can reveal interpretable
relationships between input variables and the target variable.
Ongoing research should explore interpretable computational
methods built on explainable artificial intelligence. In a related
sense, our method uses a latent regulator to account for observed
disease progression and underlying mechanisms (eg, hidden
disease patterns), so its processing and results cannot explain
the underlying causes of the phenotypes. Continued efforts are
needed to specify and test probable mechanisms and
pathogeneses leading to crucial hepatic complications, as
manifested by these phenotypes.
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