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Abstract

Background: Acute kidney injury (AKI) develops in 4% of hospitalized patients and is a marker of clinical deterioration and
nephrotoxicity. AKI onset is highly variable in hospitals, which makes it difficult to time biomarker assessment in all patients
for preemptive care.

Objective: The study sought to apply machine learning techniques to electronic health records and predict hospital-acquired
AKI by a 48-hour lead time, with the aim to create an AKI surveillance algorithm that is deployable in real time.

Methods: The data were sourced from 20,732 case admissions in 16,288 patients over 1 year in our institution. We enhanced
the bidirectional recurrent neural network model with a novel time-invariant and time-variant aggregated module to capture
important clinical features temporal to AKI in every patient. Time-series features included laboratory parameters that preceded
a 48-hour prediction window before AKI onset; the latter’s corresponding reference was the final in-hospital serum creatinine
performed in case admissions without AKI episodes.

Results: The cohort was of mean age 53 (SD 25) years, of whom 29%, 12%, 12%, and 53% had diabetes, ischemic heart disease,

cancers, and baseline eGFR <90 mL/min/1.73 m2, respectively. There were 911 AKI episodes in 869 patients. We derived and
validated an algorithm in the testing dataset with an AUROC of 0.81 (0.78-0.85) for predicting AKI. At a 15% prediction threshold,
our model generated 699 AKI alerts with 2 false positives for every true AKI and predicted 26% of AKIs. A lowered 5% prediction
threshold improved the recall to 60% but generated 3746 AKI alerts with 6 false positives for every true AKI. Representative
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interpretation results produced by our model alluded to the top-ranked features that predicted AKI that could be categorized in
association with sepsis, acute coronary syndrome, nephrotoxicity, or multiorgan injury, specific to every case at risk.

Conclusions: We generated an accurate algorithm from electronic health records through machine learning that predicted AKI
by a lead time of at least 48 hours. The prediction threshold could be adjusted during deployment to optimize recall and minimize
alert fatigue, while its precision could potentially be augmented by targeted AKI biomarker assessment in the high-risk cohort
identified.

(J Med Internet Res 2021;23(12):e30805) doi: 10.2196/30805
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Introduction

The clinical burden of acute kidney injury (AKI) worsens
globally with the increasing complexity of cardiovascular
diseases, anticancer therapy, and aging population [1-3]. AKI
develops in 4% of patients admitted to our institution and
involves more than 3000 patients annually [4]. A total of 39%
of AKI cases develop during hospitalization following clinical
deterioration and multiorgan dysfunction [4,5]. Additionally,
15% of patients who receive antimicrobials or chemotherapy
of nephrotoxic potential develop drug-induced AKI [6,7].
Iodinated contrast administered for angiography contributes to
AKI in 10% to 40% of patients with chronic kidney disease
[8,9]. Once AKI develops in patients, however, the management
remains supportive with control of its underlying triggers. AKI
portends a poor patient prognosis with high mortality, prolonged
hospitalization, and sustained deterioration of kidney function,
with a significant risk of kidney failure in the long term [10,11].

Management strategies for high-risk patients may prevent AKI
or reduce its downstream complications should AKI still
develop. These measures must be implemented promptly, which
requires the diagnosis of AKI in the subclinical phase, way
before its onset. As the onset of AKI is highly variable during
a patient’s stay, it is unclear how best to time biomarker
surveillance for kidney injury concerning the patient’s clinical
progress. The advent of electronic health records (EHRs) now
provides us with real-time clinical data from routine patient
care, built into millions of data points for analytics. These, along
with AKI being defined by a numerical measure using serial
serum creatinine, allow for an AKI prediction algorithm that is
reproducible on a large scale. Machine learning with recurrent
neural network–based techniques could improve the accuracy
of analytics over traditional biostatistics [12]. These could be
enhanced by capturing the relative feature importance temporal
to AKI; that is, certain clinical covariates or trends (ie, features)
would factor with increasing (or decreasing) importance in the
time leading up to the onset of AKI. In this study, we would
apply a novel machine learning technique that analyzes
patient-related features in the form of routine hematology and
biochemistry and their interaction with time to accurately predict
AKI in hospitals by a lead time of 48 hours.

Methods

Dataset
The data source was our institution’s EHR in 2012, which
recorded clinical and laboratory data from 68,832 case
admissions in that year. Our institution is a 1200-bed academic
hospital that provides complex tertiary care services including
cardiothoracic surgery, transplantation, and cancer management.
The Institutional Human Research Ethics Committee approved
the study (NUHS-DSRB 2018/00169) and waived the need for
informed consent given the use of deidentified data for analytics
with secured institutional governance.

Study Design and Participants
We performed an observational longitudinal study of the
prospectively acquired EHR data from hospitalized patients in
2012. The exclusion criteria were (1) patients discharged within
48 hours of admission; (2) patients with community-acquired
AKI, as inferred from onset of AKI within 48 hours of
hospitalization [13]; (3) patients with stage 5 chronic kidney
disease by Kidney Disease: Improving Global Outcomes
(KDIGO) criteria, both dialysis, and nondialysis [14], inferred
from diagnosis codes (Systematized Nomenclature of
Medicine–Clinical Terms) for “end-stage kidney/renal disease,”
an admission estimated glomerular filtration rate (eGFR) of less

than 15 mL/min/1.73 m2 by Chronic Kidney Disease
Epidemiology Collaboration equation [15], or procedural codes
for peritoneal dialysis catheter insertion, arteriovenous access
creation, or fistuloplasty; (4) patients with procedural codes for
“**dialysis,” “**filtration,” or “**diafiltration” previously who
failed to recover kidney function to a current admission eGFR

of at least 30 mL/min/1.73 m2; or (5) patients with no available
laboratory results for analytics.

Definition of AKI
The binary event measure was AKI, as defined by the KDIGO
2012 criteria using serial serum creatinine levels during the
index hospitalization [16]. These included the relative criterion
of at least 1.5 times an increase in serum creatinine level within
a 7-day window; the absolute criterion was an increase in serum
creatinine of greater than 26.5 µmol/L (0.3 mg/dL) within 48
hours. The reference serum creatinine within the corresponding
7-day or 48-hour window for either criterion was taken as the
baseline creatinine. The AKI-defining creatinine level and the
extent of elevation over baseline were used to grade the initial
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KDIGO AKI staging severity. Creatinine was measured using
the ADVIA 2400 (Siemens AG) enzymatic method traceable
to isotope dilution mass spectrometry standard. We did not
apply the oliguria criterion for AKI.

Features Used for Analytics
Features (or covariates) were sourced from time-series
laboratory results. The data source was our institution’s EHR,
Computerized Patient Support System version 2 (Integrated

Health Information System Pte Ltd). The results were integrated
from comma-separated value files using common masked
identifiers and ported onto our institution’s artificial intelligence
discovery platform, an EHR analytic module. Data with the
date and time stamps were selected as features to predict the
event. These included all serial hematology, serum biochemistry,
and urinary investigations (Figure 1). We did not include disease
diagnosis codes or medication records.

Figure 1. Prediction logic and features included in analytics. *: Serum biochemistry or hematology unless otherwise stated (eg, urine WBC and RBC);
**: AKI defined by KDIGO criteria; x: features entered in model; t: time windows; β: time-invariant feature importance of which influence is shared
across time windows; alpha-t: time-variant feature importance; ht: time-variant hidden representation; WBC: white blood cell; RBC: red blood cell;
AKI: acute kidney injury; KDIGO: Kidney Disease: Improving Global Outcomes; BIRNN: bidirectional recurrent neural network; FiLM: feature-wise
linear modulation.

Analytics
Patient profile was compared between unique patients who
developed AKI and those who did not. Parametric variables
were reported as mean and standard deviation and compared
using Student t tests; nonparametric variables were reported as
median and IQR and compared using Wilcoxon rank-sum tests.
Categorical variables were reported as frequency and percentage
and compared using chi-square or Fisher exact tests where

appropriate. A 2-tailed P value of <.05 was taken as the measure
of statistical significance.

We sectioned the dataset by date and time for predictive
analytics. Every case admission was taken as one sample. The
first AKI episode that occurred in corresponding case admissions
was analyzed. The AKI-defining creatinine served as the
reference time point; the immediately preceding 48 hours was
made the prediction window, and the feature window included
the time up to 7 days before the prediction window (Figure 1).
For case admissions with no AKI episodes, the corresponding
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reference time point would be the final serum creatinine level
and likewise preceded by a 48-hour prediction window and a
further 7-day feature window. Features performed within the
feature window were used to predict AKI, a bivariate event, by
a lead time of 48 hours. The feature window was further
sectioned into daily serial time intervals for time-series
modeling, temporal to the event. For each time interval, we
averaged the values of the same feature, followed by
normalization of the corresponding result x to generate a

normalized x1 as the input for analytics, where x1 = [x –
minimum(x)] / [maximum(x) – minimum(x)].

We proposed a novel time-invariant and time-variant (TITV)
model to facilitate more accurate and interpretable analytics in
AKI prediction based on the collaboration of 3 modules [17]
(Figure 1). In the time-invariant module, an abstract
representation was calculated with the data in the entire feature
window, denoting each feature’s importance shared across time
(ie, time-invariant feature importance). This time-invariant
feature importance guided the modulation of input in the next
module, the time-variant module. In this second module, we
applied a bidirectional recurrent neural network to process
sequential data and capture the dynamic behavior both forward
and backward in time temporal to the event, as guided by the
computed time-invariant feature importance from the
time-invariant module. Additionally, we differentiated the
influence of features across time windows leading to the event
by applying the self-attention mechanism on top of the output
of the bidirectional recurrent neural network; the output after
the self-attention mechanism represents each feature’s
importance in the corresponding time window (ie, time-variant
feature importance in this time-variant module). Finally, in the
prediction module, both the time-invariant and the time-variant
feature importance were aggregated to calculate the final
prediction (ie, risk of AKI). Meanwhile, the influence of each
feature (in each time window) on the final prediction was also
derived from the TITV model.

We performed a random shuffling of the entire cohort and
arbitrarily partitioned the samples into 80% training, 10%

validation, and 10% testing datasets. In the training process, we
selected the hyperparameters that achieved the best performance
in the validation dataset and applied them to the testing dataset
for reporting of the experimental results [18-20]. We examined
the reporting performance using the area under the receiver
operating characteristic curve (AUC), as well as the respective
sensitivity (recall) and positive predictive values (precision)
that corresponded with the varying model prediction thresholds
for AKI. Precision represents the proportion of predicted cases
that truly had AKI; recall represents the proportion of actual
AKI cases successfully identified by the prediction model. The
AKI prediction threshold that provided the most optimal
statistical balance between precision and recall was inferred by
the highest computed F1 score. A high model recall gives rise,
however, to more false positives (ie, poorer precision), and these
permutations were further examined to demonstrate their clinical
relevance to AKI diagnostics. These results were compared with
the corresponding performance using traditional logistic
regression and baseline recurrent neural network models. We
applied zero imputation for missing data. Analysis was
performed using Python (version 3.8.2, open source for Mac
OSX).

Results

Patient Profile
We studied 20,732 case admissions in 16,288 unique patients,
of which 1971 patients were younger than age 18 years (Figure
2). The mean age of the final cohort was 53 (SD 25) years, and
52.2 (8510/16,288) were males; 28.9% (4701/16,288) had
diabetes, 35.0% (5699/16,288) had hypertension, 11.7%
(1898/16,288) had ischemic heart disease, and 11.7%
(1899/16,288) had either solid organ or hematological
malignancy. Near half (7214/16,288, 44.3%) of patients had a

baseline eGFR<90 mL/min/1.73 m2. More patients with AKI

(258/869, 29.7%) had a baseline eGFR<60 mL/min/1.72 m2

compared to those without AKI (2738/15,419, 17.8%; P<.001;
Table 1).
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Figure 2. Study flow diagram. AKI: acute kidney injury; CKD: chronic kidney disease; CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration
equation; eGFR: estimated glomerular filtration rate; ESKD: end-stage kidney disease; RRT: renal replacement therapy.
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Table 1. Study profile and bivariate comparison between acute kidney injury and non–acute kidney injury patients.

P valueNon-AKI (n=15,419)AKIa (n=869)Entire cohort (n=16,288)Variables

<.00153 (26)62 (22)53 (25)Age, mean (SD), years

.088030 (52.1)480 (55.2)8510 (52.2)Male gender, n (%)

Comorbidities, n (%)

<.0014330 (28.1)371 (42.7)4701 (28.9)Diabetes

<.0015201 (33.7)498 (57.3)5699 (35.0)Hypertension

<.0011636 (10.6)262 (30.1)1898 (11.7)Ischemic heart disease

<.001948 (6.1)190 (21.9)1138 (7.0)Heart failure

<.001684 (4.4)73 (8.4)757 (4.6)Cerebrovascular disease

<.001225 (1.5)44 (5.1)269 (1.7)Chronic liver disease

<.0011416 (9.2)140 (16.1)1556 (9.6)Solid organ malignancy

<.001291 (1.9)52 (6.0)343 (2.1)Hematological malignancy

Baseline kidney function

.0571 (55-91)69 (46-108)71 (54-92)Creatinine, µmol/L, median (IQR)

<.00191 (68-109)86 (55-110)91 (67-109)eGFRb, mL/min/1.73 m2, median (IQR)

.657228 (46.9)400 (46.0)7628 (46.8)eGFR 90 or above mL/min/1.73 m2, n (%)

.284007 (26.0)211 (24.3)4218 (25.9)eGFR 60 to <90 mL/min/1.73 m2, n (%)

<.0011227 (8.0)101 (11.6)1328 (8.2)eGFR 45 to <60 mL/min/1.73 m2, n (%)

<.001860 (5.6)90 (10.4)950 (5.8)eGFR 30 to <45 mL/min/1.73 m2, n (%)

<.001651c (4.2)67 (7.7)718 (4.4)eGFR <30 mL/min/1.73 m2, n (%)

AKI-related variables

——122 (80-169)—dAKI-defining creatinine, µmol/L, median (IQR)

——651 (74.9)—Relative criterion (vs absolute), n (%)

——6 (3-10)—AKI onset days from admission, median (IQR)

Serum biochemistry at AKI detection, median (IQR)

——138 (135-142)—Sodium, mmol/L

——4.1 (3.7-4.6)—Potassium, mmol/L

——11 (7-15)—Urea, mmol/L

——24 (19-27)—Bicarbonate, mmol/L

——1.23 (0.95-1.54)—Phosphate, mmol/L

——2.03 (1.89-2.17)—Calcium, mmol/L

——105 (101-109)—Chloride, mmol/L

——384 (266-527)—Uric acid, µmol/L

Initial KDIGOe AKI staging, n (%)

——701 (80.7)—Stage 1

——125 (14.4)—Stage 2

——43 (4.9)—Stage 3

<.0015 (3-9)23 (13-44)5 (3-10)Total cumulative hospital days, median (IQR)

<.0015 (3-7)14 (8-26)5 (3-8)Hospital days per admission, median (IQR)

aAKI: acute kidney injury.
beGFR: estimated glomerular filtration rate by Chronic Kidney Disease Epidemiology Collaboration equation.
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cA total of 1446 non-AKI patients had missing baseline eGFR.
dNot applicable.
eKDIGO: Kidney Disease: Improving Global Outcomes.

Evaluation Outcomes
AKI developed during 4.4% (911/20,732) of case admissions
in 869 unique patients at a median of 6 (IQR 3-10) days from
admission; 74.9% (651/869) of AKI patients were diagnosed
based on KDIGO relative criterion, and 80.7% (701/869) were
of initial KDIGO stage 1 in severity. Patients who developed
AKI were older with more comorbidities including diabetes,
hypertension, cardiovascular diseases, chronic kidney disease,
chronic liver disease, and cancers compared with non-AKI
patients (all P<.001). The median hospital days per admission
and cumulatively in 2012 in AKI patients versus those without
were 14 (IQR 8-26) days versus 5 (IQR 3-7) days, and 23 (IQR
13-44) days versus 5 (IQR 3-9) days, respectively (all P<.001;
Table 1).

Analytics for AKI Prediction in the Hospital
The 7-day feature window was divided into daily time windows,
giving a total of 7 time windows and 709 features in the analysis.
Figure 1 shows the laboratory variables included in the feature
window in order of their corresponding test prevalence by
categories. Complete blood count was the most common
investigation, performed in 61.3% (12,709/20,732) of all case
admissions in the analysis; this was followed by serum
electrolytes, urea, and creatinine at 46% to 59%, and liver
function markers at 30% to 41%. In comparison, acid-base
parameters and serum lactate contributed less (2146/20,732,
10.4%) to the analysis.

The cohort was partitioned into the training (16,585 cases),
validation (2073 cases), and testing (2074 cases) datasets; AKI
rates in the 3 datasets were 4.5%, 3.9%, and 4.3%, respectively.
Table 2 summarizes the AUC of respective analytic modules
in the final testing dataset as well as the precision and recall
corresponding with the AKI prediction threshold with the

highest F1 score. The AUC for AKI prediction by the
multivariate logistic regression and recurrent neural
network/time-series models were 79% and 80%, respectively.
The AUC was 81% after we applied the TITV module with
comparable precision and recall compared with the former
models; these and the highest F1 score were achieved at an AKI
prediction threshold between 15% and 20%. The respective
AUCs and corresponding area under precision-recall curves for
the training and testing datasets are illustrated in Figure 3.

Table 3 shows the breakdown in our TITV module precision
and recall according to the varying probability thresholds for
AKI prediction.

A low prediction threshold detected a very high number of
predicted AKI cases that scored high in recall but poor in
discrimination between true and false positives. Conversely, a
high prediction threshold detected a low number of predicted
AKI cases but with high precision. A 15% AKI probability
threshold implied that 699 cases were predicted to be diagnosed
with AKI; 33.3% (233/699) of predicted cases did subsequently
develop AKI, while 25.6% (233/911) of eventual AKI cases
were successfully predicted. Reducing the probability threshold
to 5% led to 3746 predicted AKI cases with much higher false
positives but with successful prediction of 60.0% (547/911) of
eventual AKI cases. Figure 4 illustrates the confusion matrix
plots at AKI prediction thresholds of 5% and 15%. Further
details on TITV performance metrics are provided in Table 4.

In addition, our TITV model generated representative
interpretation results specific to each AKI case. Figure 5
illustrates the relative feature importance to AKI in 8 case
examples, which demonstrated the range of inflammatory,
cardiac, drug-specific, or hepatic functional markers in
association with AKI, specific to each case. The source codes
for our predictive algorithm are available online [21].

Table 2. Acute kidney injury predictive performance in the testing dataset with optimized F1.

AUCd (95% CI)F1cRecallbPrecisionaModel

0.789 (0.752-0.827)0.2240.1890.274Logistic regression

0.800 (0.764-0.836)0.2500.2220.286RNNe (GRUf)

0.797 (0.761-0.833)0.2660.2330.309BRNNg (BGRUh)

0.814 (0.780-0.848)0.3110.2560.397Proposed TITVi model

aPrecision: true positive / (all cases predicted at risk of acute kidney injury).
bRecall: true positive / (all cases that eventually developed acute kidney injury).
cF1 score: 2 × [(recall × precision) / (recall + precision)].
dAUC: area under receiver operating characteristic curve.
eRNN: recurrent neural network.
fGRU: gated recurrent unit.
gBRNN: bidirectional recurrent neural network.
hBGRU: bidirectional gated recurrent unit.
iTITV: time-invariant and time-variant feature importance.
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Figure 3. Area under receiver operating characteristic and area under precision-recall curves of training and testing datasets. AUC: area under receiver
operating characteristic curve; AUPRC: area under precision-recall curve.

Table 3. Varied acute kidney injury prediction thresholds on time-invariant and time-variant model performance metrics.

True positive AKI cases, nPredicted AKI cases by model, nF1eRecalldPrecisioncThresholda to predict AKIb (%)

54737460.2350.6000.1465

30412040.2870.3330.25210

2336990.2890.2560.33315

1823640.2860.2000.50020

1212530.2090.1330.48025

1011820.1850.1110.55630

aProbability threshold to define predicted AKI versus no risk of AKI (ie, positive/negative class prediction). A low threshold risks over-detection and
alert fatigue, which corresponds to poor precision. A high threshold risks missing true AKI cases, which corresponds to poor recall.
bAKI: acute kidney injury.
cPrecision: true positive / (all cases predicted at risk of AKI).
dRecall: true positive / (all cases who eventually developed AKI).
eF1 score: 2 × [(recall × precision) / (recall + precision)].
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Figure 4. Confusion matrix plots with acute kidney injury prediction thresholds at 5% and 15%.

Table 4. Model performance metric with time-invariant and time-variant prediction thresholds at 5% and 15%.

SubtotalNo AKITrue AKIa cases

5% prediction threshold

37463199547TITVb predicted (positive)

16,98616,622364TITV predicted (negative)

20,73219,821911Subtotal

15% prediction threshold

699466233TITV predicted (positive)

20,03319,355678TITV predicted (negative)

20,73219,821911Subtotal

aAKI: acute kidney injury.
bTITV: time-invariant and time-variant module.
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Figure 5. Case examples of relative feature importance in acute kidney injury (AKI) prediction. Time-window: refers to feature window of 7 days in
AKI prediction; Y-axis: features highly associated with AKI would rank high in relative feature importance; a-b: C-reactive protein, neutrophils featured
prominently over days, which suggested infection and inflammation were associated with subsequent AKI; c-d: troponin-I featured prominently initially,
which suggested cardiac disease in association with AKI, although its relative importance waned in subsequent days; e-f: vancomycin levels rose in
feature importance proximate to AKI, which strongly suggested vancomycin nephrotoxicity; g-h: lactate, liver enzymes, international normalized ratio,
and activated partial thromboplastin time featured strongly, which suggested hepatic or multiorgan dysfunction in association with evolving AKI.
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Discussion

Principal Findings
We have used structured but heterogeneous biochemical data
from 20,732 case admissions in the prediction of
hospital-acquired AKI by a 48-hour lead time. We enhanced
the recurrent neural network model with a novel analytic module
that took into account the temporal interactions in serial
laboratory parameters that inferred disease trajectory leading
up to AKI [17]. At the optimal statistical operation point as
indicated by the highest F1 score (Table 2), our module
generated 3 false positives for every 2 true AKI cases, and
clinicians would need to act on just 600 predicted AKI alerts
of 20,732 case admissions yearly; however, 3 of 4 true AKI
cases would be missed. It may be more desirable for our module
to successfully predict at least 3 of 5 true AKI cases, but this is
counterbalanced by 6 false positives for every 1 true AKI case,
and more than 3000 predicted AKI alerts yearly (Table 3). We
suggest that our AKI prediction threshold should be low to
identify more patients at risk of AKI daily. This narrows the
entire hospital cohort to a more manageable patient number for
closer monitoring, in whom further assessment could be
augmented by AKI biomarkers to reduce false positives [22].
These include urinary clusterin, kidney injury molecule–1, tissue
inhibitor of metalloproteinase–2, and insulin-like growth factor
binding protein–7, for which levels rise in 12 to 48 hours before
a significant rise in serum creatinine [7,23].

Comparison With Prior Work
Our methodology differs from machine learning techniques that
used a quasi-random selection of variable prediction points
relative to AKI [24]. It resembles models that adopted structured
feature and prediction windows relative to AKI that facilitate
the deployment of our prediction algorithm in real time [25].
Importantly, we expanded the prediction window to a minimum
of 48 hours. Such improved lead time may be necessary for any
AKI preventive strategies to make a meaningful change in
clinical outcomes. Preemptive interventions may include more
detailed patient reviews, timely treatment of infections, precise
volume management [26], preferred use of balanced electrolyte
over chloride-rich solutions [27], admission to high-dependency
or intensive care unit for detailed monitoring, and reduction in
or cessation of nephrotoxic medications [28]. These measures,
when implemented in a timely fashion and supported by a
responsive EHR platform for AKI alerts, may reduce the hospital
days and AKI duration in affected patients [29,30].

The performance of any analytic module depends strongly on
the appropriate feature selection. Our model was built from
objective laboratory test results that would be similar in data
structure across institutions [31]. Our algorithm used routinely
performed hematology and biochemistry without disease
diagnosis codes; these included complete blood count, common
electrolytes, acid-base parameters, and liver and cardiac
enzymes, and these remain relevant for current AKI prediction
even with the changing health care landscape. As our analysis
was limited to available investigations performed before a
mandatory 48-hour prediction window, the laboratory indices
analyzed in the feature window might not be comprehensive.

This could compromise the model performance, and the
prediction should otherwise improve with features performed
at higher frequency and more proximate to AKI [25,32]. Despite
this, we demonstrated an AUC that exceeded 80% for AKI
prediction in our testing dataset. Certain indices like blood gas,
serum lactate, cardiac enzymes, and drug levels should increase
in frequency and importance toward the onset of AKI, since
AKI serves as a marker of clinical deterioration from nosocomial
infections, decompensated cardiovascular diseases, major
surgery, or nephrotoxicity [33,34]. Varying significance of these
time-sensitive features in association with evolving AKI may
be seen among subsets of patients with sepsis, cardiac failure,
or cardiac surgery [35-37]. Our TITV module can provide
patient-level interpretation of the feature importance, as
suggested by our representative interpretation results in unique
AKI case examples (Figure 5). These could provide insightful
patient-specific trends to aid the evaluation of AKI etiology
[17].

Strengths and Limitations
Our study has several strengths but is not without limitations.
We have studied a large and diverse population with a
comprehensive range of medical and surgical conditions not
confined to critical care, which improves the generalizability
of our analytic module to hospital practice. We excluded patients
with more advanced chronic kidney disease, and our 4%
incidence of AKI in the hospital was lower than the 8% reported
in prior studies that used similar EHR methods [33,38]. The
lack of precise urine output in ward patients could reduce the
model accuracy, but oliguria often develops in 24 hours
proximate to AKI and may not fulfill our requirement for a
48-hour prediction window. We have normalized the variables
for standardized comparison across different tests. Our novel
TITV module provided fine-grained interpretability of the
prediction results and achieved accurate prediction
simultaneously; this facilitates high-quality health care analytics.
Being single center in nature, our AKI prediction module needs
to be applied and validated in external health care systems to
demonstrate reproducibility. The prediction algorithm could be
ported to run on platforms that use similar EHR data
architecture, but this naturally limits its deployment to
institutions with available technology. Nevertheless, our model
could be applied for rolling AKI predictions daily if coupled
with a real-time feed of laboratory data. While forward
application of the algorithm would naturally encounter model
degradation due to concept drift, novel techniques could achieve
concept drift detection, understanding, and further adaption
from contemporaneous data [39,40]. Furthermore, our algorithm
was based on laboratory test results less subjected to case-mix
shift over time as compared with disease diagnoses or
medication records [41]. We had used zero imputation for
missing data, unlike the previously described method of
imputing preexisting values in time or median value [38]; zero
imputation has been widely adopted in machine learning
techniques and has achieved state-of-the-art performance in
analytics [42,43]. Finally, the subcohort with “false-positive
AKI” might be analogous to that of patients with subclinical
AKI that may also be associated with adverse long-term
outcomes; these were not explored in our study.
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Conclusions
We have presented a feasible and enhanced EHR analytic
module that captures time-sensitive interactions in laboratory
investigations and predicts hospital-acquired AKI by a 48-hour
lead time. The AKI prediction threshold could be varied to allow
the clinically relevant balance in model precision, recall, and

predicted AKI numbers that are compatible with patient service
load in health care institutions. With a compromised precision
in favor of the better recall, our model serves to risk stratify
ward patients for detailed clinical or biomarker assessment for
true AKI risk. Its real-time deployment is expected to greatly
facilitate our upstream efforts to prevent AKI or its
complications in hospitalized patients.
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