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Abstract

Background: Clinical mobility and balance assessments identify older adults who have a high risk of falls in clinics. In the past
two decades, sensors have been a popular supplement to mobility and balance assessment to provide quantitative information
and a cost-effective solution in the community environment. Nonetheless, the current sensor-based balance assessment relies on
manual observation or motion-specific features to identify motions of research interest.

Objective: The objective of this study was to develop an automatic motion data analytics framework using signal data collected
from an inertial sensor for balance activity analysis in community-dwelling older adults.

Methods: In total, 59 community-dwelling older adults (19 males and 40 females; mean age = 81.86 years, SD 6.95 years) were
recruited in this study. Data were collected using a body-worn inertial measurement unit (including an accelerometer and a
gyroscope) at the L4 vertebra of each individual. After data preprocessing and motion detection via a convolutional long short-term
memory (LSTM) neural network, a one-class support vector machine (SVM), linear discriminant analysis (LDA), and k-nearest
neighborhood (k-NN) were adopted to classify high-risk individuals.

Results: The framework developed in this study yielded mean accuracies of 87%, 86%, and 89% in detecting sit-to-stand,
turning 360°, and stand-to-sit motions, respectively. The balance assessment classification showed accuracies of 90%, 92%, and
86% in classifying abnormal sit-to-stand, turning 360°, and stand-to-sit motions, respectively, using Tinetti Performance Oriented
Mobility Assessment-Balance (POMA-B) criteria by the one-class SVM and k-NN.

Conclusions: The sensor-based approach presented in this study provided a time-effective manner with less human efforts to
identify and preprocess the inertial signal and thus enabled an efficient balance assessment tool for medical professionals. In the
long run, the approach may offer a flexible solution to relieve the community’s burden of continuous health monitoring.

(J Med Internet Res 2021;23(12):e30135) doi: 10.2196/30135
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Introduction

Falls prevail among the aging population, and led to more than
$30 billion in direct medical costs in 2015 [1]. Around 55% of

unintentional injury deaths among older adults in the United
States are due to falls [2]. Falls pose a threat to the physical and
psychological aspects of older adults’ health [3,4]. It is critical
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to identify older adults at the risk of falls and take interventions
in advance [5].

Fall risk factors can be grouped into extrinsic (environmental)
factors and intrinsic factors (age, health status, and other factors
derived from the human). Outpatients and community dwellers
usually suffer less from illnesses; consequently, intrinsic
mobility and balance are the most discriminative intrinsic
indicators of falls [6]. Mobility and balance assessment tools,
such as the Balance Evaluation Systems Test (BESTest) [7],
the Tinetti Performance Oriented Mobility Assessment (POMA)
[8], and the Berg Balance Scale (BBS) [9], have been popular
in community and outpatient settings to assess the mobility and
balance aspects of individuals [6]. Along with the use of these
instruments, a trained health care professional observes the
participants’ motion(s) as they complete a series of tasks (eg,
sit-to-stand, turning 360°, and stand-to-sit) and scores their
performance based on medical expertise.

Nevertheless, such assessment tools carry disadvantages that
prevent older adults from undergoing frequent fall assessments
[10]. First, many mobility and balance assessments, such as the
BESTest [7], the Tinetti POMA [8], and the BBS [9], take from
15 to 35 min to complete [6,11], which is time consuming and
burdensome to implement on a community-wide scale. Second,
traditional assessments heavily rely on observations made by
medical professionals [6,10]. Such resource-demanding
assessments become unaffordable, which is a phenomenon
commonly observed in Hong Kong [12,13]. A review [14]
reported that over one-third of elderly services units fail to fill
their physiotherapist and occupational therapist vacancies. In
short, conducting mobility and balance assessment requires
time, human resources, and financial availability, which further
discourages older adults from frequently checking their fall risk.

Thanks to the rapid development of information technology,
the sensor provides a practical solution to this predicament
nowadays. Commercial sensors (eg, accelerometer and
gyroscope) are affordable to most community service sites or
health care agents [15,16]. These sensors provide an objective
measurement of motion that can support health professionals’
decision making or act as a preliminary screening tool in the
absence of professionals. Current research [17-19] has proven
the utility of this approach by validating sensor-based
assessments with clinical mobility and balance assessment tools.
Researchers [20-25] have quantified and analyzed several sensor
features that indicate motion and balance capability
insufficiency. Halilaj et al [26] emphasized the importance of
interpretability of sensor features and the model in this
application for health care professionals and individuals. The
majority have adopted statistical models to provide a statistical
explanation of the work [10,16,27]. Some recent research
[28-30] has argued that though the neural network approach
might not be as interpretable as the previous research, it provides
an accurate prediction. Sensor technology offers a quantitative
method of studying human mobility and balance and coincides
with clinical mobility and balance assessments.

Although there are advantages to the use of sensor technology,
it is also important to acknowledge the residing problems.
Ideally, individuals can perform these sensor-based assessments
independently. In practice, irrelevant signals that come before
and after performing the testing motion might be recorded.
Therefore, an additional process to remove those irrelevant
signals becomes necessary. Existing studies have relied on an
additional research assistant’s manual observations [28,31-33]
or crafted features specific to motion [34] for identifying the
motion signal, which will be assessed in the sensor-based
assessments. In addition, although crafting features and building
a heuristic algorithm [34,35] to detect motion provide a scientific
solution, it is limited to specific, well-studied activity. This
limitation makes detection hard to be generalized and transferred
to different motion analyses. The additional manual efforts for
identifying sensors or recording signals discourage health care
professionals and community users from adopting sensor-based
approaches [36].

Human activity recognition (HAR) is a practical remedy to
relieve this burden. The majority of developed methods adopt
machine learning models [37-39] or deep learning [40-45] to
build on and validate renowned public data sets, such as the
University of California, Irvine (UCI)-HAR [46] and UniMib
SHAR [47], that target healthy adults aged 30 years or less. In
contrast, only a few research works [48,49] focus on older
adults. These studies [37-39] and reviews [43] claim that HAR
techniques can be applied for health care purposes. Nonetheless,
to the best of our knowledge, there is no existing work that
explicitly delineates the combination of HAR and sensor-based
mobility and balance assessments as completely automated
assessments.

This study illustrates an automatic sensor-based framework
(Figure 1) of motion and balance assessment. We hypothesized
that the motion detection method is a solution for better
automating sensor-based balance assessments. This framework
resolves the requirement of human input in the preprocessing
stage and completes the whole automation data pipeline. The
developed framework aims to solve a simplified motion
detection problem by leveraging the application scenario and a
motion evaluation according to the Tinetti POMA-B grading
standard. This study embodies this framework with
deep-learning motion detection and sensor-based mobility and
balance assessment. The major contributions of the proposed
method are two-fold. First, few existing studies integrate motion
detection and sensor-based balance assessment to form the data
analysis pipeline, to the best of our knowledge. Second, the
proposed method requires less human effort to identify and
preprocess the inertial signal and enable a more efficient
sensor-based balance assessment tool for medical professionals.
This framework offers a flexible automatic solution to relieve
the community’s burden during large-scale implementation,
such as long-term balance monitoring.
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Figure 1. Overview of the developed framework.

Methods

Recruitment
In total, 59 community-dwelling elders (19 males and 40
females; mean age = 81.86 years, SD 6.95 years) participated
in our study from September 2019 to December 2019.
Participants with behavioral problems (eg, violence), unstable
mental status (eg, paranoia), communication problems (eg,

dialect), or severe hearing impairment were excluded from the
study. Written informed consent was obtained from all
participants before performing data collection. The imbalanced
gender distribution was a direct reflection of the outnumbered
male participants enrolling in community services [50]. Among
the participants, six had experienced falls within the past year.
A detailed breakdown of the demographics is shown in Table
1. This study was approved by the Research Ethics Committee
of City University of Hong Kong (reference no. 3-2-201803-02).

Table 1. Demographics of all participants and group difference according to Tinetti grading items (N=59; 19 males and 40 females; mean age 81.86
years, SD 6.95 years).

Males:females (n)Age (years), mean (SD)Score

Sit-to-stand

6:886.64 (6.05)<4

13:3280.37 (6.79)4

Turning 360°

6:585.55 (5.88)<2

13:3581.02 (6.90)2

Stand-to-sit

5:987.00 (5.15)<2

14:3180.26 (6.65)2

The score followed the Tinetti POMA grading guideline [8].
The Tinetti POMA grading guideline is the mobility and balance

assessment outcome used in this study. Age affected the Tinetti
POMA performance, but gender did not. Age showed a
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significant difference between the sit-to-stand score=4 and <4
groups (Student t test, P<.001). Age also showed a significant
difference between the stand-to-sit score=2 and <2 groups
(Student t test, P<.001). There was no gender difference in all
of these tasks (Fisher exact test P=.99, 0.44, and 0.50 for
sit-to-stand, turning 360°, and stand-to-sit motions, respectively.)

Experiment Protocol
In this step (Step 1 in Figure 1), balance assessments were
conducted with an inertial sensor. Each participant was asked
to perform three actions: standing up from an armless chair,
turning around, and sitting down in the armless chair. There
were 59 recorded inertial signals for each task from 59
participants. The three motions are commonly used in many
functional assessments. All the three motions are adopted in the
BBS [9], the Physical Performance Test (PPT) [50] and Tinetti
POMA [8]; standing up and turning are adopted in the Fullerton
Advanced Balance (FAB) [51] and the clinical Gait and Balance
Scale (GABS) [52]; standing up and sitting down are adopted

in the Postural Assessment Scale for Stroke Patients (PASS)
[53], the Sensory Orientated Mobility Assessment Instrument
(SOMAI) [54], and the Activity-based Balance Level Evaluation
(ABLE) scale [55]. These three motions were considered
sufficient to illustrate the idea of motion detection and evaluation
in the developed framework.

A commercial inertial measurement unit (Wit-motion JY901B;
including an accelerometer and a gyroscope at 3 axes with 16-bit
resolution, sampling frequency 40 Hz, and a built-in Kalman
filter) was attached on an elastic belt and placed on the L4
vertebra of each participant prior to each task. The inertial signal
was transmitted via Bluetooth to the dedicated mobile
application. The participants would then listen to the instruction
and perform it accordingly. As soon as a participant initiated
the task, a research assistant would press the button (green
buttons and STOP buttons in Figure 2) on the app to mark the
starting time and ending time, as shown in the clock on the
mobile device. Figure 2 displays a screenshot of the data
collection app.

Figure 2. Screenshot of the data collection app.

Before starting the assessment, each participant was required
to perform a trial. Sit-to-stand and stand-to-sit motions were
conducted using a straight-backed armless chair. Participants
were asked to complete the turning task in a fast yet safe manner
according to their judgment. These motions were conducted in
line with Tinetti POMA guidelines. Participants were asked
whether they needed a break for rest, but none needed it.

Automatic Motion Detection
In this part (Step 2 in Figure 1), we aimed to determine the
starting and ending times for a known task from inertial signals
containing only a known task (sit-to-stand, turning 360°, and
stand-to-sit) and nontask activities. Since some participants
needed extra time to comprehend and respond to the instruction,
some recordings included pretask records. In addition, it also
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took a few seconds for users to stop the recording after the
participants completed the motion. Therefore, some sensor
signals irrelevant to the motion might be included in the data.
Since the motion to be analyzed was known in the prescribed
mobility and balance assessment list, we only needed to detect
the motion. The developed framework leverages these facts to
reduce the complexity of motion detection to a simpler binary
classification problem. We built separate classifiers for each
task motion, allowing each piece of signal that contained a
known task (ie, sit-to-stand, turning 360°, or stand-to-sit) to go
through the data pipeline separately, as introduced below.

Preprocessing
The acceleration signal was detrended by subtracting the mean
of the acceleration at each axis. The gyroscope signal was
converted into the angular displacement from the starting point
by integration. The gyroscope’s drift issue was neglected as
each task took less than 30 s to complete, and the drift rate is
at 0.05°/s according to the product specification. Subsequently,
each task signal was segmented from the preprocessed task

signals into 0.75 s sliding windows with a step size of 0.03 s.
The different sliding window sizes are examined and discussed
in the Results and Discussion sections. The label of the sliding
window segment is defined as the percentage of the class it
covers. For example, a sliding window segment that contains
0.5 s of a sit-to-stand task and 0.25 s of the nontask motion
would be labeled as 0.67 for the class sit-to-stand and 0.33 for
the class nontask motion.

Convolutional LSTM Motion Detector
A convolutional long short-term memory (LSTM) neural
network was built for detecting the starting and ending times
for each task. The motion detection model takes the raw
acceleration and angular displacement at three axes in the 0.75
sliding windows as input. The convolutional layers and LSTM
layers can extract the temporal human dynamic inertial signals
to construct the classification. The overall network structure is
shown in Figure 3. This structure was inspired by a previous
study [56], which used convolution networks to obtain the
feature maps and LSTM structure to learn the temporal pattern.

Figure 3. Structure of a convolutional LSTM used in motion detection. LSTM, long short-term memory.

The convolution layer took the preprocessed sliding window
segment as input and performed a convolution operation with
32 filters, kernel size 3. The LSTM layer is a specific
implementation of the recurrent neural network that takes the
previous state information into the current calculation. Finally,
the densely connected layer operates by applying the activation
function of the dot operation of weights. The first two dense
layers did not apply any activation function, and the SoftMax

function activated the last dense layer to calculate the percentage
of labels containing and not containing the task.

Postprocessing and Labeling
The direct prediction of the convolutional LSTM neural network
appeared to be noisy, as shown in the top image of Figure 4.
This phenomenon was also observed in a similar network
structure in HAR [56]. Therefore, the following postprocessing
was performed to determine the beginning and end of the task.
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Figure 4. Original signal and output of the convolution LSTM network before and after processing. LSTM: long short-term memory.

A mean filter was used to filter the convolutional LSTM neural
network output with window sizes of 1, 1.25, and 1.5 s. These
mean filter sizes used in this section are examined and discussed
in the Results and Discussion sections. The output is shown in
the middle image of Figure 4. Subsequently, the candidate
intervals were identified according to the following two rules:

1. Beginning of the interval: The closest peak of nontask
probability before the point where task probability starts to
be greater than 0.5

2. End of the interval: The first peak of nontask probability
after the point where task probability starts to be less than
0.5.

Peak detection was conducted using the SciPy package [57]
with 0.5 thresholds.

Typically, only an interval would be identified. If more than
one interval was identified, the following rules were applied
accordingly to the different tasks. For sit-to-stand and
stand-to-sit tasks, the time interval that contained the greatest

anterior-posterior (AP) acceleration range was assigned to when
the participant performed the motion. For the turning 360° task,
intervals with cumulative angular movement from a starting
time less than 360° along the turning axis (vertical axis) were
selected. The final result is illustrated in the bottom image of
Figure 4.

These rules were inspired from the biomechanical point of view
for human motion [58], where AP acceleration drastically
changes during the sit-to-stand or stand-to-sit motion. The
assumption is that only one movement prevails in the signal
recordings, as stated previously.

Sensor-Based Mobility and Balance Assessment
After the signal was automatically annotated, sensor-based
mobility and balance assessment was performed to evaluate the
corresponding motion (Step 3 in Figure 1). Sensor features that
have been used in several previous studies were extracted from
the detected signal and evaluated in relation to its Tinetti
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POMA-B grading items. This part consisted of feature extraction
and prediction modeling to achieve the goal.

Feature Engineering

Sit-to-Stand and Stand-to-Sit Tasks
The count of the acceleration peaks along the AP axis was
extracted from the labeled data. Peak detection was conducted
using the Scipy package [59] with the threshold 45% of the
maximum value. A normal sit-to-stand transition usually shows
one peak along the AP axis [58]. Multiple peaks imply the
possibility that the motion was not smooth or multiple attempts
were performed to achieve the task.

Turning 360° Task
The average turning speed along the vertical axis was extracted
from the labeled data. Research [60] shows a significant
difference in turning speed between fallers and nonfallers.

Prediction Modeling
Participants who did not receive full marks in the corresponding
Tinetti POMA-B grading items were labeled as deviating from
the norm in performing such tasks in this study. The goal of
mobility and balance assessment is to identify older adults with
insufficient mobility and balance capability and intervene as
early as possible. Therefore, we aimed to identify older adults
whose balance evaluation score was different from that of
healthy adults (ie, full marks in the balance assessment). The
sensor features introduced above were used to predict the
corresponding Tinetti POMA-B grading items. A detailed
description is presented in Table 2, and the corresponding sensor
feature distribution between two populations is tabulated in
Table 3.

Table 2. Tinetti POMA-Ba task, grading items, and deviation from the healthy people criteria.

FeatureDeviation from healthy adults’ criteriaScoreTask and grading item

APb acceleration peak countTinetti POMA-B total sit-to-stand score <4Sit-to-stand

~0-2Arises from the chair

~0-2Attempts to arise

Average turning speedTinetti POMA-B total turning 360° score <2Turning 360°

~0-1Turns 360° continuously

~0-1Turns 360° steadily

AP acceleration peak countTinetti POMA-B total stand-to-sit score <2Stand-to-sit

~0-2Sits down

aPOMA-B: Performance Oriented Mobility Assessment-Balance.
bAP: anterior-posterior.

Table 3. Sensor feature distribution between normal and deviation from healthy participants.

Stand-to-sit AP acceleration peak
count, mean (SD)

Turning 360° average turning
speed (°/s), mean (SD)

Sit-to-stand APa acceleration
peak count, mean (SD)

Task

0.98 (0.15)58.16 (19.22)1.00 (0.29)Healthy people

1.54 (0.75)23.46 (13.96)2.46 (2.02)Deviating from healthy people

aAP: anterior-posterior.

A one-class support vector machine (SVM) [59], linear
discriminant analysis (LDA), and k-nearest neighborhood
(k-NN) from previous research works [31,61,62] were adopted
in balance assessments.

Evaluation Metrics
Accuracy and the area under the curve (AUC) were used to
evaluate the performance of this work. Accuracy was defined
as the percentage of observations classified into the correct
class, as (TP + TN)/(TP + TN + FP + FN), where TP is the
true-positive class being classified as positive, TN is the
true-negative class being classified as negative, FP is the
false-negative class being classified as positive, and FN is the
false-positive class being classified as negative. The AUC was

obtained from the area under the receiver operating characteristic
(ROC) curve. The ROC curve plots the sensitivity [TP/(TP +
FN)]) against the false-positive rate [1 – (TN/{TN + FP})] at
different levels of thresholds.

The agreement between the mobility and balance assessment
results using the human-annotated label and the motion detection
method was evaluated using the McNemar agreement test. The
null hypothesis states that the two results show agreement in
classifying the mobility and balance assessment evaluation

results. The test statistic was calculated by z2 = (n12 – n21)
2/(n12

+ n21), where n12 is the prediction result of when the manual
label sensor feature shows positive but the motion detection
label sensor feature shows negative. In contrast, n21 is the
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prediction result where the manual label sensor feature shows
negative but the motion detection label sensor feature shows
positive. The test statistic followed a chi-square distribution
with 1 degree of freedom.

Training and Testing Environment
Leave-one-subject-out (LOSO) cross-validation (CV) was used
for training and testing. Each time, all the participants’ inertial
measurements except the i-th participant were used for training
the motion detection and sensor-based balance assessment, and
the inertial measurements from the i-th individual were used
for testing. The convolutional LSTM neural network was built
and trained using Keras [63] with TensorFlow [64].

The computer used for training was an Intel E5-2670 CPU with
Nvidia Tesla K20 and CUDA version 10.2 on a Linux system.
The batch size was set at 200, and the stopping rule was set for

no improvement after 20 epochs. The rest of the computation
was conducted using SciPy [57] and NumPy [65].

Results

Motion Detection
Our motion detection methods yielded moderate accuracy in
detecting sit-to-stand, turning 360°, and stand-to-sit tasks from
85% to 88% at different levels (see Table 4). The difference in
classification accuracy did not significantly vary between
different mean filter sliding window sizes. The developed
motion detection method detected the same motion performed
by the participant not observed in the training stage, because
the LOSO CV withheld the participant’s motion signal as a
testing set in each train and validation cycle. The training time
and testing time showed that it took more than 1500 s to train
the model, but detection was conducted within 0.3 s/participant.

Table 4. Accuracy of the automatic motion detection in different sliding windows.

Testing time (s)Training time (s)Accuracy (~Q1-Q3) mean filter
1.5 s sliding window (%)

Accuracy (~Q1-Q3) mean
filter 1.25 s sliding window
(%)

Accuracy (~Q1-Q3) mean
filter 1 s sliding window (%)

Task

0.21 (0.06)1681 (479)85 (~78-93)86 (~82-94)87 (~82-95)Sit-to-stand

0.26 (0.09)2686 (495)85 (~78-93)86 (~79-95)86 (~82-94)Turning 360°

0.24 (0.03)2186 (512)88 (~83-94)89 (~86-95)88 (~85-94)Stand-to-sit

Sensor-Based Mobility and Balance Assessment
The sit-to-stand task motion was well detected and classified
using the developed method. The detector had 85%-87%
accuracy in detecting sit-to-stand motion that was not previously
observed in the training set. The extracted feature, the peak
count along the AP axis, exhibited a strong ability to
discriminate between normal and abnormal motion in the
sit-to-stand task through the k-NN method at 90% accuracy.
The high accuracy could be attributed to the fact that multiple
attempts to rise generate multiple peaks in the signals [58],
which aligns with the Tinetti POMA grading criterion
sit-to-stand transition. LDA showed the least discriminative
capability because of the Gaussian distribution assumption. The
result shows that the developed motion detection method and
balance evaluation model can predict abnormal sit-to-stand
motion.

The turning 360° task motion was detected using the developed
method at an accuracy ranging from 85% to 86%. The
classification showed 92% agreement with the professional
opinion using k-NN in terms of the Tinetti POMA turning
motion outcome. These results indicate that Tinetti grading
items may correlate with the turning speed of the participants.
Previous studies [66,67] have also reported that the turning
speed is correlated with certain clinical mobility and balance
assessment tools.

The stand-to-sit task motion was detected at 88%-89% accuracy
by the developed method. Compared with the other two tasks,
however, sensor-based prediction showed the least accuracy in
predicting the functional assessment result, at 86% accuracy
using the one-class SVM. This may be ascribed to Tinetti

POMA’s grading to deduct a mark for participants who
completed this task with the assistance of their arm, which
occurred in the majority of the cases according to the report.
This kind of information may not be revealed from the sensor
signal, as the location of the sensor is at the participant’s lower
back. Consequently, it could result in weaker performance in
classifying the category of older adults.

Discussion

Principal Findings
The sensor features from the manual label signal and the motion
detection method yielded little difference, which barely affects
the sensor-based balance assessment results. Both sit-to-stand
AP peak counts and stand-to-sit peak counts showed no
statistical difference (Wilcoxon signed-rank test P=.42 and .45,
respectively). The average turn speed showed discrepancy
(P=.03) with a mean difference of 5.68°/s. In summary, the
motion detection label features showed statistically no difference
in the sit-to-stand and stand-to-sit motions but a slight difference
in turning.

Using the manual label motion signal features or the detected
motion signal features showed no statistical difference in
classifying the Tinetti POMA outcomes in all circumstances
(Table 5). The McNemar test was conducted to determine
whether there is a difference in the classification outcome
between the manual label and the presented motion detection.
The results revealed that there is no statistical difference. The
motion detection accuracy was satisfactory enough to ensure
that the sensor features were not affected by the detection
method. Consequently, practitioners could be comfortable with
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adopting the motion detection method instead of traditional
laborious works. None of the models rejected the null hypothesis
that both labels will yield the same result. This indicates that

even though the motion detection method did not fully agree
with the manual label, it still captures vital information in the
sensor signal to predict mobility and balance assessments.

Table 5. Classification performance of sensor-based mobility and balance assessment using Tinetti-POMA-Ba criteria.

k-NNdLDAcOne-class SVMbTask and metrics

Sit-to-stand

826284AUCe (%)

908688Accuracy (%)

>.99>.99>.99P value of McNemar test

Turning 360°

809093AUC (%)

928668Accuracy (%)

>.99.25>.99P value of McNemar test

Stand-to-sit

567260AUC (%)

808386Accuracy (%)

.125.5.5P value of McNemar test

aPOMA-B: Performance Oriented Mobility Assessment-Balance.
bSVM: support vector machine.
cLDA: linear discriminant analysis.
dk-NN: k-nearest neighborhood.
eAUC: area under the curve.

Previous research [36] has reported clinician concerns about
the real-time application of sensor-based balance assessments.
The testing results in motion detection indicated only a little
delay in obtaining the results of the developed framework.
Therefore, the presented implementation showed acceptance
by the clinician in terms of time efficiency. In contrast, a survey
[68] reported that most of the Hong Kong community-dwelling
older adults perceive motion-analyzing systems as useful.
Accordingly, we believe that the framework would receive
acceptance from both clinicians and older adults.

Limitations
There are four limitations of our study. First, we only analyzed
sit-to-stand, turning 306°, and stand-to-sit motions rather than
the complete mobility and balance assessment that covers
comprehensive mobility and balance aspects. Nonetheless,
motions used in this study have been frequently analyzed in
several mobility and balance assessments to assess lower-body
strength [69] and dynamic balance [70]. Other popular mobility
and balance assessments, such as the Timed Up and Go (TUG)
test [71], would be included in our future work. Second, instead
of solving a HAR problem, this work leveraged the application
scenario and broke it down into a detection problem, which
only required an indication of the start and end times for the
known task. This assumption helped the model to finesse the
large variability in different motions in older adults. Third, we
would like to expand the population and observations to enhance
motion detection performance and balance assessments. In the
framework discussed in this study, motion detection still relied

on a certain amount of postprocessing, such as postprocessing
after motion detection and feature engineering. This additional
processing may become unnecessary with more observations
for training. In addition, a greater sample size can also facilitate
sensor-based balance evaluation with more complex modeling
techniques and a one-off multiclass classifier to detect all the
motions like in other works [28,30]. We can also observe that
there are more healthy adults in the community than those with
deviation from the healthy populations. A large sample size
provides more in-depth insights into functional assessment with
further complex feature engineering and feature selection
methods. The last limitation is that the technology acceptance
of this approach was not validated with the users. Though some
related work with similar populations has shown good
acceptance, as mentioned in the Discussion section, it is worth
investigating how this approach can provide better user
experience in the future plan.

Conclusions
We presented human motion detection in a large-scale health
care assessment. Existing works [72,73] on HAR have achieved
satisfactory results in detecting activities from nonmovement
validation on public data sets. Nonetheless, most of the public
data sets are limited in the subject count and focus on healthy
subjects than normal life. The network structure of this study
was also inspired by several previous works [56,74] on HAR.
This research aimed to provide a sensor-based balance
assessment approach to clinical decision support with less
human effort. We illustrated a framework using an inertial
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sensor for balance assessment. The major contributions are
two-fold. First, few existing studies have integrated motion
detection and sensor-based balance assessment to form the data
analysis pipeline, to the best of our knowledge. Second, our
method requires less human effort to identify and preprocess
the inertial signal and enable a more efficient sensor-based
balance assessment tool for medical professionals. This research
examined the applicability of a deep-learning approach to
detecting motion in the health care assessment context instead
of general daily living.

This research illustrated the idea that functional assessment
motions can be detected through HAR models. Therefore, the
sensor data collection process can be conducted without
additional labor if there is a sufficiently pretrained model in the
future. Without the additional labor, the cost of sensor-based
functional assessment can be reduced, providing more incentive
to conduct large-scale implementation in identifying potential
fallers in the community.
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