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Abstract

Research using artificial intelligence (AI) in medicine is expected to significantly influence the practice of medicine and the
delivery of health care in the near future. However, for successful deployment, the results must be transported across health care
facilities. We present a cross-facilities application of an AI model that predicts the need for an emergency caesarean during birth.
The transported model showed benefit; however, there can be challenges associated with interfacility variation in reporting
practices.
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Introduction

The integration of artificial intelligence (AI) into health care is
expected to significantly influence the practice of medicine
[1-4]. Machine learning (ML) as a modeling strategy is an
attractive option for characterizing and predicting complex
biological phenomena [5].

Critics of AI applications note that the applications are primarily
based on retrospective research, with insufficient focus devoted
to “real-life” implementation and verification of reproducibility
in clinical practice [5,6]. For example, an ML prediction
algorithm developed in an urban tertiary care center with a

diverse patient population may be unsuitable for a community
hospital treating a homogenous population according to local
protocols.

Therefore, transporting AI models across health care facilities
is critical to effectively translating AI research into medical
practice [7]. In this study, we aimed to investigate the validation
of a model to predict the need for an emergency caesarean
during birth, the critical challenge stemming from interfacility
variation in subjective measurements, and to devise a method
to address this challenge.
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Methods

In brief, we developed 2 ML models to predict the risk for
emergency caesarean delivery (for a detailed description of the
methods and model features, see Multimedia Appendix 1 and
[8]). The first model was designed to be used at admission to
the labor and delivery unit (admission model); the second model
was designed for use during labor, integrating additional data
that accumulate as labor progresses (labor progression model).
These additional data supplementing the model allow for more
accurate prediction. Both models will alert the staff of the
likelihood that a parturient might require an emergency
caesarean delivery, allowing for the preparation of staff and
patient.

The models were trained using data from approximately 100,000
births at Hospital A. We extracted multiple data features from
individual parturient electronic medical records (EMRs), totaling
approximately 11 million data points. The institutional review
boards at Hadassah Hebrew University Medical Center and
Soroka Medical Center approved the study.

Both models were able to predict the need for emergency
caesarean delivery, with the admission model achieving an area
under the curve (AUC) of 0.82 and the labor progression model
showing an increased performance, with an AUC of 0.86.

Having created and trained an ML-based model at a given health
care facility, model transport can provide a smaller facility its
benefits, without the large stored medical records or the expense
and expertise required for development. However, care must
be taken to monitor how the transport may affect the
performance of the models, given differences in populations or
settings.

We compared the prediction performance of the models trained
and tested at Hospital A when transported to a second facility,
Hospital B, where they were tested on data from approximately
60,000 births. Both the admission and labor progression models
transported from Hospital A showed comparable prediction
performance at Hospital B. Figure 1A illustrates the transport
and performance of the labor progression model (see Multimedia
Appendix 2 for the hospital characteristics and Multimedia
Appendix 3 for the AUCs and 95% CIs of all models).

Figure 1. (A) Comparing the performance of Hospital A labor progression model (in blue) transported to Hospital B (yellow/blue bar) versus Hospital
B local model (in yellow) and (B) Comparing the performance of Hospital B labor progression model (in yellow) transported to Hospital A (blue/yellow
bar) versus Hospital A local model (in blue). AUC: area under the curve.

We then reversed the process and retested the success of
transporting the models, by training the models at Hospital B
and testing the prediction accuracy at Hospital A. Although the
admission model trained at Hospital B provided similar levels
of prediction at Hospital A, the labor progression model showed
a reduced level of prediction (AUC 0.77 vs AUC 0.84; Figure
1B). We examined the model features to determine the cause
of this decreased performance (see Multimedia Appendix 1).

Two important measurements of labor progression are fetal
head station and cervical dilation. Fetal head station denotes
the fetal descent within the maternal pelvis based on the position
of the fetal head in centimeters above (–) or below (+) the
maternal ischial spines [9]. Cervical dilation refers to the
opening of the maternal uterine cervix, in centimeters, from
closed cervix (0 cm) to full cervical dilation (10 cm). These 2

measurements represent the primary features of the progress of
the birth; how rapidly descent and dilation progress depends on
several factors, including parturient parity, medical history,
pelvic anatomy, the size of the fetus, and the position of the
fetus at the time of labor [10]. Results are operator-dependent,
and measurements can vary between facilities based on local
protocols and practice habits [11].

We identified a difference between the 2 facilities in fetal head
station measurements used by the labor progression model.
Specifically, we found that the dispersion and central tendency
of this variable, as stratified to cervical dilation, differed between
the 2 hospitals: Data from Hospital A were widely distributed
across the full –3 to +3 scale, while those from Hospital B were
more concentrated around –2 to +2. This difference may explain
the reduced performance when transporting from Hospital B,
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while no reduction in performance was observed when
transporting from Hospital A.

In order to overcome this disparity, we evaluated the patterns
of distribution of fetal head station as distributed across the
dilation. We aligned the station within the distribution of the
cervical dilation in order to encompass both approaches. This
partly adjusted for the variation and improved the cross-facility
prediction (AUC 0.82; Figure 2A; see Multimedia Appendix 1
and Multimedia Appendix 3 for the AUCs and 95% CIs of all
models).

This difference highlights the difficulties introduced by
discrepancies in reporting practices between facilities.

Alignment can resolve some disparities, but here, it only partly
recouped model performance.

To further evaluate whether our labor progression model could
potentially benefit an even smaller facility, we simulated a
hospital with a smaller EMR. The 100,000-case Hospital A
model transported to Hospital B showed better performance
(AUC 0.86) than a Hospital B model based on small samples
of 5000 (AUC 0.80), 15,000 (AUC 0.82), and 25,000 (AUC
0.83) cases, emphasizing the benefit that can accrue to a smaller
facility from a model trained at a larger facility and that the
additional benefit decreases as the size of the available local
EMR grows (Figure 2B).

Figure 2. (A) Comparing the performance of Hospital B labor progression model (in yellow) transported to Hospital A versus Hospital B model after
alignment adjustments transported to Hospital A (blue/yellow bars) versus Hospital A local model (in blue) and (B) Comparing the performance of
Hospital A labor progression model transported to Hospital B (yellow/blue bar) versus Hospital B local models trained on progressively larger local
electronic medical record (EMR) data sets of 5000, 15,000, and 25,000 (in yellow). AUC: area under the curve.

Conclusions
In conclusion, integrating ML applications into clinical medicine
will require validation and transportation between medical
facilities [7,12-14]. We demonstrated that ML may be applied
to clinical practice and to obstetrics in particular. A big
data–driven ML algorithm can be successfully transported, and
a data-poor center can benefit from work performed in a larger
facility.

However, transportation requires careful investigation of specific
features and consideration of variations in local populations,
protocols, and reporting to calibrate the system fit [7,12].
Nevertheless, model predictions are heavily dependent on the
data used in training and by the variations in recording practices
and protocols operative in a given health care facility. We
observed that the more detailed labor progression model, when

trained without accounting for reporting differences, provided
a lower AUC than the admission model. Although the
progression model contained more detailed information on the
progression of the labor and intrahospital showed benefit over
the admission model, the benefit provided was lost when
transporting the model to a different hospital: The transported
model performance was inferior to that of the simpler model.
Interfacility variation between health care centers may introduce
unexpected effects into a prediction model. Generalizability
and transportability among medical facilities necessitate
overcoming biases via external validation and adapting the
model to local protocols [15].

Successful translation of AI research into practice depends on
transport across health care facilities. This can individualize
health care, improve outcomes, and reduce complications across
broader populations.
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Multimedia Appendix 1
Additional methodology.
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[DOCX File , 544 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Demographic parameters of the two hospitals.
[DOCX File , 14 KB-Multimedia Appendix 2]

Multimedia Appendix 3
AUROC of the different models.
[DOCX File , 14 KB-Multimedia Appendix 3]
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