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Abstract

Background: Although the COVID-19 pandemic has left an unprecedented impact worldwide, countries such as the United
States have reported the most substantial incidence of COVID-19 cases worldwide. Within the United States, various
sociodemographic factors have played a role in the creation of regional disparities. Regional disparities have resulted in the
unequal spread of disease between US counties, underscoring the need for efficient and accurate predictive modeling strategies
to inform public health officials and reduce the burden on health care systems. Furthermore, despite the widespread accessibility
of COVID-19 vaccines across the United States, vaccination rates have become stagnant, necessitating predictive modeling to
identify important factors impacting vaccination uptake.

Objective: This study aims to determine the association between sociodemographic factors and vaccine uptake across counties
in the United States.

Methods: Sociodemographic data on fully vaccinated and unvaccinated individuals were sourced from several online databases
such as the US Centers for Disease Control and Prevention and the US Census Bureau COVID-19 Site. Machine learning analysis
was performed using XGBoost and sociodemographic data.

Results: Our model predicted COVID-19 vaccination uptake across US counties with 62% accuracy. In addition, it identified
location, education, ethnicity, income, and household access to the internet as the most critical sociodemographic features in
predicting vaccination uptake in US counties. Lastly, the model produced a choropleth demonstrating areas of low and high
vaccination rates, which can be used by health care authorities in future pandemics to visualize and prioritize areas of low
vaccination and design targeted vaccination campaigns.

Conclusions: Our study reveals that sociodemographic characteristics are predictors of vaccine uptake rates across counties in
the United States and, if leveraged appropriately, can assist policy makers and public health officials to understand vaccine uptake
rates and craft policies to improve them.
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Introduction

The COVID-19 pandemic has affected millions worldwide. The
widespread impact of the disease has forced populations into
lockdown and self-isolation, and to social distance from each
other to mitigate the disease spread. As a result, many await the
successful development of a COVID-19 vaccine to return to
normality. However, even if one becomes readily available,
enough people need to have access or be willing to receive the
vaccine to achieve herd immunity [1]. Previous literature has
indicated disparities in vaccination rates between
sociodemographic groups, and such factors play a substantial
role in the likelihood of seeking vaccination. For example, those
with lower education and income level [2,3], and Black
individuals [4] are less likely to get vaccinated. Thus, the
purpose of the study aims to use machine learning classification
algorithms to construct a model that can predict vaccine uptake
for US counties using publicly available sociodemographic data.
Using this, public health officials can develop targeted
interventions for specific populations to promote vaccine uptake
by forecasting future vaccine behaviors. With the recent
development in technological methods, researchers’ use of
machine learning methods to predict the likelihood of health
behaviors has been on the rise. Previous studies have used
XGBoost (extreme gradient boosting), a decision tree–based
machine learning algorithm that uses a gradient-boosting
framework, to build predictive models for vaccination uptake
levels for influenza [5] and childhood immunizations [6]. Given
the urgency of public health officials to encourage COVID-19
vaccination worldwide, such methods have substantial
applicability in the current epidemiological context. Although
many studies have investigated the impact of sociodemographic
factors on vaccine uptake on a national level, research on a
county level is scarce. Additionally, the use of data on smaller
regions allows for a better understanding of local vaccine
behaviors. This study seeks to fill this knowledge gap by
incorporating a broad range of sociodemographic characteristics
between US counties to predict COVID-19 vaccination uptake.

Methods

Sourcing the Data
Sociodemographic and socioeconomic data was collected from
the US Department of Agriculture [7-9], the US Centers for
Disease Control and Prevention [10], US Bureau for Labor
Statistics [11], US Census Bureau COVID-19 Site [12-24], and
Simple Maps US Counties Database [25]. In each database,
data was collected for each US county and identified by its
Federal Information Processing System (FIPS) code. This study
included 2862 US counties out of 3007, and the counties were
used based on the overlapping FIPS codes between data sets.
The state of Texas was excluded as they did not release their
COVID-19 vaccination data. The data set includes data collected
between 2015 and 2021.

From these databases, 83 sociodemographic factors were
collected and organized into 20 categories: education, ethnicity,
income, employment, poverty, household size, population
density, age, sex, disability status, access to technology,

language spoken, health insurance, occupation, location, housing
tenure, educational enrollment, grandparents taking care of
grandchildren, access to income benefits, and working at home.
Each category has between 1 and 14 subfactors. For example,
the education category’s factors are the percentage of adults
with less than a high school diploma, percent of adults with a
high school diploma only, percent of adults completing some
college or associate degree, and percent of adults with a
bachelor’s degree or higher. A complete list of factors and their
associated categories can be found in Table S1 in Multimedia
Appendix 1. In addition, the percent of adults fully vaccinated
against COVID-19 was found from the US Centers for Disease
Control and Prevention [10]. The percentages are representative
of vaccination data from May 21, 2021.

Creating a Universal Model
XGBoost Regressor was used as the predictive modeling
algorithm to create a supervised regression model. XGBoost
was chosen over other traditional machine learning methods
because it is a decision tree–based model. This particular method
can closely mimic the adaptive and consequential nature of the
human decision-making process. In other words, a decision
tree–based model can mimic how humans consider the potential
outcomes of their actions before making a decision. Thus, our
model provides a more accurate real-life depiction of how
certain sociodemographic factors lead to decisions to take the
vaccine. Furthermore, from an analytical standpoint, XGboost
prevents overfitting and brings performance improvements
compared to other traditional machine learning methods (eg,
linear regression, elastic net, and random forest) since it uses a
more regularized model formalization. In short, regularization
is the process of adding information to solve a problem without
overfitting, a process where a model fits too closely to its
training data [26].

Other than performance alone, XGBoost has demonstrated great
accuracy over other methods. For example, a previous study
comparing the accuracy of different predictive modeling
algorithms shows that XGBoost shows the highest accuracy
score compared to other methods such as logistic regression,
naive Bayes classifier, decision trees, and random forest [27].
Furthermore, XGBoost has demonstrated to learn better tree
structures over decision tree models that use gradient boosting
since XGBoost uses Newton boosting instead [28].

Lastly, we chose XGBoost because of its previous track record
in the competitive machine learning scene. For example, in
2015, when Kaggle published the 29 winning solutions on their
blog, it was found that 17 solutions used XGBoost [26]. The
data science platform has also interviewed many of their
top-ranking competitors on several occasions, and when asked
what their favorite machine learning algorithms were, four
members who have ranked as number one responded with
XGBoost [28]. The annual data mining and knowledge discovery
competition KDDCup 2015 further elucidates the system’s
prevalence, where the top 10 winning teams used XGBoost
[26]. Examples of problems in these winning solutions include
store sales prediction, ad click-through rate prediction, and
hazard risk prediction [26]. The evident success of this method
in solving myriads of real-life scenarios and problems
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demonstrates its effectiveness and versatility in predictive health
modeling.

In conclusion, with the aforementioned factors, XGBoost is a
highly effective, efficient, and robust machine learning method
with many benefits toward the needs of our paper.

Hypertuning Parameters for XGBoost
We used ExhaustiveGrid Search Cross-Validation
(GridSearchCV) to perform five folds for each of the 384
permutations (totaling 1920 fits) to search for the optimal
parameters to use in our XGBoost model to provide the highest
accuracy in predicting vaccination uptake, specifically for our
particular data sets. The learning rate represents how quickly

an error is corrected from each tree. The max_depth determines
the maximum depth a tree is allowed to grow during each
boosting round. The min_child_weight is the minimum sum of
instance weight needed in a child.

The subsample parameter randomly sets how much some of the
training data is sampled prior to growing trees to prevent
overfitting. The colsample_bytree parameter is the subsample
ratio of columns when constructing each tree, again to prevent
overfitting. N_estimators represent the number of trees to grow
for the model. The range of parameters that we searched for the
best fit is in Table S2 in Multimedia Appendix 1. The parameters
we used in our model after computational fit (grid search best
score of 0.5523) are illustrated in Table 1.

Table 1. Selected tuning parameters that were chosen after computational fit (grid search best score of 0.5523).

RangesParameters

0.01Learning rate

9max_depth

3min_child_weight

0.7Subsample

0.7colsample_bytree

1000n_estimators

Evaluating the Model’s Accuracy and Error
We adopted the use of k-fold cross-validation using the
Scikit-learn package in Python (Python Software Foundation)
to determine our accuracy score. A cross-validation method was
chosen due to its ability to estimate the skill of a machine
learning model based on unseen data. This can provide an
estimate on how the model performs when used to make
predictions on data not used during the training of our
model—our accuracy percentage. The k-fold cross-validation
uses a method where the cross-validation method is split into
several groups that a given data sample is to be split into, defined
by k. We chose a k value of 10, as this value is shown to have
test error rate estimates that do not have high bias or high
variance [29]. The final percentage accuracy representation
produced by our k-fold cross-validation analysis is the
percentage alignment with vaccination rates (percentage of
population) in the test set with the predicted values.

We leveraged the root mean squared error (RMSE) to calculate
our model’s error, as RMSE is measured in the same units as
the target variable (vaccination uptake percentage), providing
us with a better interpretation and understanding of the errors
of our models. RMSE measures the square root of the sum, for
the vaccination uptake, of the square of the difference between
the predicted (yj) and actual vaccination uptake (ŷj), divided by
the number of counties.

Evaluating a Feature’s Importance
We used XGBoost’s built-in feature importance, permutation
analysis, and SHAP to understand how each feature drives our
model’s prediction score. Comparing these three aggregated
methods allows us to understand how covariates contribute to
the model fitting and the importance of the features we used for
our vaccination model, rather than simply using one method.
To avoid bias due to specific feature categories containing more
factors, we used Breiman’s permutation-based measures to
assess the importance of a feature by calculating the degree of
increase in the model’s prediction error after their values are
permuted, otherwise known as randomized ablation [30]. This
approach provided us with a way to investigate the independent
predictive power of each category without building separate
machine learning models for each feature category to do so. We
performed permutation analysis using the Python Scikit-learn
library. The SHAP library provided a game-theoretic approach
to determine an overview of which features are most important
for a model by plotting the absolute mean SHAP value in a bar
graph [31]. Lastly, XGBoost’s built-in feature importance
calculated how important a feature is from its corresponding
score. We then aggregated the top five features from these three
methods; then, we selected all features demonstrated in the three
feature importance analysis methods as our final list of selected
important features driving vaccination uptake.

Results

Using XGBoost’s regressor function hypertuned with custom
parameters, our model predicted the percentage of COVID-19
vaccination uptake per county with an accuracy of 62%. This
accuracy score was calculated based on the k-fold
cross-validation average score.
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Our model demonstrated relatively low errors using RMSE
analysis, where it demonstrated a 0.08% vaccination uptake
percentage error compared to the test model and 0.05%
vaccination uptake percentage error compared to the actual
model.

The choropleth map of US counties shown in Figure 1
demonstrates our machine learning model’s predicted percentage

of vaccine uptake. White areas on the choropleth maps represent
areas with no vaccination uptake data or other missing
sociodemographic data.

In Figure 2, the choropleth map of US counties shows the
difference between actual uptake and predicted uptake, and
highlights counties where our model was less accurate in
predicting vaccination uptake.

Figure 1. Predicted vaccination uptake percentage by US counties. White areas represent areas with no vaccination uptake data.

Figure 2. Accuracy of the model in predicting actual vaccination uptake by US county. The darkest shades of red represent lower prediction accuracy,
with white representing the highest prediction accuracy.
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Figure 3 highlights the top five features generated from
XGBoost’s built-in plot importance function in ranking order
of importance. The top five features that were identified to drive
XGboost’s predictive model were geographic location
(longitude, latitude), adults with less education (percent of adults
with a high school diploma only), indigenous population
(percent non-Hispanic American Indian/Alaska Native), and
median household income (median household income percent
of the state). The top 25 features generated from XGBoost’s
built-in plot importance can be found in Table S3 in Multimedia
Appendix 1.

Figure 4 illustrates the top five features generated by the Python
Scikit-learn package permutation importance function in ranking
order of importance. The most notable features found are
geographic location (longitude, latitude), education (percent of

adults with less than a high school diploma), online access
(households with broadband internet), and income (median
household income percent of the state). The top 25 features
generated by this approach can be found in Table S4 in
Multimedia Appendix 1.

Figure 5 demonstrates the top five features generated by SHAP
in ranking order of importance. The top significant features that
SHAP found to drive our predictive model based on SHAP were
geographic location (longitude, latitude), education level
(percent of adults with less than a high school diploma, percent
of adults with a bachelor’s or higher), and online access
(households with broadband internet). The ranking influence
of the remaining features generated by this approach can be
found in Figure S2 in Multimedia Appendix 1.

Figure 3. The top five identified sociodemographic factors to predict vaccination uptake by XGBoost's built-in feature importance analysis function.

Figure 4. The top five identified sociodemographic factors to predict vaccination uptake found by permutation analysis.
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Figure 5. The top five identified sociodemographic factors that drive the model's prediction for vaccination uptake found by SHAP.

Discussion

Our XGBoost model scored a 62% accuracy score in predicting
vaccination uptake based on 83 sociodemographic factors in
this study. We also determined that geographic location,
education, household accessibility to broadband internet, median
household income, and ethnicity were the six main factors
driving our model’s prediction across analyses done by
XGBoost, permutation analysis, and SHAP.

Accuracy of Predictive Modeling
Our machine learning model scored a k-fold cross-validation
accuracy score of 62%, representing the model’s ability to
accurately predict vaccination uptake based on
sociodemographic factors. The accuracy score alone does not
provide sufficient information regarding the mechanism by
which a sociodemographic factor impacts a population.
However, the machine learning model can produce a choropleth
with individualized percentage accuracy scores per county,
where health authorities and governing bodies can use these
percentage scores to visualize areas with lower than average
vaccination uptake. Therefore, the results of this machine
learning analysis can advise those in charge of mitigating the
pandemic in identifying at-risk areas in need of targeted
vaccination campaigns.

In Figure S1 in Multimedia Appendix 1, we plotted the actual
vaccine uptake per county on a choropleth of the United States.
Darker regions represent areas with higher vaccination rates,
while lighter regions represent areas with lower vaccination
rates. Figure 1 shows our machine learning model’s predicted
vaccination rate per county. When comparing the two plotted
maps, the observed differences between the actual and predicted
models were less distinct, denoting evidence of our model’s
ability to visualize vaccination uptake accurately. The state of
Texas was excluded from our map, as they did not release their
COVID-19 vaccination uptake data.

However, our current model does not consider additional
nonsociodemographic factors such as policies enacted by local

governments, political views in local areas, and citizens’general
behavior, limiting our model’s accuracy score. Therefore, to
encompass vaccination rate and increase the accuracy score of
our model, we must also view nonsociodemographic factors,
as they can also substantially drive an individual’s decision to
take the vaccine.

To further evaluate the accuracy of our regression model, we
generated a choropleth identifying the counties where our model
had difficulties or ease in predicting vaccination (Figure 2). As
evident, there are few counties where the model had low
prediction accuracy—the worst being a 27.4% to 34.0%
difference between the predicted and actual vaccination uptake.
The two counties where the regression model struggled with
predicting the most are Santa Cruz, Arizona (AZ) and West
Feliciana, Los Angeles (LA). As well, other counties that the
model yielded a 20.8% to 27.4% difference between predicted
and actual vaccination uptake are McKinley, New Mexico (NM);
Blaine County, Montana (MT); and Blaine County, Idaho (ID).

The generated prediction accuracy choropleth in Figure 2 can
be helpful for public health authorities since it identifies which
counties the model was accurate or inaccurate in predicting
actual vaccination uptake. With this knowledge, officials and
health governing bodies can better understand and decide which
areas they need to target their efforts toward. In addition, the
counties that our analysis has identified to have low prediction
accuracies, such as Santa Cruz, AZ, can be an avenue for future
research to investigate why there was a high prediction error in
those particular counties.

As well, the predictability accuracy can allow public health
authorities in future pandemics to predict more precisely an
estimated vaccination uptake based solely on sociodemographic
factors. Thus, targeting ahead of time areas that should prioritize
education on vaccination safety and why it is essential to receive
the vaccine.

Feature Importance
The significance of the top identified sociodemographic features
by our model—location, education, ethnicity, income, and access

J Med Internet Res 2021 | vol. 23 | iss. 11 | e33231 | p. 6https://www.jmir.org/2021/11/e33231
(page number not for citation purposes)

Cheong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


to the internet—provide a vivid portrayal of the current social
climate in the United States and is calculated by using
XGBoost’s built-in feature importance (Figure 3), permutation
analysis (Figure 4), and SHAP (Figure 5).

Based on the following three methods in determining feature
importance, we determined that geographic location has the
most influence on our prediction model, with both latitude and
longitude ranking first or second, respectively. As well, the third
feature is primarily dominated by an educational-based factor
(school level).

Our feature importance analyses ranking location and education
so highly also provides a more comprehensive look at other
aspects of American features that are prominent presently, such
as lack of education and political divide in rural areas compared
to more populated areas. Our evidence supports that these
sociodemographic factors significantly influence disparities in
access to health resources and must continue to be the focus of
public and government efforts to decrease the gap.

Longitude and Latitude
Based on our feature importance analysis methods, our machine
learning model determined that longitude and latitude were the
top two most crucial factors across all three methods, suggesting
that geographic location plays the most prominent role in
vaccine uptake. There may be an interaction term between
longitude and latitude, given there may be a three-way
relationship between longitude, latitude, and vaccine uptake.
In past research studies, individuals residing in the western
United States were more likely to refuse their children’s
vaccinations [32], and a recent study found that COVID-19
vaccination coverage is lower in rural counties [33]. In addition,
population density, which ties in closely with the significance
of a geographic region, ranked ninth in importance on our factors
list. With this in mind, our results demonstrate that geographic
location has a clear role in driving vaccination uptake. However,
our results do not precisely determine the direct relationship
between how geographic location influences vaccine uptake.
Therefore, future research could explore the specific
implications of location and living in rural areas to determine
where additional COVID-19 vaccination centers can be opened.

Education
Although this study explored several educational factors related
to level of education and educational enrollment, the factor with
the highest rank of importance was the percent of adults with
a high school diploma only. This factor ranked third in
importance, and two other educational factors ranked in the top
8 factors.

Previous research has indicated a relationship between vaccine
uptake and education. In a study, individuals who had attained
higher levels of education were more likely to accept vaccines
as safe [34] and vaccinate individuals in their care, such as their
children [35]. As our results do not determine the direct
relationship between education and vaccine uptake, it cannot
be concluded that level of education increases or decreases
vaccine uptake. However, our results demonstrate that
educational groups separated by secondary school attainment
could be an important factor in determining whether an

individual will receive the COVID-19 vaccine. Therefore, future
research could explore this specific factor and how it impacts
vaccine uptake.

Ethnicity
Despite being twice as likely to die from COVID-19 [36], there
is consistent evidence that ethnic minority groups are less likely
to be vaccinated for the virus (eg, [37]) compared to their White
counterparts. Factors that have been explained to drive this
inequality include differences in vaccine hesitancy [38], attitudes
toward vaccines [39], and trust in distributing pharmaceutical
companies between ethnic groups [39]. In our findings, ethnicity
is the fourth most important factor associated with vaccination
uptake, providing evidence that an individual’s cultural
background is substantially associated with whether or not they
receive vaccination. Thus, these findings provide support that
there is a need for the development of special efforts to target
historically marginalized populations in vaccination campaigns
and increase vaccination rates among those groups with low
uptake.

Median Household Income
In previous studies, individuals from lower-income households
were less confident in the importance of vaccines [40] while
also being more vulnerable to the impacts of COVID-19 [35].
Household income also relates closely to socioeconomic status,
and individuals belonging to higher socioeconomic status groups
are more likely to receive vaccines [41]. This combination of
factors stemming from income and financial status may impact
an individual’s ability and willingness to receive the COVID-19
vaccine. Our finding that household income is an important
factor in vaccine uptake is consistent with previous literature.
However, our results do not determine if lower or higher income
households are more likely to receive the COVID-19 vaccine.
Therefore, more research is needed to explore the relationship
between these two factors. However, given the previous
evidence that individuals from lower-income groups are less
likely to receive vaccinations, vaccine campaigns could further
target their efforts toward lower-income groups to ensure that
more individuals have access to vaccines and have confidence
in them.

Internet Accessibility
Our feature importance analyses also revealed that household
access to broadband internet was significant in predicting
vaccination uptake. This is an important find, as digital
technology played a substantial role during the COVID-19
pandemic in communicating health information from
administrations to the public, aiding disease surveillance, and
developing mobile health apps [42]. In addition, the convenience
of social media enables many communities, particularly
historically marginalized groups, to access critical COVID-19
data and information more readily and easily. Thus, many public
health agencies sought online appointment platforms to assist
with their vaccination booking processes during the pandemic.
This means that having direct access to the internet can play a
role in determining whether an individual can receive a vaccine.
However, being knowledgeable and literate on how to use it
may possibly be even more pivotal.
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Published studies have reported racial and educational
differences in digital literacy. For example, a US Department
of Education report posits that Black people were twice as likely
to be digitally illiterate than their White counterparts [43]. An
individual’s level of formal education also affects their
knowledge of computer literacy [44]. Such factors may
contribute heavily to the ability of individuals to identify
misinformation on the internet and the desire to get a COVID-19
vaccination—otherwise known as the degree that they are
vaccine hesitant. The World Health Organization has cited
vaccine hesitancy as one of the top 10 threats to global health,
as this delay in acceptance threatens the process of tackling
widespread viruses and diseases [45].

With the study’s finding that asserts that household access to
the internet is primary in predicting one’s vaccination uptake,
we can bring forth awareness to public health officials about
the importance of centering their efforts in providing greater

accessibility to broadband internet in communities that may not
have widespread internet use and teach them about digital
literacy. This will enable those communities with the skills to
critically interpret the vast proliferation of health information
during this pandemic. Doing so could potentially help certain
groups alleviate vaccine concerns, better understand the
scientific rationale behind vaccines, and recognize
misinformation when they encounter it.

Conclusions
Although in the United States, COVID-19 cases are moving
toward a downward trajectory and counties are beginning to
fully reopen, the study is important for future pandemics or
even if new variants may require new vaccination development.
Furthermore, by constructing a model that can predict future
vaccine behaviors in US counties, we can better advise public
health authorities in advance, allowing them to prepare areas
of vaccination campaign focus more efficiently and effectively.
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