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Abstract

Background: The COVID-19 pandemic has highlighted the inability of health systems to leverage existing system infrastructure
in order to rapidly develop and apply broad analytical tools that could inform state- and national-level policymaking, as well as
patient care delivery in hospital settings. The COVID-19 pandemic has also led to highlighted systemic disparities in health
outcomes and access to care based on race or ethnicity, gender, income-level, and urban-rural divide. Although the United States
seems to be recovering from the COVID-19 pandemic owing to widespread vaccination efforts and increased public awareness,
there is an urgent need to address the aforementioned challenges.

Objective: This study aims to inform the feasibility of leveraging broad, statewide datasets for population health–driven
decision-making by developing robust analytical models that predict COVID-19–related health care resource utilization across
patients served by Indiana’s statewide Health Information Exchange.

Methods: We leveraged comprehensive datasets obtained from the Indiana Network for Patient Care to train decision forest-based
models that can predict patient-level need of health care resource utilization. To assess these models for potential biases, we tested
model performance against subpopulations stratified by age, race or ethnicity, gender, and residence (urban vs rural).

Results: For model development, we identified a cohort of 96,026 patients from across 957 zip codes in Indiana, United States.
We trained the decision models that predicted health care resource utilization by using approximately 100 of the most impactful
features from a total of 1172 features created. Each model and stratified subpopulation under test reported precision scores >70%,
accuracy and area under the receiver operating curve scores >80%, and sensitivity scores approximately >90%. We noted
statistically significant variations in model performance across stratified subpopulations identified by age, race or ethnicity,
gender, and residence (urban vs rural).

Conclusions: This study presents the possibility of developing decision models capable of predicting patient-level health care
resource utilization across a broad, statewide region with considerable predictive performance. However, our models present
statistically significant variations in performance across stratified subpopulations of interest. Further efforts are necessary to
identify root causes of these biases and to rectify them.
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Introduction

Background
The COVID-19 pandemic has impacted the health and
well-being of individuals, communities, and economies
worldwide at an unprecedented scale [1,2]. As of June 1, 2021,
the COVID-19 pandemic has infected over 170 million people
worldwide and claimed the lives of over 3.5 million people. In
the United States alone, COVID-19 has infected over 33 million
people and claimed over 600,000 lives. In addition to the loss
of lives and other adverse health outcomes, the enforcement of
preventative measures, such as lockdowns and mask-wearing
mandates, have further affected the mental and physical
well-being of individuals and communities. The cumulative
financial costs of the COVID-19 pandemic caused by lost output
and health reduction has been estimated at US $16 trillion, or
approximately 90% of the annual gross domestic product of the
United States [3].

In the United States, the COVID-19 pandemic has highlighted
(1) the inability of health systems to leverage existing system
infrastructure in order to rapidly develop and apply broad
analytical tools that could inform state- and national-level
policymaking and patient care delivery in hospital settings and
(2) systemic disparities in COVID-19–related outcomes and
access to care based on race or ethnicity [4], gender [5], income
level, and urban-rural divide [6,7]. At the peak of the pandemic
outbreak in the United States, these limitations contributed to
distrust, misinformation, and lack of cohesive decision-making.
This impeded local government and public health officials from
making informed policy decisions, such as mask-wearing
mandates and stay-at-home orders, to control disease outbreaks
and safeguard health systems from extended strain. This led to
shortages in hospital beds, personal protective equipment, and
health care personnel, thereby causing significant disruptions
to health care delivery and consequent loss of lives [2,3].

Although the United States seems to be recovering from the
COVID-19 pandemic owing to widespread vaccination efforts
and increased public awareness, there is still a need to address
the aforementioned limitations. Overcoming these limitations
will ensure better disaster preparedness and response in
anticipation of any future outbreaks caused by either COVID-19
variants or other diseases and to manage the care of
vaccine-hesitant populations. The United States boasts
significant health information system infrastructure, resulting
in the active collection of a wide variety of patient-level clinical,
medication, and visit history data. However, such datasets are
often siloed across different health systems. As a result,
analytical model development is often spearheaded at the health

system level. Although such models may be useful in caring
for a specific health system, they may not generalize across
broader populations and cannot contribute to large-scale public
health responses delivered across broad geographies, such as
at the county, metropolitan area, or state level.

Objective
In this study, we sought to inform the feasibility of leveraging
broad, statewide datasets for population health–driven
decision-making by developing robust analytical models that
predicted COVID-19–related health care resource utilization at
the patient level among those served by Indiana’s statewide
Health Information Exchange (HIE).

Methods

Patient Population and Data Sources
We leveraged the COVID-19 Research Data Commons
(CoRDaCo) [8], a rich, statewide dataset curated by the
Regenstrief Institute of Indianapolis and Indiana University.
The CoRDaCo dataset seeks to enable better access to data on
COVID-19–positive patients for research purposes. It integrates
data from multiple clinical sources, including the Indiana
Network for Patient Care (INPC) [9]—one of the longest
continuously operated statewide HIEs in the United States
consisting of data from over 15 million inhabitants of Indiana
spread across 23 health systems and 93 hospitals, as well as
other state laboratory reporting state vitals data. The INPC
patient population represents a variety of health systems spread
across Indiana [10] (representation of COVID-19 patient dataset
is illustrated in detail in the Results section). This is relevant
given that Indiana is representative of the total US population
in terms of age, gender, education levels [11] and urban-rural
divide [12]. For each patient, CoRDaCo includes data captured
between January 1, 2018, and November 30, 2020. The data
pull was performed by specialized analysts from the Regenstrief
Institute Data Core—the only personnel permitted direct access
to identifiable patient data within the INPC research database.

Preparation of Feature Sets
We extracted and vectorized a wide variety of patient-level
features representing their demographics; diagnoses; past
encounter history; medications; and social determinants of
health, defined as conditions in which people are born, grow,
live, work and age [13] (Table 1).

Creation of feature vectors for model development was
performed by the authors using the python programming
language.
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Table 1. List of features extracted for model development.

Description of features modeledData type

Patient age, gender, race or ethnicity represented as integer and categorical variablesDemographics

Represented as integer variables:Diagnosis data

• Charlson comorbidity index [14]

Represented as a Boolean values:

• Presence of most commonly occurring chronic conditions [15]
• Diagnoses of addictions, behaviors, behavioral disorders, and narcotics use [16]
• Presence of 1000 most frequently reported diagnoses identified using the International Classification of

Diseases

Inpatient, outpatient, and emergency visits represented as countsPast encounter history

Medications categorized into diagnosis groups and represented as Boolean valuesMedications

Represented as a Boolean values:Social determinants of health

• Socioeconomic status (unemployment, type of insurance)
• Education
• Neighborhood and physical environment
• Urban vs rural status classified using Rural-Urban commuting area (RUCA) codes [17]
• Employment
• Social support networks
• Access to health care according to the Kaiser Family Foundation framework [18]

All features were inferred using patient-level diagnosis codes and patient address information.

Development of a Gold Standard
We parsed past encounter history data on each patient to identify
those who had been hospitalized (defined as patients who had
been admitted to either inpatient or intensive care) within either
of the following:

• The first week of receiving a diagnosis of COVID-19 (ie,
1-week cohort), including a measure of which patients were
in need of urgent care at the time of, or soon after, diagnosis.

• The first 6 weeks of receiving a diagnosis of COVID-19
(ie, 6-week cohort). A metric of which patients would need
inpatient care during the course of their illness [19].

To ensure that our gold standard focused on inpatient or
intensive care unit stays influenced by COVID-19 alone, we
applied regular expressions to patient admission reason notes
in order to identify and exclude any admissions due to accidents
such as falls, injuries, lacerations, and fractures, as well as
suicidal ideation, overdoses, and alcohol abuse. These factors
were selected for exclusion based on an assessment of the most
frequently occurring admission reasons identified from patient
hospitalization datasets.

Figure 1 represents our approach to feature vector preparation
and detection of outcomes of interest for analytical modelling
based on the patient’s longitudinal health history.

Figure 1. Feature vector preparation and detection of outcomes of interest based on the patient’s longitudinal health history.

Machine Learning Process
We leveraged Python and the scikit-learn machine learning
library [20] to train prediction models using the eXtreme
Gradient Boosting (XGBoost) algorithm [21]. The XGBoost
algorithm is an implementation of gradient-boosted ensemble
decision trees [22] designed to optimize speed and performance.
XGBoost classification was selected because research conducted
by ourselves, as well as other external groups found that
ensemble decision trees performed compatibly, or better than
other classification algorithms [23,24] and because XGBoost

could be trained using a smaller number of features than those
required to train neural networks and other deep learning–based
models, which enables ease of model development,
interpretability, and explainability. We split each data vector
into random groups of 80% (training and validation dataset)
and 20% (holdout test set). We then leveraged the 80% training
and validation dataset to train optimal models for each scenario
by using 10-fold crossvalidation and hyperparameter turning
and methods. To enable better generalization of each model,
we applied the internal feature selection method of XGBoost
[25], which prioritizes feature importance based on average
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gain across all splits the feature is used in, to restrict models to
a smaller subset of the most relevant features.

Model Evaluation
We assessed the performance of each decision model in the
20% holdout test dataset by using several performance metrics:

• Positive predictive value, or precision: the likelihood that
a positively identified case is truly positive.

• Sensitivity, or recall: the likelihood that a true positive case
is correctly identified as positive.

• Specificity: the likelihood that a negative case is correctly
identified as negative.

• F1 score: the harmonic mean of model precision and recall
scores.

• Accuracy: the likelihood that a prediction is correct.
• Area under the receiver operating curve (AUC-ROC): a

metric representing the performance of a prediction model
at all classification thresholds.

Evaluation of Analytical Performance Against
Subpopulations
As discussed previously, the COVID-19 pandemic has
highlighted systemic disparities in patient outcomes and access
to care based on race or ethnicity [4], gender [5], income level,
and urban-rural divide [6,7]. These disparities may be present
in the datasets used to train analytical models, resulting in biased
predictions that place privileged groups at a systematic
advantage and unprivileged groups at a systematic disadvantage
[26]. To evaluate our models for such biases, we stratified the
holdout test dataset by age, race or ethnicity, gender, and
residence (urban vs rural), and we evaluated model performance
across each stratified subpopulation by using the same
performance metrics. Figure 2 provides a comprehensive
overview of our study approach.

Figure 2. Workflow presenting the complete study approach from data extraction to predictive model evaluation. CoRDaCo: COVID-19 Research
Data Commons.

Human Participants Research Approval
This study was approved by the Indiana University’s
Institutional Review Board (2005573466).

Results

Overview
The CoRDaCo dataset consisted of 230,981 patients with a
positive COVID-19 diagnosis. However, we noted that a
considerable number of these patients were out-of-state residents
who visited health systems that were part of the INPC only to
obtain COVID-19 tests or were Indiana residents whose only
interaction with INPC-affiliated health systems were to undergo
COVID-19 testing. As such, we had no clinical data beyond

COVID-19 status on these patients. To enrich the quality of
datasets used for model building, we excluded such patients by
identifying and removing any patient whose only INPC record
was a positive COVID-19 test result. This resulted in a total of
96,115 patients. We excluded an additional 89 patients owing
to errors in their medical records, resulting in a total of 96,026
legacy patients to be included in our model development efforts.
This legacy population was from a diverse race or ethnicity
(27% Black, Hispanic, and others), predominantly adult (median
age 47 years [33.73]), mostly urban (76,988/96,026, 80.17%),
and had a larger representation of females (57,475/96,026,
59.85%). A total of 18,694 (19.47%) of these patients were
hospitalized during the first week of being diagnosed with
COVID-19, whereas 22,678 (23.62%) were hospitalized during
the first 6 weeks of receiving a COVID-19 diagnosis.
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Table 2. Characteristics of the patient populations used for analytical model development.

Patients hospitalized during
the first 6 weeks

Patients hospitalized during
the first week

COVID-19 patient cohortPatient characteristics

Gender, n (%)

9615 (42.40)8178 (43.75)38,529 (40.12)Male

13,062 (57.60)10,516 (56.25)57,475 (59.85)Female

1 (0)0 (0)22 (0.02)Unknown

Race or ethnicity, n (%)

14,737 (64.98)11,783 (63.03)70,238 (73.15)White, non-Hispanic

4666 (20.58)4,104 (21.95)12,372 (12.88)Black, non-Hispanic

2,533 (11.17)2171 (11.61)9882 (10.29)Hispanic

742 (3.27)636 (3.40)3534 (3.68)Other

Age (years), n (%)a

754 (3.34)638 (3.41)7064 (7.36)Minors (<18 years)

13,851 (61.08)11,330 (60.61)67,563 (70.36)Adults (18-65 years)

8074 (35.60)6726 (35.98)21,177 (22.05)Older adults (>65 years)

0 (0)0 (0)222 (0.23)Unknown

Residence, n (%)

705 (73.67)678 (70.85)957 (99.90)Number of zip codes represented

17,910 (78.98)14,833 (79.35)76,988 (80.17)Living in an urban area

4084 (18.01)3267 (17.48)16,843 (17.54)Living in a rural area

684 (3.02)594 (3.18)2195 (2.29)Unknown

Encounters, mean (SD)

9.530 (12.29)9.391 (13.18)7.715 (10.09)Outpatient visits

2.237 (3.45)2.431 (3.52)0.926 (2.25)Emergency room visits

0.875 (2.19)0.938 (2.24)0.339 (1.35)Hospitalizations

Chronic disease burden, n (%)

1484 (6.54)1226 (6.56)3976 (4.14)Cancer

2222 (9.80)1903 (10.18)4340 (4.52)Diabetes with complications

4506 (19.87)3845 (20.57)10,819 (11.27)Diabetes without complications

871 (3.84)648 (3.47)2529 (2.63)Dementia

4338 (19.13)2364 (12.65)10,755 (11.20)Chronic pulmonary disease

2794 (12.32)2397 (12.82)5449 (5.67)Renal disease

aMean participant age: 47.039 years (21.43).

Model Development and Evaluation
The feature preparation process (Table 1) resulted in a total of
1172 features for model training. To enable model
generalizability and ease of interpretation, we restricted each
model to approximately the most significant 100 features
selected based on feature importance threshold drop-offs. Table
3 presents performance metrics reported by each model across

the 20% holdout test dataset. Figure 3 presents the
precision-recall and AUC-ROC curves for each prediction
model. The subset of features included in each model is
presented in Multimedia Appendix 1.

Both models delivered strong performance metrics. However,
the model for the 1-week cohort reported significantly greater
specificity, accuracy, and AUC-ROC scores than the 6-week
cohort model.
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Table 3. Predictive model performance.

First 6 weeks (95% CI)First week (95% CI)Performance metric

73.697 (72.142-75.253)75.133 (73.445-76.822)Precision

52.571 (51.081-54.061)52.505 (50.875-54.136)Sensitivity

94.269 (93.887-94.653)95.780 (95.457-96.104)Specificity

84.514 (83.992-85.037)87.326 (86.846-87.806)Accuracy

86.215 (85.773-87.091)88.744 (88.136-89.205)AUC-ROCa

61.367 (59.797-62.936)61.814 (60.092-63.535)F1 score

aAUC-ROC: area under the receiver operating curve.

Figure 3. Precision-recall and AUC-ROC: area under the receiver operating curve (AUC-ROC) curves for each prediction model.

Evaluation of Analytical Performance Against
Subpopulations
To assess model performance across different subpopulations
of interest, we stratified the holdout test dataset by age, race or
ethnicity, gender, and residence (urban vs rural), and we then
evaluated their performance using each performance metric.

Tables 4 and 5 present statistically significant variations in
predictive performance reported across each model.
Comprehensive predictive performance metrics, together with
95% CIs are listed in Multimedia Appendix 2. AUC-ROC curves
for the performance of models across each stratified
subpopulation are presented in Multimedia Appendix 3.

Table 4. Statistically significant performance variations in model to predict health care resource utilization within the first week.

White vs Black vs HispanicMinors vs adults vs older adultsMale vs femaleUrban vs ruralPerformance metric

No differenceNo differenceNo differenceNo differencePrecision

Black > Hispanic > WhiteOlder adults > (adults = minors)Male > femaleUrban > ruralSensitivity or recall

(White and Hispanic) > blackMinors > adults > older adultsNo differenceNo differenceSpecificity

(White and Hispanic) > blackMinors > adults > older adultsNo differenceNo differenceAccuracy

No differenceMinors > adults > older adultsMale > femaleNo differenceAUC-ROCa

(Black and Hispanic) > White(Older adults = minors) > adultsMale > femaleUrban > ruralF1 score

aAUC-ROC: area under the receiver operating curve.
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Table 5. Statistically significant performance variations in model to predict health care resource utilization within the first 6 weeks.

White vs Black vs HispanicMinors vs adults vs older adultsMale vs femaleUrban vs ruralPerformance metric

No differenceNo differenceNo differenceNo differencePrecision

Black > Hispanic > WhiteOlder adults > (adults = minors)Male > femaleUrban > ruralSensitivity or recall

White & Hispanic > blackMinors > adult > seniorNo differenceNo differenceSpecificity

No differenceMinors > adult > seniorNo differenceNo differenceAccuracy

No differenceMinors > adult > seniorMale > femaleUrban > ruralAUC-ROCa

Black > Hispanic > White(Older adults = minors) > adultsMale > femaleUrban > ruralF1 score

aAUC-ROC: area under the receiver operating curve.

As presented in Tables 4 and 5, there were no statistically
significant differences in precision scores reported across each
strata or model under test. However, we found evidence of
significant variations in model performance across many other
strata. Across both models and all performance metrics under
test, residing in an urban area was associated with comparable,
or higher predictive performance than if residing in a rural area.
Across both models and all performance metrics under test,
being male was associated with comparable, or higher predictive
performance than if female. Performance stratified by age
showed significant variations, with some performance metrics
favoring older adults while others favored minors. These results
are indicative of biases learned from underlying data sources
used for model development, or inefficient learning parameters
implemented by the machine learning algorithm.

Discussion

Principal Findings
Our results demonstrate the ability to train decision models
capable of predicting the need of COVID-19–related
hospitalization across a broad, statewide patient population with
considerable performance accuracy. The 1-week model for
predicting the need of COVID-19–related hospitalization
reported specificity, accuracy, and AUC-ROC scores that were
significantly larger than the 6-week model. The findings are
intuitive given that hospitalization risk is more predictable over
shorter time frames. Such utilization prediction models may be
used for population health management programs in health
systems, to identify high-risk populations to monitor or screen,
as well as predicting resource need in crisis situations, such as
future spikes in pandemic activity or outbreaks.

Stratification of model performance across age, race or ethnicity,
gender, and urban versus rural divide identified statistically
significant variations in model performance across
subpopulations. Each model and stratified subpopulation under
test reported precision scores >70%, accuracy and AUC-ROC
scores >80%, and sensitivity scores approximately >90%. We
note that recall scores for each model (approximately 50%-54%)
were lower than ideal, implying that a considerable proportion
of patients in need of health care services were being ignored.
However, model precision, which is indicative of what
percentage of patients identified by the model actually needed
care was high (>70%), suggesting that it was pragmatic for use
in clinical settings. Additionally, model specificity scores were

very high (approximately >90%). This finding indicated that
the models were able to correctly identify patients who were
not in need of care with very high accuracy, which is very
valuable in making clinical decisions on which patients to
prioritize.

Features that influenced the prediction of health care resource
utilization included patient age [27], chronic obstructive
pulmonary disease status [28], smoking [28], diabetes [29],
indication of neurological diseases via diagnosis (eg, dementia
[30]) or medications (eg, anti-Parkinson and related therapy
agents), mental disorders (eg, anxiety disorders), residence
(urban vs rural) [31,32], and income-level, measured on the
basis of the type of insurance used by the patient. None of the
patient-level social determinants of health factors extracted from
the International Classification of Diseases diagnosis data were
found to be impactful enough for inclusion in either model. This
could be attributed to the scarcity of these elements being
captured in clinical settings. However, patient-level features on
the type of insurance (which is indicative of an individual’s
financial and employment status) and RUCA code (which could
be used to infer an individual’s income level, isolation, and
access to services and health resources) were both widely
available. These elements were found to be impactful and were
integrated into both models.

Each model exhibited significant variations in predictive
performance across subpopulations. Overall, male gender or
living in an urban area was associated with stronger predictive
performance. These differences may be influenced by variations
in access to health care services or health care delivery prevalent
in the datasets, and the models could learn them during the
training process. We cannot make further assumptions on the
causes of varying model predictions without a proper assessment
of underlying causes of this behavior.

Limitations
We noted several limitations to this study. We leveraged
statewide datasets from the INPC HIE system to ensure that our
models could be operationalized across a broad geographic
region. As such, our modeling did not include data elements
that were collected by health systems but not shared with the
INPC. Since the collection of such datasets and their availability
at the HIE level may vary based on the health system, the
inclusion of such elements may impact the generalizability of
our models across different health systems. Our use cases
assessed the need of hospitalization during the first 6 weeks of
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diagnosis. This excludes the needs of patients suffering
long-COVID, where patients may not fully recover for several
months [33]. Models were trained using legacy patients, who
were participants of the INPC system prior to March 1, 2020.
It is unclear how the models will perform against other patients
who do not regularly interact with the health system and sought
care only for COVID-19 testing purposes. This is concerning
given that such patients may suffer from a higher disease burden.
Our modelling efforts covered a broad time period spanning
several waves of the COVID-19 pandemic, as well as the
enforcement and relaxation of various mandates aimed at
controlling COVID-19 infection rates. These changes may have
influenced the capacity of hospital systems resulting in changes
in how many patients were provided inpatient care.
Alternatively, hospital admission and emergency management
protocols may have also changed throughout this period, further
impacting which patients received care. Our current effort did
not consider how these variations influence the training datasets,
and as such, how our models would generalize across future
outbreaks and mandates, as COVID-19 infection rates continue
to change. Future research will systematically investigate and
calibrate model performance across different stages of the
pandemic.

We sought to demonstrate the ability to develop broad,
state-level models for COVID-19–related research. As such,
the biases in analytical models detected in this study highlight
significant concerns that researchers must protect against. These
biases in analytical model performance will be addressed during
the next phase of our work. Further, although the generalizability
of our models across other states is untested, they can influence
other emerging COVID-19 analytical efforts. In particular, these
models can influence data collection, curation, and modeling
activities undertaken by the National COVID Cohort
Collaborative (N3C) [34], which is stewarded by the National
Center for Advancing Translational Sciences and hosts data on
over 250,000 COVID-19–positive patients from 31 sites spread
across the United States. N3C could serve as an in-vivo
laboratory for our research efforts.

Conclusions
This study presents the possibility of developing decision models
capable of predicting patient-level health care resource
utilization across a broad, statewide region with considerable
predictive performance. However, the analytical models present
statistically significant variations in performance across stratified
subpopulations of interest. Further efforts are necessary to
identify root causes of these biases and to rectify them.
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