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Abstract

Background: Nonvalvular atrial fibrillation (NVAF) affects almost 6 million Americans and is a major contributor to stroke
but is significantly undiagnosed and undertreated despite explicit guidelines for oral anticoagulation.

Objective: The aim of this study is to investigate whether the use of semisupervised natural language processing (NLP) of
electronic health record’s (EHR) free-text information combined with structured EHR data improves NVAF discovery and
treatment and perhaps offers a method to prevent thousands of deaths and save billions of dollars.

Methods: We abstracted 96,681 participants from the University of Buffalo faculty practice’s EHR. NLP was used to index
the notes and compare the ability to identify NVAF, congestive heart failure, hypertension, age ≥75 years, diabetes mellitus,
stroke or transient ischemic attack, vascular disease, age 65 to 74 years, sex category (CHA2DS2-VASc), and
Hypertension, Abnormal liver/renal function, Stroke history, Bleeding history or predisposition, Labile INR, Elderly, Drug/alcohol
usage (HAS-BLED) scores using unstructured data (International Classification of Diseases codes) versus structured and
unstructured data from clinical notes. In addition, we analyzed data from 63,296,120 participants in the Optum and Truven
databases to determine the NVAF frequency, rates of CHA2DS2-VASc ≥2, and no contraindications to oral anticoagulants, rates
of stroke and death in the untreated population, and first year’s costs after stroke.

Results: The structured-plus-unstructured method would have identified 3,976,056 additional true NVAF cases (P<.001) and
improved sensitivity for CHA2DS2-VASc and HAS-BLED scores compared with the structured data alone (P=.002 and P<.001,
respectively), causing a 32.1% improvement. For the United States, this method would prevent an estimated 176,537 strokes,
save 10,575 lives, and save >US $13.5 billion.

Conclusions: Artificial intelligence–informed bio-surveillance combining NLP of free-text information with structured EHR
data improves data completeness, prevents thousands of strokes, and saves lives and funds. This method is applicable to many
disorders with profound public health consequences.

J Med Internet Res 2021 | vol. 23 | iss. 11 | e28946 | p. 1https://www.jmir.org/2021/11/e28946
(page number not for citation purposes)

Elkin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:elkinp@buffalo.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


(J Med Internet Res 2021;23(11):e28946) doi: 10.2196/28946

KEYWORDS

afib; atrial fibrillation; artificial intelligence; NVAF; natural language processing; stroke risk; bleed risk; CHA2DS2-VASc;
HAS-BLED; bio-surveillance

Introduction

Background
Atrial fibrillation (AF), the most common type of arrhythmia
[1,2], consists of nonvalvular AF (NVAF) and valvular AF
(VAF) [1]. NVAF comprises approximately 70% of AF and
currently affects approximately 5.8 million US patients and
approximately 11 million in Europe on VAF results in a five
times greater risk of stroke [3] and causes approximately 15%
of all strokes [2,4]. Anticoagulation treatment dramatically
reduces one’s odds of a stroke to <0.5% on average.

The incidence of stroke with AF has prompted the development
of scoring risk systems to guide anticoagulation treatment [5,6].
In 2014, the American Heart Association, American College of
Cardiology, and Heart Rhythm Society advocated for AF
practice guidelines via the use of congestive heart failure,
hypertension, age ≥ 75 years, diabetes mellitus, stroke or
transient ischemic attack, vascular disease, age 65 to 74 years,
sex category (CHA2DS2-VASc) scores that combine the
CHADS2 score with additional moderate risk factors [2,7].
Individuals’ stroke risks should inform therapeutic options,
which may include anticoagulants [7]. The Hypertension,
Abnormal liver/renal function, Stroke history, Bleeding history
or predisposition, Labile INR, Elderly, Drug/alcohol usage
(HAS-BLED) score is a practical tool to assess individuals’ risk
of major bleeding and to guide anticoagulant therapy [8,9].
Researchers posit that the assessment of bleeding risk
factors—age, uncontrolled hypertension, ischemic heart disease,
and prior ischemic stroke—may improve individualized
treatment for AF.

However, despite strong recommendations, oral anticoagulation
(OAC) for NVAF patients remains low, with rates ranging from
39%-65% [10]. Disease surveillance and clinical decision
support could help detect potential candidates who could benefit
from this therapy. Automatic extraction from electronic health
records (EHRs) has been shown to aid health care providers by
making health care information easily accessible and helping
with risk calculation [11,12]. Using these tools could reduce
clinicians’ computer time for data retrieval and data entry and
could facilitate capturing all qualifying patients [13].

The Need for Natural Language Processing
Although EHRs contain an abundance of codified information,
factors related to the assessment of NVAF are often poorly
reflected in structured data [11]. Clinical text harboring rich
contextual medical information is unstructured and in free-text
form. Extracting information from a clinical text remains
challenging because of context-specific abbreviations, refusal
to adhere to typical language conventions, and because text
often includes a broad range of specific medical terms. To
retrieve information from a clinical text, multiple natural

language processing (NLP) approaches have been developed,
including those that extract clinical entities and map them to
clinical terminologies such as SNOMED CT (Systematized
Nomenclature of Medicine–Clinical Terms) [14].

To capture all potential patients with NVAF and of
CHA2DS2-VASc >1 who would benefit from appropriate
anticoagulation therapy, we developed a method to automate
risk scoring systems using a combination of multiple EHR data
sources for diagnostic information, namely the International
Classification of Disease (ICD) codes and clinical notes and
lists. As natural language processors are expensive to develop
and require individual tuning for each task or disease area, we
make use of a high definition-NLP (HD-NLP) method that uses
semisupervised learning to surpass the classification
performance that could be obtained either by discarding the
unlabeled data and performing supervised learning or by
discarding the labels and performing unsupervised learning
[15]. We compare the advantages of using NLP tools for NVAF
phenotyping and calculate the risk scores of using structured
ICD data alone.

Methods

This study compares the effectiveness of identifying NVAF
patients using three methods: (1) structured EHR data, (2) a
combination of structured EHR data and NLP-analyzed existing
free text (EHR notes, problem lists, and laboratories), and (3)
clinicians’ assessments of NVAF patients (the gold standard).
We used NLP of the EHRs’ free text to improve the
identification of NVAF patients and to assess their stroke and
bleeding risks more accurately. We verified the improvement
in the identification of NVAF cases and in determining the
CHA2DS2-VASc and HAS-BLED scores. We then examined
the rates of NVAF and treatment in patients with a
CHA2DS2-VASc of ≥2 and no contraindications to treatment
to determine the results from our local population. Finally, we
extrapolated our findings on NVAF numbers to the US
population and disease costs.

Study Populations
We had two samples: a local Western New York population of
96,681 individuals and 63,296,120 participants from the Optum
and Truven databases.

Sample 1: Local
To understand the effectiveness of the system in identifying
NVAF patients who should be treated and are not currently on
OAC therapy, we abstracted a set of 96,681 participants (aged
18-90 years) from the Allscripts outpatient electronic records
at the University at Buffalo’s (UBMD) faculty practice. The
research was approved by the institutional review board of the
University of Buffalo.

J Med Internet Res 2021 | vol. 23 | iss. 11 | e28946 | p. 2https://www.jmir.org/2021/11/e28946
(page number not for citation purposes)

Elkin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/28946
http://www.w3.org/Style/XSL
http://www.renderx.com/


Patient data were abstracted from 2010 to September 21, 2015,
before the switch to ICD-10, allowing consistent use of ICD-9
terminology and sufficient follow-up data for the study period.
This yielded 212,343 patients. Of those 212,343 patients, 96,681
(45.53%) had notes and were seen for ≥1 outpatient visits
(Multimedia Appendix 1, Figure S1). Outcomes from these data
included rates of AF, NVAF, and VAF diagnosis, components
of the CHA2DS2-VASc and HAS-BLED scores, relevant
contraindications, OAC treatment, and demographic variables.
We excluded patients if they were on oral antithrombotic therapy
for indications other than NVAF, had a mechanical prosthetic
valve, had a hemodynamically significant mitral stenosis or
significant aortic stenosis, were pregnant, had a transient AF
because of reversible conditions, or had active infective
endocarditis (Multimedia Appendix 1, Figure S2). We developed
the NVAF cohort using ICD-9 codes (structured data) and ICD-9
and NLP (structured-plus-unstructured) of EHR notes and
patient problems. AF and atrial flutter were defined by ICD-9
codes 427.31 and 427.32 and by SNOMED CT codes 49436004
and 5370000 with all subtypes in the hierarchy.

The structured data–only method used ICD 9 codes from
problem lists, medications, and demographics. The
structured-plus-unstructured method added clinical notes, vital
signs, laboratory findings, and text from the problem list using
HD-NLP for codification [14,16-18]. Free text elements were
coded using SNOMED CT, a general description logic–based
nomenclature of clinical medicine. Specific code inclusions can
be found in Multimedia Appendix 1, Figure S3.

We then compared the accuracy of structured data alone with
the structured-plus-unstructured EHR data derived using the
HD-NLP system, focusing on the two models’ abilities to
identify true cases of NVAF and to determine stroke and
bleeding risks (CHA2DS2-VASc and HAS-BLED scores).

Subsample of the Local Data
For validation of the accuracy of NLP, we used a gold standard
created by human review (BS, JZ, EA, and SS) from a random
sample of 300 patients. To verify the NVAF identification and
CHA2DS2-VASc and HAS-BLED scores, we used this
300-patient random sample from our NVAF patients, which
were dual human reviewed. We also looked to determine how
much better structured-plus-unstructured data were in the
identification of NVAF cases and in the determination of the
CHA2DS2-VASc and HAS-BLED scores.

The human review data set was independently examined by 4
clinicians, each performing 150 reviews on deidentified patient
encounters from the EHR. Each clinician made a judgment as
to whether the patients had sustained NVAF and whether the
patient had each of the components of the CHA2DS2-VASc and
HAS-BLED scores. If there were disagreements, a fifth clinician
adjudicated.

Calculations determined that 300 patients were needed for 90%
power to predict a 5% change in accuracy given a two-sided
alpha of .05, assuming a standard accuracy of 73% based on
ICD-9 codes [19]. Multimedia Appendix 1, Figure S1 presents
the decision tree and sample numbers, and Multimedia Appendix
1, Figure S2 illustrates the randomization scheme.

Sample 2: National—Optum and Truven Databases
We analyzed the claims data from 63,296,120 participants in
the Optum and Truven databases from October 2015 to
September 2016 to determine the frequency of NVAF, rates of
CHA2DS2-VASc ≥2, and no contraindications to OAC, rates
of stroke and death in the untreated NVAF, strokes and death
in the large claims database, and the first year’s cost after stroke
[20,21]. Cost differences were based on 1-year cost before and
after the stroke, adjusted for inflation.

We then extrapolated our findings to the US population.

Findings for NLP
We made use of an HD-NLP to rapidly assign ontological terms
to the text in patient records (Multimedia Appendix 1, Figure
S5) [14,16,17]. HD-NLP is a full-function NLP processing
pipeline that takes sentences, parses them by their parts of
speech, and builds a full semantic parse in memory; then, an
ontological coder works by matching words to ontology terms,
with the longest match being preferred. We used basic formal
ontology as an upper-level ontology to index the data from
individual trials [18]. We also used the ontology of biomedical
investigation and SNOMED CT as our main ontologies [22,23].

A level of syntactic processing was required to match text with
ontological terms. The linguistic representation is specified in
language models. Of primary concern here was an English
language model to identify sentences, phrases, words, and parts
of speech. Terms from the input ontologies were then assigned
to spans of text. String matching techniques allowed for inexact
matches influenced by the underlying language model. The
structures of the free-text medical records were captured and
stored.

To develop the NVAF model, we used a semisupervised learning
algorithm training set with 36,268 patients from the Allscripts
EHR UBMD faculty practice data from 2007 to 2008, with 1972
AF cases and 1795 NVAF cases to determine the best SNOMED
CT codes to match the case definition. As most clinical texts
are unlabeled, semisupervised learning leverages a small amount
of labeled data with a large amount of unlabeled data.
Researchers have shown that large amounts of unlabeled data,
when used in conjunction with a limited amount of labeled data,
can produce considerable improvement in learning accuracy,
especially with assistance from subject matter expert’s
annotation of the training set’s false positive and false negative
results from each training iteration [14]. All cases were coded
using HD-NLP with SNOMED CT codes (the unsupervised
portion of the study). Where the SNOMED CT codes and ICD-9
codes agreed that the patient had NVAF, we called that a true
positive case. The same logic was used to determine true
negatives. Where either coding system disagreed, our clinician
(PE) reviewed the case and decided. After reviewing the false
positive and false negative cases from the training data set, we
used additional synonymy to the terminology and selected a
more appropriate set of codes for each rule in the definition.
This process was iterated on the training set until we met our
accuracy goals.
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Statistical Analysis
Statistical analyses were conducted using R 3.3.2. A random
gold standard sample of 300 patients was taken from the sample
1 AF cohort defined by both ICD and HD-NLP. Interrater
agreement was assessed using the two-way random effects
model for intraclass correlation coefficient, with two-sided
10,000 samples bootstrapped 95% CI, treating the risk scores
as continuous. Cohen κ with two-sided 10,000 samples
bootstrapped 95% CI assessed the interrater reliability of each
individual component of the scores, NVAF and AF.

The accuracy of the structured data alone was compared with
structured-plus-unstructured data for the outcomes of NVAF,
CHA2DS2-VASc score, and HAS-BLED score in the random
sample. Cohen κ with two-sided bootstrapped CIs was calculated
as a measure of reliability between the gold standard and the
structured and structured-plus-unstructured data. For sensitivity
and specificity, a hypothesis test comparing structured with
structured-plus-unstructured data was assessed using either the
McNemar test for paired observations or the binomial exact
test. For positive and negative predictive values, a generalized
score statistic proposed by Leisenring et al [19] was used for
comparison.

As the CHA2DS2-VASc and HAS-BLED scores are on ordinal
scales from 0 to 9, we analyzed the area under the receiver
operator characteristic curve (ROC) using the C-Index and
Somer D, based on ordinal logistic regression, where
probabilities were modelled as P(Y≥k|X), where k defines the
cut-offs from 0 to 9 that the score can take. We hypothesized
that the structured and NLP data were more concordant than
the structured-only data compared with the gold standard
between the ordinal gold standard score and the ordinal method
score.

We contrasted our findings with the clinical judgments from
the physician review of the 300 patients, categorized as

contraindicated (Multimedia Appendix 1, Table S1) or not on
OAC, would or would not benefit from OAC, and not on OAC.
To determine the potential effects of adopting the NLP-enabled
method with structured-plus-unstructured data, the accuracy
data of the structured and NLP data method were used to
extrapolate the findings for all untreated US patients in the
Optum and Truven data sets with no contraindications to OACs.
Then, the potential savings from reduced strokes were derived
and compared with the prevailing structured-only method.

Results

NLP Results
From the Allscripts UBMD practice EHR data, we found 2722
potential patients with NVAF using the structured and NLP
method and 1849 cases using only ICD-9 codes. The use of
NLP by combining structured-plus-unstructured data improved
sensitivity by 32.1%, that is, 873/2722 (P<.001) in determining
the NVAF population. In the random sample, participants were
on average 72 years old (mean 72.7, SD 13.6), 41.3% (125/300)
were female, and 86.3% (259/300) were White. The true NVAF
population within the random sample, as determined by clinician
review, was 88% (264/300) of cases with an average age of 73
(mean 73.4, SD 13.0), of which 41.7% (110/264) were female,
and 87.1% (230/264) were White. The assessment of agreement
between clinicians and interrater reliability was high for the
CHA2DS2-VASc score (odds ratio [OR] 0.796, 95% CI
0.725-0.853 and OR 0.878, 95% CI 0.838-0.909) and adequate
for the HAS-BLED score (OR 0.609, 95% CI 0.51-0.692 and
OR 0.675, 95% CI 0.544-0.77). Cohen κ, depending on whether
an outcome was a rare event, ranged from –0.080 to 0.84.

When we tested this in the human review of the 300 cases, we
found a 46% improvement in sensitivity (Table 1), which is
greater than the 32.1% improvement seen with the automated
method.

Table 1. Clinician review (gold standard): comparison of outcomes for structured and structured-plus-unstructured data against the gold standard for
identifying a case as nonvalvular atrial fibrillation.

P valueStructured and NLPa surveillanceStructured surveillanceOutcome

<.0011 (0.979-1)0.54 (0.48-0.60)Sensitivity, ORb (95% CI)

.240.93 (0.893-0.956)0.95 (0.90-0.98)PPVc, OR (95% CI)

N/Ae0.9640.686Fd score

aNLP: natural language processing.
bOR: odds ratio.
cPPV: positive predictive value.
dFor case finding of nonvalvular atrial fibrillation.
eN/A: not applicable.

Thus, the structured-plus-unstructured surveillance showed that
the sensitivity for CHA2DS2-VASc ≥2 and HAS-BLED≥3 scores
was significantly better than that for structured data alone
(P=.002 and P<.001, respectively). The specificities of the two
methods were not statistically different for CHA2DS2-VASc
and favored the structured method for HAS-BLED (Table 2).
The positive predictive value (PPV; precision) also improved

for the HAS-BLED score using the structured-plus-unstructured
method (Table 2) but was not statistically different from the
structured data for the CHA2DS2-VASc score. However, the
negative predictive value improved for both scores using the
structured-plus-unstructured method. No cases identified by the
structured method were missed by the
structured-plus-unstructured method.
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Table 2. Comparison of outcomes for structured and structured-plus-unstructured surveillance against the clinician review (gold standard) for identifying
Hypertension, Abnormal liver/renal function, Stroke history, Bleeding history or predisposition, Labile INR, Elderly, Drug/alcohol usage (HAS-BLED)
and congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke or transient ischemic attack, vascular disease, age 65 to 74 years,
sex category (CHA2DS2-VASc) components.

CHA2DS2-VAScHAS-BLEDMethod

P value

Test
statis-
ticDifference

Structured
and NLP
surveillance

Structured
surveil-
lanceP valueT testDifference

Structured

and NLPa

surveillance
Structured
surveillance

Sensitivity

—————b<.001720.4240.8060.382McNemar method

.002—0.04130.9830.942————Exact binomial
method

Specificity

<.00116–0.170.7770.947McNemar method

>.99c–0.04550.9090.955—————Exact binomial
method

PPVd

.340.9150.0040.9920.996.034.487.0610.8670.929Generalized score
method

NPVe

<.00111.6620.2330.8330.6<.00147.7570.230.6890.459Generalized score
method

aNLP: natural language processing.
bThere is a small number of discordant cells, such that for the gold standard’s CHA2DS2-VASc <2, there is 1 case that was identified as CHA2DS2-VASc

≥2 in the structured and NLP method but not in the structured method. The exact binomial P value is calculated as 
cThere is a small number of discordant cells, such that for the gold standard’s CHA2DS2-VASc <2, there is 1 case that was identified as CHA2DS2-VASc

>2 in the Structured and NLP method but not in the structured method. The exact binomial P value is calculated as 
dPPV: positive predictive value.
eNPV: negative predictive value.

Multimedia Appendix 1, Figure S4 presents the conditional
probability tree for the automated structured or
structured-plus-NLP method, based on clinical guidelines.

In Figure 1, the area under the ROC for the CHA2DS2-VASc
scores for the structured-plus-unstructured data compared with
the gold standard score was 0.914 (95% CI 0.896-0.933) with
a Somer D 0.829 (SD 0.0185), and for the structured data alone
compared with the gold standard score, was 0.863 (CI
0.838-0.887), with a Somer D 0.726 (SD 0.0249). For
CHA2DS2-VASc scores, structured-plus-unstructured data were
more concordant than structured data alone when compared
with the gold standard score (Z=19.77; P<.001). For the ROC
curves of the HAS-BLED scores with the gold standard score
as the outcome, the structured-plus-unstructured data was 0.816
(CI 0.783-0.849), with a Somer D 0.633 (SD 0.034), and the
structured data alone was 0.797 (CI 0.761-0.833) with a Somer
D 0.595 (SD 0.037). For HAS-BLED scores,

structured-plus-unstructured data were not more concordant
than structured data alone (Z=1.433; P=.149).

Figure 1 represents four areas under ROC curves, two for
structured versus structured and NLP CHA2DS2-VASc score
and two for structured versus structured and NLP HAS-BLED
score. As these scores are ordinal (eg, ranging from 0-9) and
not binary, as with typical ROC, we use the C-Index and Somer
D based on ordinal logistic regression to model the probabilities,
resulting in multiple y values for the same x.

We compared the findings of the gold standard with the NLP
structured-plus-unstructured data (Multimedia Appendix 1,
Table S1). Clinician reviewers found 31 untreated patients who
should have been treated and 1 treated patient who, the clinicians
felt, should not have been treated. This was the same total as
that of the gold standard. After clinician review, there was a
32.1% improvement  in  PPV us ing  the
structured-plus-unstructured method when compared with the
structured method alone.
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Figure 1. Four receiver operator characteristic curves for cumulative congestive heart failure, hypertension, age ≥ 75 years, diabetes mellitus, stroke
or transient ischemic attack, vascular disease, age 65 to 74 years, sex category (CHA2DS2-VASc), and Hypertension, Abnormal liver/renal function,
Stroke history, Bleeding history or predisposition, Labile INR, Elderly, Drug/alcohol usage (HAS-BLED) risk scores. NLP: natural language processing.

Extrapolating Findings to the US Population for
Prevalence and Cost
Extrapolation to the US population of the Truman and Optum
data results can be found in Table 3.

To determine the national cost savings from the NLP-assisted
bio-surveillance of the structured-plus-unstructured data, we
used Truven data and contrasted the mean monthly costs per
patient after a stroke (US $11,538) with the monthly costs before
a stroke (US $2,763.33), which yielded a mean savings of US
$8,776.02. This was adjusted to US $2019 as the data were from

2010 to 2015. This revealed savings of US $8,556.66 per month
or yearly savings of US $102,680.

The structured data method identified 1.5%
(967,801/63,296,120) of the population as having NVAF. Of
those cases, 84.3% (816,240/967,801) had a CHA2DS2-VASc
score of ≥2. These data indicate that 60.7% (495,749/816,240)
of these patients were not treated despite the current clinical
guidelines. Untreated NVAF patients had a 4.4%
(22,021/495,749) annual ischemic stroke risk, and the stroke
patients had a 6.0% (1320/22,021) risk of death.

Table 3. Optum and Truven stroke data for 1 year after atrial fibrillation (AF) diagnosis.

Event rates (%)Total, n (%)Optum, n (%)Truven, n (%)Population for rates

—a63,296,120 (100)31,249,927 (49.37)32,046,193 (50.63)All patients

—1,287,164 (100)865,072 (67.21)422,092 (32.79)Patients aged ≥18 years in 2016 with any diagnosis of AF during
October 2015-September 2016

1.5967,801 (100)611,990 (63.24)355,811 (36.76)Patients aged ≥18 years in 2016 with any diagnosis of AF during

October 2015-September 2016 and without a VHDb diagnosis
during 1-year preindex

84.3816,240 (100)539,775 (66.13)276,465 (33.87)Patients aged ≥18 years in 2016 with any diagnosis of AF during
October 2015-September 2016 and without VHD diagnosis during

1-year preindex and with CHA2DS2-VAScc ≥2 and no contraindi-

cations to OACd

60.7495,749 (100)316,308 (63.80)179,441 (36.20)Patients aged ≥18 years in 2016 with any diagnosis of AF during
October 2015-September 2016 and without VHD diagnosis during
1-year preindex and with CHA2DS2-VASc ≥2 and no contraindi-
cations to OAC and were untreated

4.422,021 (100)10491 (47.64)11,530 (52.36)Stroke rate

5.991,320 (100)593 (44.9)727 (55.1)Death rate

aThe values are not events.
bVHD: valvular hear disease.
cCHA2DS2-VASc: congestive heart failure, hypertension, age ≥ 75 years, diabetes mellitus, stroke or transient ischemic attack, vascular disease, age
65 to 74 years, sex category.
dOAC: oral anticoagulation.
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Estimates of Morbidity, Mortality, and Cost
After extrapolating our results combining the Optum and Truven
data with our method of bio-surveillance, we estimated outcomes
of implementing the NLP-assisted analyses of

structured-plus-unstructured data nationally; that is, if
implemented nationally (among a population of 316,005,000),
this system could potentially prevent 176,537 strokes and 10,575
deaths in the first year of implementation, with stroke-associated
savings >US $18.126 billion (Table 4).

Table 4. Untreated strokes and their costs for first year after the event.

Difference between the
two methods

Structured and NLPa

surveillanceStructured surveillanceExtrapolated results

1590,6466,545,9304,955,284NVAFb population

1,458,7126,002,7074,543,995NVAF population with no contraindications and CHA2DS2VAScc

≥2

966,2173,976,0573,009,840NVAF population needing treatment

42,900176,537133,637Strokes prevented

2,57010,5758,005Deaths prevented

4,404,981,21018,126,800,00013,721,820,000Cost savingsd (US $)

aNLP: natural language processing.
bNVAF: nonvalvular atrial fibrillation.
cCHA2DS2-VASc: congestive heart failure, hypertension, age ≥ 75 years, diabetes mellitus, stroke or transient ischemic attack, vascular disease, age
65 to 74 years, sex category.
dCost basis is US $102,680 per untreated ischemic stroke patient's excess cost for the first year after event; cost is 1.9% inflation adjusted.

Discussion

Principal Findings
Compared with structured EHR data alone, we found that
NLP-assisted structured-plus-unstructured EHR data identified
previously unknown and untreated patients with NVAF and
their stroke and bleed risks with greater accuracy. Adding the
unstructured data significantly improved the sensitivity and
negative predictive value across all measures, whereas the results
for NVAF specificity and PPV were strong but mixed. Future
applications of this artificial intelligence (AI) bio-surveillance
method may involve identifying other underdiagnosed
populations.

We estimated NVAF rates in large national database
populations, the percentage of people who should be treated
with OAC and are not currently treated, and yearly risks of
stroke expressed as a percentage of these untreated patients
[24,25]. We also estimated the average incremental 1-year cost
for a stroke event and identified stroke-related average death
rates in the first year after event.

Verhoef et al [26,27] showed that bleeding rates with warfarin
were, on average, 0.34% risk per year. Given additional
treatment for 3,976,057 new patients, we would expect 13,824
new patient bleeds. McWilliam [28] showed that the average
cost of a major bleed was US $19,000 in 2008 (inflation adjusted
to US $23,777.67). For the population, this equals US
$328,702,452. Gilligan et al [29] showed that the average total
cost for warfarin therapy was US $76.19 per member per month,
which translates to a total national cost of US $3,750,758,790
per year. Potential net financial treatment benefits from using
the NLP-assisted structured-plus-unstructured method equates
to US $14.4 billion (US $18.13 billion to US $3.75 billion).

On the basis of the accuracy of the AI-derived bio-surveillance
method, we show potential societal benefits of implementing
this technology. Nationally, this method could identify
approximately 4 million patients requiring treatment, potentially
preventing >176,000 strokes in the first year, and >10,500
deaths, translating to national savings of >US $14 billion.
Including the estimated costs of excess bleeding from the
treatment and from our estimate, the national implementation
costs would be no greater than US $300,000,000. This type of
AI-driven clinical decision support bio-surveillance has the
potential to significantly improve patient care and clinicians’
treatment decisions.

NVAF is but one important condition among many. Future
applications of this AI bio-surveillance method may identify
other underdiagnosed populations. Once deployed, the
infrastructure could be used for other disorders and could be
implemented at a low incremental cost.

Limitations
This analysis and data extrapolation were based on previous
2014 American Heart Association, American College of
Cardiology, and Heart Rhythm Society recommendations for
OAC therapy in patients with NVAF and a CHA2DS2-VASc
score of ≥2. The 2019 focused updates on AF now recommend
that men with a CHA2DS2-VASc score of ≥2 and women with
a CHA2DS2-VASc score of ≥3 should be treated with an OAC.
As such, the numbers in this analysis may include women who,
under the updated guidance, may not be recommended for
treatment with an OAC. In addition, not all patients for whom
therapy is indicated may agree to accept anticoagulation therapy.

The Optum and Truven databases, although found to be
effectively nonoverlapping, are, on average, considered to be
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for younger and healthier private payer populations; therefore,
we may underestimate both protective effects and cost savings
[30]. If this method were extended to other diseases, models
must be built and distributed uniformly across the country and
perhaps internationally.

The AI model processes the free text of the notes and reports,
and as it can accept and process data from Cerner, Epic, and
other EHRs, there should be no difference in outcome; however,
this model has not been specifically tested with data from other
EHRs.

ICD-9 codes were used in this study because of the desire to
have a consistently coded data set. ICD-10 codes were not
included. Future research should investigate this method using
later ICD codes.

This informatics method promises many benefits. Of course,
additional research is needed to determine its applicability to
other diseases.

Conclusions
Although a common disorder (N=6 million Americans), NVAF
is often underprophylaxed for thromboembolic events that may

lead to strokes. Critical evidence may be found in patients’
EHRs to aid in anticoagulation decision-making. Stroke rates
of untreated patients with a CHA2DS2-VASc of ≥2 in our study
were 4.44%, and of these, approximately 6% will die within 1
year. Treatment dramatically reduces one’s odds of a stroke to
<0.5% on average.

Our structured-plus-unstructured (NLP) method identified 36.3%
additional true NVAF cases (P<.001) compared with the
structured data alone. Extrapolating to the US population using
the 63 million people in the Optum and Truven populations
allowed us to predict that in just the first-year implementation
of this system, it could prevent 176,537 strokes and 10,575
deaths and save the nation >US $13.5 billion dollars.

Moreover, this bio-surveillance method and preparedness, in
general, may be useful for the discovery and treatment of many
other disorders, and require further research with different
diseases. Automated tools in partnership with clinicians have
the potential to significantly improve adherence to established
clinical guidelines and to precision medicine.
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