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Abstract

Background: Viewing their habitual smoking environments increases smokers’ craving and smoking behaviors in laboratory
settings. A deep learning approach can differentiate between habitual smoking versus nonsmoking environments, suggesting that
it may be possible to predict environment-associated smoking risk from continuously acquired images of smokers’ daily
environments.

Objective: In this study, we aim to predict environment-associated risk from continuously acquired images of smokers’ daily
environments. We also aim to understand how model performance varies by location type, as reported by participants.

Methods: Smokers from Durham, North Carolina and surrounding areas completed ecological momentary assessments both
immediately after smoking and at randomly selected times throughout the day for 2 weeks. At each assessment, participants took
a picture of their current environment and completed a questionnaire on smoking, craving, and the environmental setting. A
convolutional neural network–based model was trained to predict smoking, craving, whether smoking was permitted in the current
environment and whether the participant was outside based on images of participants’ daily environments, the time since their
last cigarette, and baseline data on daily smoking habits. Prediction performance, quantified using the area under the receiver
operating characteristic curve (AUC) and average precision (AP), was assessed for out-of-sample prediction as well as personalized
models trained on images from days 1 to 10. The models were optimized for mobile devices and implemented as a smartphone
app.

Results: A total of 48 participants completed the study, and 8008 images were acquired. The personalized models were highly
effective in predicting smoking risk (AUC=0.827; AP=0.882), craving (AUC=0.837; AP=0.798), whether smoking was permitted
in the current environment (AUC=0.932; AP=0.981), and whether the participant was outside (AUC=0.977; AP=0.956). The
out-of-sample models were also effective in predicting smoking risk (AUC=0.723; AP=0.785), whether smoking was permitted
in the current environment (AUC=0.815; AP=0.937), and whether the participant was outside (AUC=0.949; AP=0.922); however,
they were not effective in predicting craving (AUC=0.522; AP=0.427). Omitting image features reduced AUC by over 0.1 when
predicting all outcomes except craving. Prediction of smoking was more effective for participants whose self-reported location
type was more variable (Spearman ρ=0.48; P=.001).

Conclusions: Images of daily environments can be used to effectively predict smoking risk. Model personalization, achieved
by incorporating information about daily smoking habits and training on participant-specific images, further improves prediction
performance. Environment-associated smoking risk can be assessed in real time on a mobile device and can be incorporated into
device-based smoking cessation interventions.

(J Med Internet Res 2021;23(11):e27875) doi: 10.2196/27875
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Introduction

Background
Cigarette smoking is the leading cause of preventable deaths in
the United States [1], and tobacco use is responsible for more
than 7 million annual deaths worldwide [2]. Although most
smokers are motivated to quit [3], fewer than 10% of quit
attempts are successful [4], which has motivated ongoing efforts
to develop more effective cessation strategies.

New, mobile device-based cessation interventions have
improved 6-month [5] and 12-month [6] cessation outcomes,
and success rates can be further improved [7] by tailoring
interventions to individual users and momentary contexts, such
as the user’s geographic location [8]. This paradigm has been
formalized as the just-in-time adaptive intervention (JITAI)
[9,10], wherein a cessation support system continuously
monitors contextual factors through ecological momentary
assessment (EMA; ie, repeated self-reporting), passive sensing,
or a combination of the two, then provides context-sensitive
support to smokers at times when it is most needed. By
monitoring user physiology [11-14], geographic location [8,15],
and recent smoking events [15], a cessation support system can
estimate smoking risk from moment to moment and then
intervene when the estimated risk is high.

However, most smoking cessation interventions neglect an
important contributor to smoking behaviors—the smoker’s
external environment. A growing body of evidence, collected
in both laboratory and real-world settings, suggests that smoking
risk is affected not only by internal factors but also by the
smoker’s current environmental context. For example, images
of personal smoking environments increase smoking behaviors
and self-reported craving [16-19] and activate neural circuits
associated with craving, contributing to subsequent smoking
behaviors [20]. Consistent with these findings, a recent study
showed that self-reported environmental conditions, such as
being around other smokers or in a place where smoking is
permitted, were stronger predictors of smoking lapse than
internal states (eg, smoking urge) [21].

Current technologies can now quantify the effects of
environmental factors on real-world smoking behaviors [22].
Wearable cameras and mobile devices allow images of daily
environments to be acquired near continuously at low cost
[23-26], and computer vision models, now highly accurate and
optimized for mobile devices [27], can identify environmental
features in these images. These features can then be linked to
smoking and craving, along with other behaviors or outcomes
of interest. This process is objective, does not require manual
annotation of images, and scales to large data sets and study
populations.

In a previous study, we demonstrated that computer vision could
distinguish between daily environments where smokers
commonly smoke and those where they rarely smoke. Using

the approach outlined above, we also uncovered specific objects
and settings associated with smoking versus nonsmoking
environments [28]. These findings suggest that environmental
features monitored via computer vision may provide important
contextual information that can improve the prediction of
momentary smoking risk. However, these two extremes, known
smoking and nonsmoking environments, do not reflect the full
range of environments that smokers encounter in their daily
lives.

Objective
In this study, we collected a representative sample of images
of smokers’daily environments through photograph-augmented
EMA (photoEMA). In each assessment, participants
self-reported recent smoking and their current craving level and
then took a picture of their environment. A mobile-optimized
convolutional neural network was trained to predict smoking
risk and other outcomes relevant to smoking (craving, whether
smoking was permitted in the current environment, and whether
the participant was outside) based on environmental images and
other participant-specific features. We hypothesized that
out-of-sample prediction would be effective, providing a basis
for an environment-aware JITAI, and that prediction
performance could be improved through model personalization,
in which images from a given participant are used to refine
model predictions for that participant. We also aim to understand
how model performance varies by location type, as reported by
participants. Our final prediction model, QuitEye, was deployed
on a mobile device and can assess environment-associated
smoking risk and craving in real time to support
environment-aware smoking cessation interventions.

Methods

Study and Participants
Recruitment and all study procedures were approved by the
Duke University Health System Institutional Review Board,
and written consent was obtained from all participants. Smokers
(≥10 cigarettes per day for ≥2 years) aged ≥18 years were
recruited from the Durham, North Carolina area. Participants
were recruited from the community for a study of smoking
behavior via printed and web advertisements and
word-of-mouth. Participants were excluded if they regularly
used noncigarette tobacco products (eg, e-cigarettes); currently
used smoking cessation medications; planned to quit smoking,
otherwise altered their smoking pattern, left the study area or
anticipated a major life event during the study; had current or
recent alcohol or drug abuse problems; or were pregnant,
breastfeeding, or planning to become pregnant during the study.
Eligible participants completed an initial visit to (1)
biochemically verify their smoking status (ie, carbon monoxide
breath test) and test for illicit drug use, (2) test for pregnancy,
and (3) complete questionnaires on nicotine dependence and
tobacco use history. Participants who met all eligibility
requirements (n=52) then downloaded the photoEMA app
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(Metricwire) to their smartphone and were trained on its use.
Following the 14-day photoEMA period, participants completed
a follow-up visit during which an interview was conducted to
assess drug and alcohol use, tobacco purchasing, and any other
events that might have affected smoking (eg, illness) or daily
living (eg, death in the family) patterns. Participants were
compensated for up to US $350 in total, including daily (US
$5) and weekly (US $50) incentives for high photoEMA
completion. All procedures were observational, and no
randomization or intervention was performed.

PhotoEMA Collection
Participants completed the photoEMA assessments for 14 days.

Random Prompts
Participants specified their typical wakeful hours during the
screening. They were prompted six times daily at randomly
spaced intervals. The average interval between prompts was
120 minutes in duration. At each assessment, participants rated
their current levels of urge to smoke (1 item) and affect and
stress (11 items; not reported here). In addition, they captured
a time-stamped image of their current location. Finally, they
were prompted to label the location with a prepopulated list of
common locations (eg, bedroom, office, car, or park), other
location information (eg, indoors or outdoors and whether
smoking was permitted), current activity (eg, working or running
errands), social environment (eg, presence of others), and recent
alcohol and caffeine use.

Smoking-Initiated Assessments
Participants were also instructed to complete assessments each
time they smoked. They were asked how many cigarettes they
smoked in this location on this occasion and all items from the
random prompt assessments.

Across Prompt Types
Participants were instructed to delay responding if they were
in situations or locations where responding to, or initiating
prompts, would be distracting (eg, in a meeting) or dangerous
(eg, while driving). Across assessments, participants were asked
to compose pictures to avoid including other people but to
otherwise leave environments as they are.

Craving data were dichotomized based on the median
self-reported craving for all participants. Self-reported craving
of a moderate or lower level was coded as negative, and
self-reported craving of quite a bit or higher level was coded
as positive. Other outcomes (smoking, whether smoking was
permitted, and whether the participant was outside) were binary;
therefore, no binarization was required.

Convolutional Neural Network Model
QuitEye is based on MobileNetV2, a convolutional neural
network architecture optimized for mobile devices [27]
pretrained on ImageNet [29]. QuitEye also incorporates the
following additional information: (1) participant age and sex,
(2) known smoking locations inside and outside the home as
indicated by self-report at baseline, (3) time since the last
cigarette, (4) time of day and day of the week, and (5) a
participant-specific indicator variable (in the longitudinal models
only).

To determine the impact of each of these elements on prediction
performance, we conducted ablation studies in which models
that did not incorporate a given element were also trained and
evaluated. For example, we trained a model without age and
sex to assess the impact of these factors on prediction
performance, and to estimate performance for a possible
deployment in which these were not available. Models that did
not incorporate image features were also trained and evaluated
to determine the impact of the images on prediction
performance.

QuitEye is a multi-task architecture that jointly predicts four
binary outcomes: smoking, craving, whether smoking is
permitted, and whether the participant is outside. Prediction of
whether the participant is outside was included both to
contextualize other performance figures and because inside or
outside status is associated with smoking behaviors. Nonimage
features were concatenated with image features from the global
pool layer of MobileNetV2, and a single hidden neural network
layer (rectified linear unit activation) was applied. Nonimage
features were again concatenated to the output of this layer, and
a second fully connected layer (sigmoid activation) was then
used to predict each of the four binary outcomes. The QuitEye
architecture is shown in Figure 1.
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Figure 1. Diagram of QuitEye, which extracts image features using the MobileNetV2 convolutional neural network, then predicts smoking status,
craving, whether smoking is permitted, and whether the participant is outside based on a combination of image features and additional data collected
from participants with a mobile device.

Training and Evaluation
QuitEye was trained using Tensorflow v1.15 in Python v3.7 on
a single Titan XP GPU. MobileNetV2 parameters were
initialized to values learned on ImageNet [29], and all
parameters were fine-tuned. Two training and evaluation
procedures were used to evaluate out-of-sample performance
(ie, out-of-the-box performance, without first learning from
images from a given participant) and personalized model
performance (ie, after learning from a subset of that participant’s
images).

Out-of-sample performance was assessed by training and
evaluating the model using nested cross-validation [30] with
five outer folds and five inner folds. In the nested
cross-validation procedure, out-of-sample performance was
evaluated on each outer fold after developing the model using
data from the remaining folds. In each development set, an inner
cross-validation procedure was used to determine the optimal
hyperparameter settings.

Personalized model performance was assessed by developing
the model with data from all participants from days 1 to 10,

then evaluating it on data from days 11 to 14. Images used in
model development were divided at random into training (80%)
and validation (20%) sets.

Hyperparameters included the width of the hidden layer (Figure
1), hidden layer dropout rate, and learning rate. Performance
was evaluated using the area under the receiver operating
characteristic curve (AUC) for each of the four prediction tasks.

Additional models were trained using the procedures outlined
above to quantify the impact of additional (nonimage) features
on performance. Features were categorized as (1) baseline
information, including participant demographics and smoking
habits; (2) information that could be collected via mobile
devices, including the time elapsed since the participant last
smoked and the time of day; and (3) a unique participant
identifier, which was incorporated as a categorical feature in
the personalized models only. Including this identifier adds
participant-specific parameters to the model, allowing
predictions to be explicitly personalized. However, even when
this identifier is omitted, the personalized model development
scheme (ie, training on days 1-10 from all participants) allows
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the model to learn from each participant’s previously visited
locations when predicting their current risk.

Mobile Device Implementation (QuitEye)
A nonpersonalized (out-of-sample) model incorporating image
features only was implemented in TensorFlow Lite to allow
prediction via mobile devices. Other features were omitted so
that predictions could be made based on images only without
additional data collection. A prototype mobile app was built
using Flutter or Dart and tested on Google Pixel 3 (Android).
QuitEye is applied to individual frames from a live video feed
at a rate of approximately eight samples per second and is
configured to display smoking and craving predictions
corresponding to each frame.

Data Availability
The data sets analyzed in this study are not publicly available
because they contain images of participants’ personal daily

environments that cannot be deidentified. However, the code
supporting this work is available from the corresponding author
upon reasonable request.

Results

Demographics and Descriptive Statistics
Of the 77 individuals screened for the study, 52 (68%) were
eligible and consented to participate. Four participants were
withdrawn or lost to follow-up, and the remaining 48
participants completed the study. One participant completed
their study visits remotely because of in-person visit restrictions
related to COVID-19. Among the participants who completed
the study, a total of 8008 images were collected, 3648 (45.55%)
of which were from completed random prompts and 4360
(54.45%) of which were from completed smoking prompts.
Demographic characteristics, image details, and other descriptive
statistics are presented in Table 1.
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Table 1. Demographics and descriptive statistics (N=48).

ValuesCharacteristics

Demographics

Sex

32:16Female:male

32 (67)Female, n (%)

Age (years)

40.5 (31-49)Value, median (IQR)

19-64Value, range

Race, n (%)

31 (65)White

19 (40)Black or African American

1 (2)American Indian

1 (2)Native Hawaiian or Pacific Islander

Ethnicity, n (%)

46 (96)Not Hispanic or Latino

2 (4)Hispanic or Latino

Smoking history

Cigarettes per day (weekday)

15 (12-20)Value, median (IQR)

7-30Value, range

Cigarettes per day (weekend)

15 (14-20)Value, median (IQR)

10-30Value, range

Fagerstrom test of nicotine dependence

6 (4-7)Value, median (IQR)

2-9Value, range

Images

Total images taken

163 (117-200)Value, median (IQR)

63-406Value, range

Images when smoking

87 (67-132)Value, median (IQR)

25-322Value, range

Images when craving

58 (19-99)Value, median (IQR)

1-210Value, range

Images when smoking permitted

122 (96-160)Value, median (IQR)

25-388Value, range

Images when outside

45 (20-78)Value, median (IQR)

3-183Value, range
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Model Performance
Without personalization (out-of-sample performance), QuitEye
predicted smoking with AUC=0.723 and average precision
(AP)=0.785, craving with AUC=0.522 and AP=0.427, whether
smoking was permitted with AUC=0.815 and AP=0.937, and
whether the participant was outside with AUC=0.929 and

AP=0.922. With personalization, performance was substantially
improved: QuitEye predicted smoking with AUC=0.827 and
AP=0.882, craving with AUC=0.837 and AP=0.789, whether
smoking was permitted with AUC=0.932 and AP=0.981, and
whether the participant was outside with AUC=0.977 and
AP=0.956 (Figures 2 and 3).

Figure 2. Receiver operating characteristic curves for each of the four outcomes for both the nonpersonalized (out-of-sample) and personalized
(longitudinal) models. AUC: area under the receiver operating characteristic curve.
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Figure 3. Precision recall curves for each of the four outcomes for both the nonpersonalized (out-of-sample) and personalized (longitudinal) models.

Image features were critical to these performance figures for
all outcomes except craving. In the nonpersonalized
(out-of-sample) models, removing the image features lowered
AUC by 0.221 when predicting smoking, by 0.229 when
predicting whether smoking was permitted, and by 0.253 when
predicting whether the participant was outside but by only 0.027
when predicting craving. In the personalized (longitudinal)
models, removing the image features lowered AUC by 0.192
when predicting smoking, by 0.168 when predicting whether
smoking was permitted, and by 0.178 when predicting whether
the participant was outside but increased AUC by 0.034 when
predicting craving (Table 2).

In the out-of-sample models, baseline information about
household smoking locations improved the prediction of craving
(ΔAUC=0.050) and whether smoking was permitted
(ΔAUC=0.020), but other nonimage features had less impact.
Surprisingly, knowing the time since the last cigarette did not

improve the prediction of smoking (ΔAUC=−0.014) or craving
(ΔAUC=−0.026; Table 2). Performance among individual
participants when predicting smoking was highly correlated
with performance predicting whether smoking was permitted
(Spearman ρ=0.55; P<.001), whereas correlations between other
pairs of outcomes were not statistically significant.

In the personalized models, the participant identifier
substantially improved the prediction of craving (ΔAUC=0.070),
and baseline information about smoking locations outside of
the household slightly improved the prediction of craving
(ΔAUC=0.013); however, nonimage features had little effect
on performance (ΔAUC<0.007). Similar to the out-of-sample
models, performance among individual participants when
predicting smoking was highly correlated with performance
predicting whether smoking was permitted (r=0.71; Spearman
ρ<0.001). However, this was not the case for any other pairs of
outcomes.
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Analyses of model calibration showed that outcome probabilities
predicted by QuitEye were consistent with true outcome rates,
except when predicting craving via the out-of-sample model

(Figure 4). This suggests that the predicted smoking probability
reflects the true environment-associated smoking probability.

Table 2. Model performance (area under the receiver operating characteristic curve) before and after removal of specific data elements.

Area under the receiver operating characteristic curve (Δa)Model performance

OutsideSmoking permittedCravingSmoking

Out-of-sample models

0.949 (N/A)0.815 (N/A)0.522 (N/A)0.723 (N/Ab)Base model (all features)

0.696 (−0.253)0.586 (−0.229)0.495 (−0.027)0.502 (−0.221)Images

0.952c (0.002)0.810 (−0.005)0.542 (0.021)0.729 (0.006)Demographics

0.944 (−0.005)0.819 (0.004)0.548 (0.026)0.737 (0.014)Time since last cigarette

0.945 (−0.004)0.806 (−0.008)0.553 (0.032)0.726 (0.003)Time of day, weekday or weekend

0.950 (0.001)0.795 (−0.020)0.472 (−0.050)0.735 (0.012)Household smoking locations

0.948 (−0.001)0.812 (−0.003)0.513 (−0.009)0.717 (−0.006)Other smoking locations

Longitudinal models

0.977 (N/A)0.932 (N/A)0.837 (N/A)0.827 (N/A)Base model (all features)

0.799 (−0.178)0.764 (−0.168)0.871 (0.034)0.635 (−0.192)Images

0.976 (−0.001)0.929 (−0.003)0.836 (−0.002)0.824 (−0.002)Demographics

0.975 (−0.002)0.938 (0.006)0.840 (0.003)0.828 (0.002)Time since last cigarette

0.975 (−0.002)0.929 (−0.003)0.844 (0.007)0.831 (0.004)Time of day, weekday or weekend

0.976 (−0.001)0.925 (−0.007)0.836 (−0.002)0.826 (0.000)Household smoking locations

0.976 (−0.001)0.929 (−0.003)0.824 (−0.013)0.824 (−0.003)Other smoking locations

0.975 (−0.002)0.926 (−0.006)0.767 (−0.070)0.829 (0.002)Personal identifier

aChange in the area under the receiver operating characteristic curve compared to the base model.
bN/A: not applicable.
cItalics indicate the best performing model for that outcome.

Figure 4. Calibration curves for the nonpersonalized (out-of-sample; left panel) and personalized (longitudinal; right panel) models. Model-predicted
probabilities are aggregated by percentile (N=6 bins), then compared with the proportion of positive outcomes in each bin. Good calibration implies
that model predictions are an accurate estimate of the true probability of a positive outcome.
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Effect of Location on Performance
Analyses of model performance by self-reported location type
showed that QuitEye is more effective in some locations than
others. For the nonpersonalized (out-of-sample) model (Figure
5), smoking prediction was most effective at work
(AUC=0.848), followed by stores or restaurants (AUC=0.806).
Across all prediction tasks, prediction tended to be less effective
for images taken within vehicles. Many of these images showed
outside scenery as viewed from the vehicle, leading the model
to incorrectly predict that the participant was outside
(AUC=0.603) rather than inside the vehicle.

Improvements in performance from personalized training also
varied by location (Figures 5 and 6). AUC was improved most

for outdoor home locations—prediction of smoking was
improved by ΔAUC=0.230 in these locations, and prediction
of whether smoking was permitted was improved by
ΔAUC=0.435.

Smoking prediction was more effective for participants whose
self-reported location type was more variable (r=0.48; P=.001),
quantified as the entropy of self-reported location type. This
effect was not observed in other prediction tasks. Smoking
prediction was also more effective for those with higher mutual
information between smoking and self-reported location type
(r=0.53; P<.001); the mutual information quantifies the degree
to which location type provides information about smoking
behavior (Figure 7). This effect was not observed in other
prediction tasks.

Figure 5. Outcomes and model performance by location type (out-of-sample). The bar plots indicate the proportion of positive outcomes (with SE) by
self-reported location type, and the line plots indicate model performance (average precision) for images taken in each location. NA: prediction
performance is not applicable, because there is no variability in the outcome in this location type.
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Figure 6. Outcomes and model performance by location type (personalized). The bar plots indicate the proportion of positive outcomes (with SE) by
self-reported location type, and the line plots indicate model performance (average precision) for images taken in each location. NA: prediction
performance is not applicable, because there is no variability in the outcome in this location type.

Figure 7. Effect of location variability on performance. Higher performance of smoking risk prediction among individual participants is associated
with higher variability in self-reported locations (left panel) and higher mutual information between self-reported location type and smoking status (right
panel). AUC: area under the receiver operating characteristic curve.
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Mobile Implementation Screenshots of real-time smoking and craving risk prediction
using the QuitEye mobile app are presented in Figure 8.

Figure 8. Mobile implementation of QuitEye. Screenshots of real-time smoking and craving risk prediction via the QuitEye mobile app in a high
smoking risk environment (left panel) and a low smoking risk environment (right panel).

Discussion

Principal Findings
A growing body of knowledge suggests that habitual smoking
environments promote craving and smoking behaviors. Our
previous study demonstrated that computer vision could
distinguish between habitual smoking and nonsmoking
environments, leading us to hypothesize that real-world smoking
risk has important, quantifiable environmental correlates that
can be leveraged to predict smoking behaviors more effectively
in real time. This study confirms this hypothesis: QuitEye
effectively predicted smoking status and associated outcomes
across the full range of environments encountered by our sample
of smokers in their daily lives. By learning from other smokers’
behaviors, our models can scan a smoker’s environment to
predict their current smoking risk. QuitEye also predicted
whether smoking was permitted in the current location and
whether the smoker was inside or outside, providing important
context relevant to smoking cessation interventions. The results
show that knowledge of recent smoking and daily smoking
habits (eg, time of day) improved these predictions, but it is the
images themselves that contributed most to good prediction
performance for all outcomes except craving.

Importantly, these results provide additional evidence that the
environmental correlates of smoking vary among smokers. Our

nonpersonalized models achieved good out-of-sample prediction
performance, suggesting that environmental factors are shared
among smokers more than they are distinct. However, model
personalization led to statistically significant improvements in
smoking risk prediction, implying that there are meaningful
environmental correlates of smoking behaviors that are specific
to individual smokers.

To achieve personalization in this study, smokers had to
self-report their smoking behaviors for 10 days while collecting
images of their daily environments. These data were then used
to refine the prediction model. This process is burdensome but
may be particularly important for smokers whose daily
environments are atypical or whose smoking behaviors do not
follow common patterns. If this is not possible, a lesser degree
of personalization can be achieved by asking smokers to provide
information about the locations where they commonly smoke.
Alternatively, models can be iteratively improved during use,
for example in a mobile app, by prompting the user to confirm
or deny smoking predictions made by the model.

The ability to predict environment-associated smoking risk in
real time unlocks a range of environment-focused smoking
cessation interventions. Real-time risk prediction can be used
to trigger a JITAI [9] in which support is provided to smokers
via a mobile device at the time and place when it is most needed
[31]. Information about environment-associated risk can be
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combined with information about the smoker’s internal state,
provided by wearable devices, to obtain a more comprehensive
estimate of smoking risk and craving. We anticipate that
information about the external environment would enhance the
prediction of smoking risk from other data streams (eg, heart
rate from wearable devices), but the degree to which these data
sources complement one another has yet to be explored.
Ultimately, we envision a system in which wearable eyewear
(eg, smart glasses) continuously acquires images of the user’s
external environment, alerts them with visual feedback when
high-risk environments are detected, and suggests appropriate
coping strategies for a given context. As augmented reality
technologies mature [22], this paradigm can be used not only
to support smoking cessation but also to understand and respond
to environmental correlates of a broader range of health-related
symptoms and behaviors.

However, several other intervention types are possible. For
example, QuitEye could be used to identify environmental
correlates of smoking risk in a smoker’s daily environment
before a quit attempt, allowing them to restructure their
environments or daily activity patterns to increase the likelihood
of quitting successfully. As QuitEye can predict the smoking
risk associated with any image, including images of locations
not yet visited, it can help smokers preemptively avoid visiting
prosmoking environments. During a quit attempt, for instance,
a smoker might choose to visit a restaurant that has a lower
smoking risk, as determined based on images available on the
internet.

Although images improved the prediction of smoking
substantially, they did not improve the prediction of craving.
To the contrary, our best-performing craving prediction models
do not incorporate image features, and out-of-sample prediction
performance for craving was poor. Our laboratory research
suggests that habitual smoking environments do provoke
craving, but this study’s results do not provide additional support
for this finding. Consequently, the role of environmental factors
in the emergence of craving, or in the progression from craving
to smoking itself, remains unclear. These conflicting findings
may be partly owing to our EMA procedure. At the time of
smoking, participants were asked to report their craving before
smoking. Thus, the corresponding image taken at the time of
smoking may not match the external environment corresponding
to self-reported craving. However, in a follow-up analysis, we
attempted to predict craving only from random prompts, and
similar AUC values were observed. Further studies are needed
to examine the environmental correlates of craving more
thoroughly. In particular, continuous image acquisition (via
wearable cameras or smart glasses) may provide additional
environmental or social cues that are relevant to craving but not
captured by a single image. Alternatively, general craving may
be driven more by internal (eg, low plasma nicotine levels and
negative affect) rather than external factors.

As shown in Figure 7, smoking risk prediction was more
effective for participants whose locations were more variable
and for whom location type provided more information about
smoking behavior. Some participants’ smoking environments
were mostly distinct from their other daily environments,
allowing our models to identify a strong relationship between

environmental factors and smoking status. Other participants
tended to smoke in the same environments where they spent
most of their time, making it difficult to identify robust
environment-smoking associations. Notably, this difference
was not associated with demographic factors in this study. More
studies are needed to understand these groups and determine
whether there are identifiable subpopulations of smokers among
whom QuitEye is particularly effective or ineffective.

Limitations
Although EMA provides more accurate smoking tracking than
other self-report methods [32], smoking events may have been
omitted or incorrectly reported. Our models predicted
self-reported smoking, which may differ from true smoking
events. Although our EMA procedure was designed to be brief
and minimally burdensome, picture-taking and other EMA
requirements may have increased the number of smoking events
omitted by our participants. Furthermore, some EMA responses
may not have been completed promptly upon smoking, thus
reducing self-report validity. Other outcomes were also
self-reported and subject to participant error or omission. As
previously discussed, our EMA asked participants to self-report
their craving before smoking in the smoking-initiated prompts,
which may have introduced additional errors or variability.

In addition to smoking-initiated prompts, participants completed
a total of six system-initiated prompts at randomly selected
times throughout the day. More frequent prompts would have
provided a more comprehensive sample of participants’ daily
environments, but this might have also resulted in reduced EMA
adherence. Camera design and image quality varied among
participants, who used their own smartphones to take pictures.
Variability in image quality can be reduced by acquiring images
using wearable cameras or smart glasses. This approach would
also allow images to be captured throughout the day, providing
complete information about the participants’daily environments.

Future Directions
This study did not include a quit attempt. The results showed
that QuitEye predicts smoking risk effectively outside of a quit
attempt, but its ability to predict lapses and relapse after quitting
is unknown. Other (nonimage) data streams from mobile devices
have been used to predict lapse risk [21], and we anticipate that
QuitEye would provide complementary information about
environment-associated risk factors. In future work, we will
explore the relationship between the environmental correlates
of smoking before quitting and the environmental correlates of
lapse and relapse.

Owing to privacy concerns, participants were asked to avoid
taking pictures of other people. However, this restriction may
have prevented us from identifying interpersonal triggers and
other important social determinants of smoking. The ability to
recognize these and other dynamic environmental features is
an important advantage of our approach compared with other
sources of environmental information, such as GPS. In future
work, we hope to explore the use of computer vision to identify
the social determinants of smoking.

Now that QuitEye has been implemented as a mobile app, we
can prospectively evaluate the real-time prediction of
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environment-associated risk and develop environment-aware
mobile health cessation interventions. These interventions will
incorporate information about the environment in addition to
user physiology and other information with recognized
predictive values [11-15]. An important goal of this study is to
quantify the contribution of each data source (eg, physiology
vs environment) to overall prediction performance. Initial
interventions incorporating QuitEye will use smartphone
cameras to identify environment-associated smoking risks in
smokers’daily environments. Later interventions will use smart
eyewear to continuously acquire images of the smoker’s
environment and provide support when high-risk environments
are encountered. An important component of this study will be
to evaluate the benefit of just-in-time support versus the cost
of false alarms, which will allow us to select an appropriate risk
threshold for triggering the intervention.

Conclusions
Images of daily environments can be used to predict smoking
risk effectively. Our risk prediction system, QuitEye, also
predicts craving, whether smoking is permitted, and whether
the participant is outside, providing important contextual
information that could inform JITAIs for smoking cessation.
Performance can be further improved through personalization,
achieved by (1) fine-tuning QuitEye with images of a given
smoker’s daily environment or (2) asking participants to provide
information about their habitual smoking environments. QuitEye
has been optimized for mobile devices and implemented as a
mobile app, allowing environment-associated smoking risk to
be continuously assessed in a mobile device-based smoking
cessation intervention.
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