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Abstract

Background: Assessing patient-reported outcomes (PROs) through interviews or conversations during clinical encounters
provides insightful information about survivorship.

Objective: This study aims to test the validity of natural language processing (NLP) and machine learning (ML) algorithms in
identifying different attributes of pain interference and fatigue symptoms experienced by child and adolescent survivors of cancer
versus the judgment by PRO content experts as the gold standard to validate NLP/ML algorithms.

Methods: This cross-sectional study focused on child and adolescent survivors of cancer, aged 8 to 17 years, and caregivers,
from whom 391 meaning units in the pain interference domain and 423 in the fatigue domain were generated for analyses. Data
were collected from the After Completion of Therapy Clinic at St. Jude Children’s Research Hospital. Experienced pain interference
and fatigue symptoms were reported through in-depth interviews. After verbatim transcription, analyzable sentences (ie, meaning
units) were semantically labeled by 2 content experts for each attribute (physical, cognitive, social, or unclassified). Two NLP/ML
methods were used to extract and validate the semantic features: bidirectional encoder representations from transformers (BERT)
and Word2vec plus one of the ML methods, the support vector machine or extreme gradient boosting. Receiver operating
characteristic and precision-recall curves were used to evaluate the accuracy and validity of the NLP/ML methods.

Results: Compared with Word2vec/support vector machine and Word2vec/extreme gradient boosting, BERT demonstrated
higher accuracy in both symptom domains, with 0.931 (95% CI 0.905-0.957) and 0.916 (95% CI 0.887-0.941) for problems with
cognitive and social attributes on pain interference, respectively, and 0.929 (95% CI 0.903-0.953) and 0.917 (95% CI 0.891-0.943)
for problems with cognitive and social attributes on fatigue, respectively. In addition, BERT yielded superior areas under the
receiver operating characteristic curve for cognitive attributes on pain interference and fatigue domains (0.923, 95% CI 0.879-0.997;
0.948, 95% CI 0.922-0.979) and superior areas under the precision-recall curve for cognitive attributes on pain interference and
fatigue domains (0.818, 95% CI 0.735-0.917; 0.855, 95% CI 0.791-0.930).

Conclusions: The BERT method performed better than the other methods. As an alternative to using standard PRO surveys,
collecting unstructured PROs via interviews or conversations during clinical encounters and applying NLP/ML methods can
facilitate PRO assessment in child and adolescent cancer survivors.
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Introduction

Pediatric Cancer and Patient-Reported Outcomes
Innovative anticancer therapies have significantly improved the
5-year survival rates of pediatric and adolescent patients with
cancer in the United States [1-3]. However, toxic treatment
often causes long-term sequelae (eg, physical and psychological
morbidities and premature mortality [4-8]), which contribute
to poor patient-reported outcomes (PROs) and impaired quality
of life [8,9]. Poor PROs, such as fatigue, pain, psychological
distress, and neurocognitive problems, are prevalent in survivors
of cancer aged <18 years [10-12]. Approximately 50% of young
survivors of childhood cancer experience severe fatigue
[10,12,13] or pain [12,14], and both can worsen as survivors
become older [15]. Assessing PROs from survivors and
caregivers can complement clinical assessments, suggest
potential adverse medical events, and facilitate the provision of
appropriate interventions [16,17].

Unstructured PROs
Conventionally, PROs are collected from childhood survivors
of cancer during follow-up care using standard surveys with
prespecified content of PROs. Given busy clinic schedules,
survivors may be unable or unwilling to complete surveys.
Performing interviews or initiating conversations by clinicians
are alternative methods of collecting PROs. However, PROs
collected by this method are qualitative or unstructured in nature,
which requires specific techniques for data processing and
analysis. Natural language processing (NLP), a discipline of
linguistics, information engineering, and artificial intelligence,
initially designed for processing a large amount of natural
language data, provides an innovative avenue for PRO research
with potential clinical applications [18]. However, the validity
of applying this method to evaluate PROs in oncology is
understudied.

Application of NLP for PRO Analysis
NLP techniques have been applied to process unstructured or
nonquantitative clinical data in medical notes for classifying or
predicting health status (eg, risk of heart disease and stage of
cancer) through information extraction, semantic representation
learning, and outcome prediction [19]. Recently, NLP
applications have been extended to unstructured PRO and
symptom data stored in electronic medical records (EMRs)
[20,21]. A review study [22] found that most previous NLP
applications for unstructured PRO data largely focused on
rule-based classifications (eg, extracting prespecified keywords
or phrases from free text to identify cancer-related symptoms
[23]), followed by machine learning (ML) approach (eg,
conditional random field model [20], support vector machine
[SVM] [24], and boosting regression tree [25]) to analyze
associations with clinical outcomes.

The method of capturing the features of unstructured PROs is
an emerging area of research [26]. Compared with rule-based
extraction, the ML/deep learning–based NLP methods, including
the context-independent or static (eg, term frequency–inverse
document frequency [TF-IDF] [27], global vectors for word
representation [GloVe] [28], and Word2vec [29]), and
context-dependent or dynamic (eg, bidirectional encoder
representations from transformers [BERT]; [30]) distributed
representation methods are more suitable for processing
unstructured PROs. Typically, context-dependent methods can
capture the meaning of polysemous words, which substantially
improves the flexibility and validity of analyzing unstructured
PRO data.

Objective
To facilitate clinical decisions, our long-term goal is to collect
PROs from survivor-caregiver-clinician conversations and apply
NLP/ML methods to characterize meaningful PROs. Through
in-depth interviews with childhood survivors of cancer and
caregivers, this study evaluates the validity of using different
novel NLP/ML methods (Word2vec/ML and BERT) to
characterize 2 most common symptom domains (pain
interference and fatigue) in child and adolescent survivors of
cancer. The interview data were semantically labeled and coded
by PRO content experts as the gold standard to represent specific
symptom problems (defined as symptom attributes). In contrast
to the static methods (ie, Word2vec/ML), we hypothesize that
the use of dynamic methods (ie, BERT) would yield superior
model performance.

Methods

Study Participants
Study participants were survivors of pediatric cancer and their
caregivers recruited from the After Completion of Therapy
Clinic at St. Jude Children’s Research Hospital (St Jude
hereafter) in Tennessee, United States, between August and
December 2016. Eligible participants were identified from a
list of survivors scheduled for annual follow-up and confirmed
their eligibility through EMRs. We recruited survivors aged 8
to 17 years of age at annual follow-up, at least 2 years off
therapy, and at least 5 years from initial cancer diagnosis. We
excluded survivors who had acute or life-threatening conditions
and required immediate medical care. We recruited caregivers
who were the most knowledgeable of the survivor’s health status
and could speak or read English. Assent from survivors and
consent from caregivers was obtained. The research protocol
was approved by the institutional review board of St Jude.

In-Depth Interview and Data Abstraction
This investigation builds on our previous study that elucidated
the contents of 5 PRO domains (pain interference, fatigue,
psychological stress, stigma, and meaning and purpose) related
to pediatric cancer from survivors and caregivers [15]. We
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randomly assigned 2 domains to each survivor and 2 to 3
domains to each caregiver. PRO domains were assigned
randomly to each survivor and caregiver to elucidate PRO
contents from both survivors and caregivers rather than
comparing PRO discordances between dyadic participants.
Diagnostic and clinical information was abstracted from EMRs.
We designed separate interview guides (Multimedia Appendices
1 and 2) with probes for each PRO domain, audio-recorded the
interviews, transcribed interviews verbatim, and abstracted
meaningful and interpretable sentences (ie, “meaning units”)
[15].

Expert-Labeled Outcomes as the Gold Standard
We used the methods developed in our previous studies to code
the concepts of symptomatic problems collected from interviews
and assigned the concepts to specific attributes [15,31].
Specifically, we began with abstracting the sentences or
paragraphs collected from the interviews that are relevant to the
experiences with particular symptomatic problems, such as
presence, frequency, or intensity, and how these symptomatic
problems affect daily activities (defined as meaning units) and
then mapped the meaning units to analyzable, interpretable
formats that represent the contents of items included in the
Patient-Reported Outcomes Measurement Information System
(PROMIS) banks [32] (defined as meaningful concepts).
Subsequently, we labeled the meaningful concepts by distinct
concepts, including physical, cognitive, and social (defined as
attributes) concepts.

The associations among meaning units, meaningful concepts,
and corresponding attributes are illustrated in Multimedia
Appendix 3. For example, in the pain interference domain, when
a survivor stated that “Can’t play, and go outside when I have
a headache,” we mapped this meaning unit to the meaningful
concept “Hard to do sports or exercise when had pain,” and then
labeled this meaningful concept as the physical attribute. For
the fatigue domain, when a survivor stated that “It’s hard to get
my school work done when I’m tired,” we mapped this meaning
unit to the meaningful concept “Hard to keep up with
schoolwork” and then labeled this meaningful concept as the
cognitive attribute.

In addition, 2 PRO content experts (JLC and CMJ)
independently reviewed the content of each meaning unit
derived from the symptom domains and mapped each meaning
unit to the content of individual items listed in the PROMIS
pain interference and fatigue item banks [32]. In total, 391 and
423 meaning units representing pain interference and fatigue
domains, respectively, were included in the analysis, and each
meaning unit was labeled and coded as problematic symptoms
based on key attributes (physical, cognitive, social, and
unspecified). Discrepancies in the mapping process were
resolved by consensus between 2 senior investigators (CBF and
ICH). PROMIS has applied rigorous standards to develop a
comprehensive list of PRO items, therefore serving as a
foundation for evaluating PRO contents [33-37]. This mapping
process has been adopted in previous research to facilitate the
abstraction and mapping of qualitative data [38-40]. In this
study, the expert-labeled symptoms attributed to each meaning
unit were deemed the gold standard for testing the validity of
NLP/ML methods.

We evaluated the interrater reliability based on the raw
concordance rate (defined as the percentage of coded meaning
units that 2 coders provide concordant ratings), and Cohen κ
statistic (defined as the number of concordant ratings to the
number of discordant ratings while considering the agreement
that is expected by chance). In our study, raw concordance rates
were 88% for the pain interference domain and 86% for the
fatigue domain. Cohen κ statistic was 0.6 for both domains,
which is considered moderate or good reliability for coding
qualitative PRO data [41].

NLP/ML Pipeline
Figure 1 outlines the pipeline of NLP/ML methods consisting
of 2 key components: (1) extracting semantic features from the
unstructured PROs and (2) using expert-labeled attributes of
symptoms to validate NLP/ML–generated semantic features.
We used the Word2vec [29] and BERT [30] methods to create
multivariate semantic features (ie, word vectors) for each word
from the meaning units. The BERT method embeds deep neural
networks as a single step to perform abstraction and validation
for the semantic features of symptom data simultaneously,
whereas Word2vec/ML techniques involve 2 separate steps to
achieve these tasks (Figure 1 and Multimedia Appendix 4).
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Figure 1. The natural language processing and machine learning pipeline to analyze unstructured patient-reported outcomes data. BERT: bidirectional
encoder representations from transformers; PROs: patient-reported outcomes; SVM: support vector machine; XGBoost: extreme gradient boosting.

BERT (Base, Uncased) for PRO Feature Extraction
and Validation
The BERT (base, uncased; or the BERT hereafter), our primary
interest in the NLP method, consists of the multilayer neural
networks known as encoder transformers, and each generates
context-dependent word features by weighting the features of
each word with the other words in the meaning units [30,42].
We used 12 stacked layers of encoders to explore phrase-level,
syntactic, semantic, and contextual information [42].
Specifically, we used the semantic features pretrained by articles
published in BooksCorpus and Wikipedia to generate general
word semantic meanings (pretrained model in Multimedia
Appendix 5 [30,43]). The BERT model is augmented with a
classification component, consisting of a feed-forward neural
network and a softmax layer [44] to classify unstructured PROs
(fine-tuning process in Multimedia Appendices 5 and 6). This
augmented model was fine-tuned by the meaning units collected
from interviews, which adapts the sentence contextual
representation in encoders to the symptom-related contexts, and
the parameters in the classification component were estimated
simultaneously in one step.

Specifically, we used the pretrained model (BERT [base,
uncased]) from the huggingface model repository, which was
a pytorch implementation of the base BERT model [30]. The
pretrained model is essentially based on the text passages
included in BooksCorpus [43] and the English Wikipedia [30].
The weight parameters in the pretrained BERT model were
further fine-tuned with the texts in the meaning units from our
interview data when the BERT model was used for the
downstream classification task of the meaning units through
the BertForSequenceClassification object in the
pytorch_transformers module. The use of BooksCorpus and
Wikipedia is appropriate for our survivors of pediatric cancer

as both contain comprehensive generic terms that capture the
heterogeneous health status experienced by varying survivors
of cancer, ranging from healthy (no late effects and no
symptoms) to ill (severe late effects with severe symptoms).

Word2vec Method for PRO Feature Extraction and
ML for Validation
We used Word2vec, our secondary interest in the NLP method,
to extract semantic features based on the similarity of words in
meaning units. Embedded with a one-level neural network model
(Multimedia Appendix 7), Word2vec defines the semantic
similarity across different words by using a specific word to
search and connect other words nearby, given the hypothesis
that a word’s meaning is given by adjacent words [45,46]. We
adopted the semantic features already pretrained by English
articles from Wikipedia [47,48] to generate and fine-tune the
semantic meanings of the meaning units through our data (Figure
1; Multimedia Appendices 6 and 7).

We used 2 ML methods, including the extreme gradient boosting
(XGBoost) [25] and the SVM [24], to validate the semantic
features derived from Word2vec in associations with the
expert-labeled symptom attributes. ML modeling was used to
account for high dimensional structures of semantic features
created by Word2vec [29] (Multimedia Appendix 7).
Specifically, XGBoost is a robust regression tree approach that
includes multiple simple decision trees to iteratively refine the
model performance by minimizing the difference between the
expected and expert-labeled outcomes. In contrast, SVM is a
classical ML algorithm that aims to find a decision boundary
to separate the semantic features corresponding to the
expert-labeled attributes by minimizing classification errors.
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Alternative Methods for PRO Feature Extraction
In addition to the BERT, Word2vec/SVM, and
Word2vec/XGBoost models, we conducted pilot analyses to
evaluate 6 alternative NLP/ML models, including the
TF-IDF/SVM, GloVe/SVM, and GloVe/XGBoost, as well as
3 extended BERT models (BioBERT, BlueBERT, and Clinical
BERT). Briefly, the TF-IDF is an automatic text analysis that
accounts for the number of times a word appears in a document
and the number of documents that contain the word [27]. The
GloVe method identifies the global word similarity over several
meaning units (ie, our unit of analysis) or the entire interview
[28]. The 3 alternative BERT models for pilot testing included
the BioBERT (base, cased and trained on PubMed 1M) [49],
BlueBERT (base, uncased and trained on PubMed) [50], and
Clinical BERT (base, cased, initialized from BioBERT and
trained on all MIMIC-III notes) [51].

As demonstrated in Multimedia Appendix 8, the areas under
the precision-recall (PR) curves for the BERT model were
significantly superior to the TF-IDF/SVM, GloVe/SVM, and
GloVe/XGBoost (all attributes over 2 symptom domains) and
were significantly superior to the BioBERT, BlueBERT, and
Clinical BERT models (especially physical and cognitive
attributes in the pain interference domain). In addition, the use
of GloVe/SVM, Word2vec/SVM, and Word2vec/XGBoost
methods resulted in statistically nonsignificant differences.
Model performances based on other evaluation metrics were
reported in Multimedia Appendices 9 and 10. As the main
purpose of this study was to identify the NLP/ML model with
optimal performance for symptom assessment, we focused on
comparisons between the BERT model (as a theoretically
optimal method) and the Word2vec model accompanied by
SVM and XGBoost (as a suboptimal method).

Model Training and Evaluation
We used a 5-folder nested cross-validation approach
(Multimedia Appendix 11) to address the issue of small sample
size, including the components of partitioning the training,
validation and test sets, determining the tuning parameters in
ML methods, and generating validation results. Given the
4-attribute classification (physical, cognitive, social, and
unclassified) on each meaning unit, we used a one-versus-rest
binary classifier to classify one attribute (physical, cognitive,
or social) versus the remaining attributes (the reference) for
model training and evaluation [52].

We used standard metrics to test the validity of NLP/ML models,
including precision (ie, positive predictive value), sensitivity
(ie, recall), specificity, accuracy (summarizing true positive and
true negative), F1 score (summarizing sensitivity and positive
predictive values), areas under the receiver operating
characteristic (ROC) curve, and areas under the PR curve. In
the case of imbalanced data (ie, a limited number of meaning
units labeled as attribute presence versus that of the reference),
the PR curve is more suitable than the ROC curve as the former
focuses on precision and sensitivity related to true positive cases
[53]. On the basis of a recommendation [53], we determined
the baseline threshold for each attribute of a symptom domain
as the percentage of meaning units that were rated by 2 coders
or content experts (ie, the gold standard for labeling true
presence of attribute), which represents the precision of a
random guess classifier.

Our NLP framework benefits from the transfer learning
framework, which uses a huge amount of related data in the
public domains to improve the ML application with regular
sample sizes. Specifically, our Word2vec and BERT models or
algorithms were pretrained by millions of health-related
information in the public domains (eg, Wikipedia). Our meaning
units were only used to fine-tune or improve the pretrained
model and as predictive samples. Although our sample size was
not large, it was sufficient to achieve robust validation and
predictive performance. The codes used for BERT modeling
are available on the GitHub website [54]; the fully deidentified
unstructured PRO data used in this study can be shared for
research purposes on user’s request.

Results

Participant Characteristics
Table 1 reports the participant characteristics. The mean (SD)
ages of survivors (N=52) and caregivers (N=35) at interviews
were 13.8 (2.8) and 39.6 (7.0) years, respectively.
Approximately 42% (22/52) of survivors were treated for
noncentral nervous system solid tumors and 33% (17/52) for
leukemia. For meaning units, 391 in the pain interference
domain—of the 391 units, 255 (65.2%) were from survivors,
and 136 (34.8%) were from caregivers—and 423 in the fatigue
domain—of the 423 units, 275 (65%) were from survivors, and
148 (35%) were from caregivers— were labeled and analyzed
accordingly (Multimedia Appendix 12).
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Table 1. Characteristics of study participants (N=87).

Caregivers (n=35)Survivors (n=52)Characteristics

39.6 (7.0)13.8 (2.8)Age at evaluation (years), mean (SD)

Sex, n (%)

32 (91)31 (61)Female

3 (9)20 (39)Male

Race or ethnicity, n (%)

24 (69)30 (59)White, non-Hispanic

10 (29)14 (28)Black, non-Hispanic

1 (3.0)7 (14)Other

Cancer diagnosis, n (%)

N/Ab22 (42)Non-CNSa solid tumor

N/A17 (33)Leukemia

N/A9 (17)CNS malignancy

N/A4 (8.0)Lymphoma

aCNS: central nervous system.
bN/A: not applicable.

Sensitivity, Specificity, Precision, and Accuracy for
Pain Interference
Table 2 reports the model performance for the pain interference
domain based on survivor and caregiver data. For the sensitivity
metric, compared with Word2vec/SVM and
Word2vec/XGBoost, BERT generated higher values in
identifying problems with 3 attributes (physical, cognitive, and
social); however, the values were largely <0.6. In contrast, all
3 methods produced specificity of >0.9, and Word2vec/XGBoost

produced higher values in identifying problems with 3 attributes
compared with BERT and Word2vec/SVM. For F1-statistics,
BERT yielded higher values for all 3 attributes compared with
Word2vec/SVM and Word2vec/XGBoost. BERT yielded higher
accuracy for all 3 attributes compared with Word2vec/SVM
and Word2vec/XGBoost; the values were all >0.8, specifically
0.931 (95% CI 0.905-0.957), 0.916 (95% CI 0.887-0.941), and
0.870 (95% CI 0.836-0.903) for cognitive, social, and physical
attributes, respectively.
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Table 2. Performance of natural language processing/machine learning models for pain interference domain by 3 symptom attributes.

AUPRCb (95%
CI)

AUROCCa (95%
CI)

F1 (95% CI)Accuracy (95%
CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Precision
(95% CI)

Attributes and models

Physical

0.677 (0.568-
0.770)

0.875 (0.824-
0.948)

0.585 (0.467-
0.683)

0.870 (0.836-
0.903)

0.950
(0.924-
0.972)

0.507
(0.387-
0.618)

0.692
(0.555-
0.811)

BERTc

0.623
(0.5090.743)

0.868 (0.826-
0.922)

0.486 (0.362-
0.594)

0.859 (0.824-
0.893)

0.969
(0.948-
0.987)

0.366
(0.262-
0.479)

0.722
(0.562-
0.867)

Word2vec/SVMd

0.553 (0.437-
0.659)

0.830 (0.769-
0.888)

0.442 (0.318-
0.551)

0.852 (0.813-
0.887)

0.969
(0.949-
0.987)

0.324
(0.221-
0.435)

0.697
(0.528-
0.857)

Word2vec/XGBooste

Cognitive

0.818 (0.735-
0.917)

0.923 (0.879-
0.997)

0.675 (0.543-
0.779)

0.931 (0.905-
0.957)

0.980
(0.964-
0.994)

0.583
(0.432-
0.735)

0.800
(0.657-
0.935)

BERT

0.609 (0.434-
0.761)

0.900 (0.863-
0.957)

0.521 (0.361-
0.648)

0.910 (0.882-
0.939)

0.983
(0.967-
0.994)

0.396
(0.254-
0.533)

0.760
(0.583-
0.920)

Word2vec/SVM

0.474 (0.321-
0.630)

0.828 (0.748-
0.905)

0.328 (0.178-
0.474)

0.895 (0.867-
0.926)

0.991
(0.980-
1.000)

0.208
(0.104-
0.333)

0.769
(0.500-
1.000)

Word2vec/XGBoost

Social

0.566 (0.402-
0.750)

0.857 (0.786-
0.918)

0.560 (0.410-
0.690)

0.916 (0.887-
0.941)

0.966
(0.946-
0.983)

0.500
(0.349-
0.652)

0.636
(0.461-
0.800)

BERT

0.309 (0.173-
0.426)

0.804 (0.742-
0.878)

0.082 (0.035-
0.200)

0.885 (0.854-
0.916)

0.986
(0.973-
0.997)

0.048 (0-
0.118)

0.286 (0-
0.668)

Word2vec/SVM

0.304 (0.148-
0.420)

0.786 (0.728-
0.850)

0.196 (0.072-
0.343)

0.895 (0.864-
0.923)

0.989
(0.977-
0.997)

0.119
(0.029-
0.229)

0.556
(0.222-
0.875)

Word2vec/XGBoost

aAUROCC: area under the receiver operating characteristic curve.
bAUPRC: area under precision-recall curve.
cBERT: bidirectional encoder representations from transformers.
dSVM: support vector machine.
eXGBoost: extreme gradient boosting.

Sensitivity, Specificity, Precision, and Accuracy for
Fatigue
Table 3 reports the model performance for the fatigue domain
based on the survivor and caregiver data. For sensitivity, the
BERT method generated higher values in identifying problems
with 3 attributes compared with Word2vec/SVM and
Word2vec/XGBoost; however, the values were largely <0.5,
except cognitive attributes (0.757). In contrast, all 3 methods
produced specificity >0.9, and Word2vec/SVM produced higher

values in identifying problems with 3 attributes compared with
BERT and Word2vec/XGBoost. The BERT model yielded
higher F1-statistics for all 3 individual attributes compared with
Word2vec/SVM and Word2vec/XGBoost. In addition, the
BERT model produced higher accuracy for all 3 attributes
compared with Word2vec/SVM and Word2vec/XGBoost; the
values were all >0.8, specifically 0.929 (95% CI 0.903-0.953),
0.917 (95% CI 0.891-0.943), and 0.832 (95% CI 0.794-0.867)
for cognitive, social, and physical attributes, respectively.
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Table 3. Performance of natural language processing/machine learning models for fatigue domain by 3 symptom attributes.

AUPRCb (95%
CI)

AUROCCa (95%
CI)

F1 (95% CI)Accuracy (95%
CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Precision
(95% CI)

Attributes and models

Physical

0.537 (0.443-
0.634)

0.775 (0.723-
0.848)

0.496 (0.384-
0.593)

0.832 (0.794-
0.867)

0.929
(0.901-
0.956)

0.427
(0.315-
0.538)

0.593
(0.468-
0.717)

BERTc

0.375 (0.224-
0.474)

0.726 (0.670-
0.780)

0.130 (0.048-
0.227)

0.810 (0.770-
0.848)

0.988
(0.974-
0.997)

0.073
(0.026-
0.136)

0.600
(0.286-
0.900)

Word2vec/SVMd

0.461 (0.338-
0.575)

0.726 (0.665-
0.798)

0.370 (0.250-
0.474)

0.822 (0.784-
0.858)

0.956
(0.934-
0.977)

0.268
(0.169-
0.364)

0.595
(0.432-
0.773)

Word2vec/XGBooste

Cognitive

0.855 (0.791-
0.930)

0.948 (0.922-
0.979)

0.779 (0.697-
0.855)

0.929 (0.903-
0.953)

0.963
(0.941-
0.981)

0.757
(0.652-
0.854)

0.803
(0.696-
0.895)

BERT

0.730 (0.632-
0.855)

0.917 (0.886-
0.951)

0.552 (0.418-
0.657)

0.889 (0.861-
0.917)

0.983
(0.968-
0.994)

0.414
(0.292-
0.535)

0.829
(0.690-
0.946)

Word2vec/SVM

0.659 (0.550-
0.782)

0.860 (0.817-
0.924)

0.584 (0.468-
0.684)

0.889 (0.858-
0.917)

0.972
(0.953-
0.988)

0.471
(0.359-
0.586)

0.767
(0.625-
0.884)

Word2vec/XGBoost

Social

0.561 (0.434-
0.741)

0.796 (0.704-
0.912)

0.521 (0.379-
0.658)

0.917 (0.891-
0.943)

0.976
(0.960-
0.990)

0.422
(0.289-
0.568)

0.679
(0.500-
0.848)

BERT

0.393 (0.203-
0.534)

0.817 (0.756-
0.881)

0.259 (0.102-
0.406)

0.905 (0.877-
0.929)

0.995
(0.987-
1.000)

0.156
(0.057-
0.267)

0.778
(0.429-
1.000)

Word2vec/SVM

0.330 (0.154-
0.436)

0.780 (0.706-
0.850)

0.271 (0.118-
0.415)

0.898 (0.868-
0.924)

0.984
(0.971-
0.995)

0.178
(0.068-
0.300)

0.571
(0.286-
0.833)

Word2vec/XGBoost

aAUROCC: area under the receiver operating characteristic curve.
bAUPRC: area under precision-recall curve.
cBERT: bidirectional encoder representations from transformers.
dSVM: support vector machine.
eXGBoost: extreme gradient boosting.

Area Under the ROC Curves for Pain Interference
and Fatigue
Figure 2 (upper) displays the specific NLP/ML method that had
the highest area under the ROC curves for each attribute
(detailed results in Tables 2 and 3). The diagonal line represents
the random guess (ie, reference). For the pain interference
domain (left panel), the BERT model was superior to the
Word2vec/SVM and Word2vec/XGBoost models, and the areas
under the ROC curve were 0.923 (95% CI 0.879-0.997) for

cognitive, 0.875 (95% CI 0.824-0.948) for physical attributes,
and 0.857 (95% CI 0.786-0.918) for social attributes. For the
fatigue domain (right panel), the BERT model was superior to
the Word2vec/SVM and Word2vec/XGBoost models, and areas
under the ROC curve were (0.948, 95% CI 0.922-0.979) for
cognitive and 0.775 (95% CI 0.723-0.848) for physical
attributes. The values of BERT were significantly higher in
identifying problems with cognitive attributes in both pain
interference and fatigue domains compared with
Word2vec/XGBoost (P<.05; Multimedia Appendix 13).
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Figure 2. Area under the receiver operating characteristic curves and precision-recall curves for the best models of pain interference domain (left
column) and fatigue domain (right column) by 3 symptom attributes. BERT: bidirectional encoder representations from transformers; PR: precision
recall; ROC: receiver operating characteristic; SVM: support vector machine.

Area Under the PR Curves for Pain Interference and
Fatigue
Figure 2 (lower) displays the specific NLP/ML method that had
the highest area under the PR curves for each attribute (see
detailed results in Tables 2 and 3). The horizontal line at the
bottom represents a random guess (ie, reference). For the pain
interference domain (left panel), the BERT model was superior
to the Word2vec/SVM and Word2vec/XGBoost models, and
the areas under the PR curve were 0.818 (95% CI 0.735-0.917)
for cognitive, 0.677 (95% CI 0.568-0.770) for physical
attributes, and 0.566 (95% CI 0.402-0.750) for social attributes.
For the fatigue domain (right panel), the BERT models were
superior to the Word2vec/SVM and Word2vec/XGBoost
models, and areas under the PR curve were 0.855 (95% CI
0.791-0.930) for cognitive, 0.561 (95% CI 0.434-0.741) for
social attributes, and 0.537 (95% CI 0.443-0.634) for physical
attributes. In addition, the values of BERT were significantly
higher in identifying problems with cognitive and social
attributes in both pain interference and fatigue domains
compared with both Word2vec/SVM and Word2vec/XGBoost
(P<.05; Multimedia Appendices 13 and 14).

Discussion

Principal Findings
Very limited studies have demonstrated the feasibility of
applying NLP/ML methods to extract semantic features from
unstructured PROs. This study applied different NLP/ML
models to analyze PRO assessment in pediatric cancer
survivorship, with a special focus on young survivors of
pediatric cancer aged <18 years as a vulnerable population, and
used rigorous methods to validate the performance of NLP/ML
models. The results suggest that the BERT method outperformed
the Word2vec/ML methods across different validation metrics
in both the physical interference and fatigue symptom domains.
Specifically, the BERT method yielded higher accuracy (>0.8),
larger area under the ROC curve (>0.8, except for the social
attribute in fatigue domain), and a larger area under the PR
curve in identifying problems with all 3 attributes over 2
symptom domains compared with the Word2vec/SVM and
Word2vec/XGBoost methods. The models with higher accuracy
were characterized by high specificity (>0.9) but low sensitivity
(<0.5) for all 3 attributes and 2 symptom domains.

The findings of high specificity and low sensitivity suggest that
our NLP/ML algorithms can be used to identify problematic
symptoms (ie, diagnostic confirmation) rather than for symptom
screening. However, if the default threshold (ie, 0.5) for ROC
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curves was changed to a lower value that mimics the proportion
of meaning units labeled as the presence of the problematic
attribute, both specificity and sensitivity will reach the level of
0.7-0.8. How to use NLP/ML techniques to convert unstructured
PROs into semantic features and transform the data into
meaningful diagnostic information for clinical decision-making
is an emerging topic [20,55]. It is important to extend our
NLP/ML pipeline to assess other aspects of symptom problems
(eg, severity and interference) for cancer populations and in a
longitudinal context, which is valuable for detecting changes
in symptom patterns and identifying early signs of adverse
events [22,56,57].

Comparisons of Model Performance
In both symptom domains, the performance of NLP/ML
techniques (accuracy, F1 value, and areas under ROC and PR
curves) in identifying problems with cognitive attributes was
superior to physical and social attributes. Interestingly, model
validity based on data collected from survivors and caregivers
was slightly better than that of survivors alone (Multimedia
Appendices 15 and 16). This finding is in part because of the
inclusion of complementary information from survivors and
caregivers and the increase in sample size.

The superior performance of NLP/ML techniques suggests the
usefulness of interview-based methods for collecting
unstructured PRO data to complement the survey-based methods
that contain a prespecified fixed content of PROs in follow-up
care among survivors of cancer. Using our validated NLP/ML
algorithms to automatically abstract and label the semantic
features of unstructured PROs derived from interviews
represents an efficient strategy for collecting PRO data from
busy clinics. Our NLP/ML approach can be extended to analyze
other forms of unstructured PROs (eg, documented
patient-clinician conversations and medical notes in EMRs)
when data are available. Other novel technologies (eg,
audio-recorded PROs) also deserve investigation in analyzing
unstructured PROs. Multimodal sentiment analysis [58], which
investigates affective states by extracting textual and audio
features, can be combined with the semantic features from NLP
to obtain a comprehensive understanding of survivors’ PROs.
The successful application of NLP/ML for PRO assessment
ideally requires the implementation of integrated platforms that
interconnect the EHR-based medical note systems, NLP/ML
analytics, and supportive tools for result display, clinical
interpretation, and treatment recommendation [20,59-61]. The
integrated platforms will facilitate clinicians in clinical
decision-making for caring for survivors of cancer whose
complex late medical effects can be predicted by the
deterioration of symptoms and clinical parameters.

The superior performance of BERT to the Word2vec/ML
method is because of the flexible design of BERT that accounts
for contextual information of PROs. Basically, BERT includes
multilayer deep neural networks (illustrated in self-attention
layers of the fine-tuning process; Multimedia Appendix 5) to
enable flexible feature extraction at different levels, such as
syntactic, semantic, and contextual information. In comparison,
Word2vec includes a one-level shallow neural network with
limited flexibility. Uniquely, the semantic features derived by

BERT capture different meanings of the same word in different
contexts, whereas Word2vec generates static semantic features
for each word that does not vary in different contexts.

Different NLP Methods for Analyzing Unstructured
PRO Data
The clinical application of NLP/ML in PRO research is still in
its infancy. This study used the BERT model pretrained by
Wikipedia and BooksCorpus to generate general semantic
features as a starting point. The use of BooksCorpus and
Wikipedia is appropriate for survivors of pediatric cancer,
resulting in satisfactory model performance. This is because
BooksCorpus and Wikipedia contain comprehensive generic
terms that capture the heterogeneous health conditions
experienced by various populations, including survivors of
cancer, ranging from healthy (no late effects and no symptoms)
to ill (severe late effects with severe symptoms). Alternatively,
BERT models can be pretrained using larger free text data to
generate comprehensive features of PROs. Similar methods
may include SciBERT [62], trained by texts in Semantic
Scholar; BioBERT [49], trained by texts in PubMed; and
Clinical BERT [51], trained by clinical notes in MIMIC-III [63].
In addition, the health knowledge graph [64] can be used to
integrate different concepts from various data elements in
multiomics frameworks (including unstructured PROs in
medical notes, structured PROs from patient survey, imaging,
genetics, and treatment profiles), and analyze complex
relationships among these data to improve evaluations of
survivorship outcomes through a multitask learning framework
[65].

Limitations
This study contains several limitations. First, our samples were
limited to survivors of pediatric cancer who were treated at a
single institution. However, our samples represent diverse
diagnoses, ages, races and ethnicities, and families residing in
counties with poverty levels similar to the national average [15].
Second, we only analyzed pain interference and fatigue domains
and restricted them to 3 key attributes of symptoms. Future
studies are encouraged to apply our NLP/ML pipeline to analyze
other PRO domains and include more comprehensive attribute
classifications. Third, our data were collected cross-sectionally,
which merely provides a snapshot of PROs. Future studies are
needed to test the validity of abstracting longitudinal
unstructured PROs to identify time-dependent patterns. In
summary, we demonstrated a robust validity of NLP/ML
algorithms in abstracting and analyzing unstructured PROs
collected from interviews with childhood survivors of cancer
and caregivers. These promising results suggest the utility of
NLP/ML methods in future works for monitoring survivors’
PROs and the opportunity of extending our methods to other
PRO domains and data collection systems (eg, audio-recorded
or medical notes) under a unified platform that integrates
EHR-based data collection systems, NLP/ML analytics, and
supportive tools for interpretation of results and treatment
recommendations. Integration of NLP/ML-based PRO
assessment to complement other clinical data will facilitate the
improvement of follow-up care for survivors of cancer.
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