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Abstract

Background: Skin cancer is the most common cancer type affecting humans. Traditional skin cancer diagnosis methods are
costly, require a professional physician, and take time. Hence, to aid in diagnosing skin cancer, artificial intelligence (AI) tools
are being used, including shallow and deep machine learning–based methodologies that are trained to detect and classify skin
cancer using computer algorithms and deep neural networks.

Objective: The aim of this study was to identify and group the different types of AI-based technologies used to detect and
classify skin cancer. The study also examined the reliability of the selected papers by studying the correlation between the data
set size and the number of diagnostic classes with the performance metrics used to evaluate the models.

Methods: We conducted a systematic search for papers using Institute of Electrical and Electronics Engineers (IEEE) Xplore,
Association for Computing Machinery Digital Library (ACM DL), and Ovid MEDLINE databases following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. The
studies included in this scoping review had to fulfill several selection criteria: being specifically about skin cancer, detecting or
classifying skin cancer, and using AI technologies. Study selection and data extraction were independently conducted by two
reviewers. Extracted data were narratively synthesized, where studies were grouped based on the diagnostic AI techniques and
their evaluation metrics.

Results: We retrieved 906 papers from the 3 databases, of which 53 were eligible for this review. Shallow AI-based techniques
were used in 14 studies, and deep AI-based techniques were used in 39 studies. The studies used up to 11 evaluation metrics to
assess the proposed models, where 39 studies used accuracy as the primary evaluation metric. Overall, studies that used smaller
data sets reported higher accuracy.

Conclusions: This paper examined multiple AI-based skin cancer detection models. However, a direct comparison between
methods was hindered by the varied use of different evaluation metrics and image types. Performance scores were affected by
factors such as data set size, number of diagnostic classes, and techniques. Hence, the reliability of shallow and deep models with
higher accuracy scores was questionable since they were trained and tested on relatively small data sets of a few diagnostic
classes.

(J Med Internet Res 2021;23(11):e22934) doi: 10.2196/22934
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Introduction

Background
Skin cancer is the most common cancer type that affects humans
[1]. Melanoma and nonmelanoma are the two main types of
skin cancer [2]. Nonmelanoma is of lesser concern since it
usually can be cured by surgery and is nonlethal. Melanoma,
however, is the most dangerous skin cancer type, with a high
mortality rate, although it represents less than 5% of all skin
cancer cases [1]. The World Health Organization (WHO)
estimated 132,000 yearly melanoma cases globally. In 2015,
60,000 cases caused death [2].

Traditional methods of early detection of skin cancer include
skin self-examination and skin clinical examination (screening)
[3]. However, skin self-examination, where the patient or a
family member notices a lesion, is a random method as people
might overreact or underact. In addition, clinical examination
using expensive, specialized medical tools, such as a
dermoscope, microspectroscopy, and laser-based tools, requires
training, effort to operate, time, and regular follow-ups [4].
Thus, patients have started using mobile technologies, such as
smartphones, to share images with their doctors to get faster
diagnoses. However, sharing images over the internet may
compromise privacy. Worse yet, the image quality may not be
sufficient, which may lead to inaccurate diagnoses. With
evolvement, artificial intelligence (AI), which is the human-like
intelligence exhibited by trained machines [5], has become so
pervasive that most humans interact with AI-based tools daily,
which assists physicians in decision making and decreases the
decision variations among physicians. It is worth mentioning
that even with the presence of such AI technologies, the role of
an expert dermatologist is vital for diagnosis and treatment.

The focus of this review is on the use of AI as a tool that helps
in the process of skin cancer diagnostics. Herein, AI-based skin
cancer diagnostic tools use either shallow or deep AI
methodologies. Both involve customizing computer algorithms
through a process called training to learn from data formed by
predefined features. The difference is that shallow methods tend
to not use multilayer neural networks at all or use such networks
limited to a minimum of layers [6]. In contrast, deep
methodologies involve training large, deep multilayer neural
networks with many hidden layers, typically ranging from
dozens to hundreds [7].

Research Problem
Detecting skin cancer can be challenging, time consuming, and
relatively expensive [4]. For example, Figure 1 shows two
lesions that superficially seem identical [8]. However, the left
image is of a normal benign lesion, whereas the right image
shows a melanoma lesion. As AI technologies are becoming
smarter and faster [5], it is hardly surprising that they are being
used to assist in diagnosing skin cancer and suggesting courses
of action. This is due to the fact that AI-based methods are
considered to be relatively cheap, easy to use, and accessible
[5]. Thus, they offer the potential to overcome the issues
inherent in the aforementioned existing skin cancer detection
methods. However, as the literature on the medical use of AI
quickly grows and continues to report findings using
incompatible performance metrics, direct comparison between
prior work becomes more challenging and threatens to hamper
future research. This study seeks to address this issue by
performing a rigorous and transparent review of the existing
literature. We aim to answer the research question, What are
the existing AI-based tools that are used to detect and classify
skin cancer?

Figure 1. Similarity of normal lesion (left) and melanoma (right).

Methods

This scoping review analyzes papers from different online
databases. We defined strict inclusion and exclusion criteria to
decide which papers to include. We then grouped the papers by

the methodology used and analyzed the ground covered in the
papers. Finally, we identified gaps in the literature and discussed
how these gaps can be filled by future work. We developed a
protocol before commencing the review. To ensure that this
scoping review is transparent and replicable, we followed the
Preferred Reporting Items for Systematic Reviews and
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Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR)
instructions and guidelines [9].

Search Strategy
We conducted a systematic search on July 15, 2020. We
identified articles from Institute of Electrical and Electronics
Engineers (IEEE) Xplore, Association for Computing Machinery
Digital Library (ACM DL), and Ovid MEDLINE databases.
The terms used for searching the bibliographic databases were
identified based on the target population (eg, “skin neoplasms,”
“skin cancer,” “skin lesion”), intervention (eg, “artificial
intelligence,” “machine learning,” “deep learning”), and
outcome (“diagnosis,” “screening,” “detection,”
“classification”). We derived the search terms from previous
literature studies and reviews. For practical reasons, we did not
conduct backward or forward reference list checking, and we
also did not contact experts. Multimedia Appendix 1 shows the
search strategy used for searching Ovid MEDLINE, where “skin
neoplasms,” “artificial intelligence,” “machine learning,” and
“deep learning” were used as MESH terms. Multimedia
Appendix 1 also shows the search query for IEEE Xplore and
ACM DL.

Study Eligibility Criteria
We included studies fulfilling the following criteria:

• Studies published between January 1, 2009, and July 15,
2020.

• Studies written in English.
• Population: studies discussing only skin cancer. Studies

discussing other diseases or forms of cancer were excluded.
• Intervention: studies discussing only AI-based applications.

Studies that discussed skin cancer–related applications or
systems, including theoretical, statistical, or mathematical
approaches, were excluded.

• Studies discussing the specific use of AI for detecting,
classifying, or diagnosing skin cancer. Studies discussing
only the general use of AI in a clinical setting were
excluded.

• Studies proposing a new AI-based method. Case studies,
surveys, review or response papers, or papers that reviewed,
assessed, analyzed, evaluated, or compared existing methods
were excluded.

No restrictions on the country of publication, study design,
comparator, or outcomes were enforced.

Study Selection
Authors Abdulrahman Takiddin (AT) and Alaa Abd-Alrazaq
(AA) independently screened the titles and abstracts of all
retrieved studies. Following the written protocol, they
independently read the full texts of the papers included in this
study after reading their titles and abstracts. Any disagreements
between both reviewers were resolved by discussion. We
assessed the intercoder agreement by calculating the Cohen
kappa (κ), which was 0.86 and 0.93 for screening titles and
abstracts and for reading full texts, respectively, indicating good
agreement.

Data Extraction
For reliable and accurate data extraction from the included
studies, a data extraction form was developed and piloted using
eight included studies (Multimedia Appendix 2). The data
extraction process was independently conducted by AT and
AA. Any disagreements were resolved by discussion with good
intercoder agreement (Cohen κ=0.88) between the reviewers.

Data Synthesis
A narrative approach was used to synthesize the extracted data.
Specifically, we first grouped the included studies by diagnostic
techniques based on complexity. Then, we discussed the
evaluation metrics used in each study. Next, we grouped the
studies based on the used evaluation metrics. In addition, we
took into consideration the used data set in terms of the number
of images, types of images, and number of diseases (diagnostic
classes) that the data set contained. We assessed the correlation
between the accuracy score and the number of images and
diagnostic classes of the data set.

Results

Search Results
After searching the 3 online databases, we retrieved a total of
906 studies. We then started excluding papers in three phases.
As shown in Figure 2, in the first phase, “identification,” we
excluded 42 papers. In the second phase, “screening,” we
excluded 711 papers. In the last phase, “eligibility,” we included
153 papers for a full-text review. After reviewing the full text
of the papers, we excluded 100 papers. The specific reasons
behind excluding the papers in each phase are mentioned in
Figure 2. Hence, the total number of included papers in this
scoping review was 53.

J Med Internet Res 2021 | vol. 23 | iss. 11 | e22934 | p. 3https://www.jmir.org/2021/11/e22934
(page number not for citation purposes)

Takiddin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. PRISMA approach. ACM DL: Association for Computing Machinery Digital Library; AI: artificial intelligence; IEEE: Institute of Electrical
and Electronics Engineers; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Study Characteristics
Table 1 summarizes the characteristics of the selected studies.
Figure 3 shows the number of papers published per year: 4 of
53 studies (7.6%) were published before 2016 [10-13], 26
studies (49.1%) were published in 2016, 2017, and 2018 [14-39],

and 23 studies (43.4%) were published in 2019 and 2020
[40-62]. Although our selection criteria included papers
published between 2009 and July 2020, the oldest published
paper included after the full-text review was published in 2011.
We observed that the number of papers sharply increased in
2018 and 2019.
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Table 1. Study characteristics (N=53).

n (%)Characteristics

Publication year

4 (7.5)Before 2016

26 (49.1)2016-2018

23 (43.4)2019-2020

Country of publication

9 (16.9)The United States

6 (11.3)China

5 (9.4)India

3 (5.7)Poland

2 (3.8)New Zealand

2 (3.8)Austria

2 (3.8)Germany

2 (3.8)Bangladesh

2 (3.8)Indonesia

2 (3.8)Pakistan

2 (3.8)Turkey

1 (1.9)France

1 (1.9)Russia

1 (1.9)The United Kingdom

1 (1.9)Hong Kong

1 (1.9)Iran

1 (1.9)Korea

1 (1.9)Philippines

1 (1.9)Lebanon

1 (1.9)Saudi Arabia

1 (1.9)Singapore

1 (1.9)Thailand

1 (1.9)Australia

1 (1.9)Canada

1 (1.9)Egypt

1 (1.9)Nigeria

1 (1.9)South Africa

Publication type

31 (58.5)Conference proceedings

22 (41.5)Journals
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Figure 3. Number of published papers by year.

Figure 4 shows the region of publication of the included studies.
The studies included were published in different parts of the
world. In Southern Asia, 22 studies (41.5%) were conducted in
China, India, Bangladesh, Indonesia, Pakistan, Singapore, South
Korea, and Thailand; 10 studies (18.9%) were conducted in
North America, specifically the United States and Canada; 10
studies were conducted in Europe, including Austria, Poland,
Germany, France, the United Kingdom, and Russia; 5 studies
(9.4%) were conducted in the Middle East, including Lebanon,

Turkey, Iran, and Saudi Arabia; 3 studies (5.7%) were conducted
in Africa, specifically Egypt, South Africa, and Nigeria; and in
Oceania, 3 studies were concluded in New Zealand and
Australia.

The selected studies were either published in conference
proceedings or journals: 31 of 53 studies (58.5%) were published
in conference proceedings, and the rest of the papers (22/53,
41.5%) were published in journals. Multimedia Appendix 3
displays the characteristics of each included study.

Figure 4. Number of published papers by region.

Data Characteristics
Table 2 summarizes the characteristics of the used data in the
selected studies. The studies used different sizes of data sets to
train their models. The average number of used images in the
selected studies was around 7800. The lowest number of images
used was 40 [24], whereas the highest number of images used
was 129,450 [23]. We categorized these data set sizes into three
groups, depending on the number of images used. The first
category contained small data sets that had fewer than 1000
images (21/53, 39.6%). The second category used medium-size
data sets consisting of 1000-10,000 images (25/53, 47.2%). The
last category contained large data sets that included more than
10,000 images (7/53, 13.2%).

We divided the papers into two groups based on the
classification type. We found that more than half of the papers
(31/53, 58.5%) built models to classify whether the lesion was
benign or malignant (two-class/binary classification). The rest
of the papers (22/53, 41.5%) presented models in which skin
lesions were classified using three or more diagnostic classes
(multiclass classification). Figure 5 shows the number of papers
using different diagnostic classes. In the multiclass classification,
8 studies used 3 diagnostic classes, 1 study used 4 classes, 2
studies used 5 classes, 10 studies used 7 classes, and 1 study
used 9 classes. The benign classes included benign keratosis,
melanocytic nevus, and dermatofibroma. The malignant classes
included melanoma and basal cell carcinoma. Other lesions,
such as vascular lesions, actinic keratosis, genodermatosis, and
tumors, could be either benign or malignant.
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Table 2. Data and deployment characteristics (N=53).

n (%)Characteristics

Data set size

21 (39.6)Small

25 (47.1)Medium

7 (13.2)Large

Classification type

31 (58.5)2 classes

8 (15.1)3 classes

1 (1.9)4 classes

2 (3.8)5 classes

10 (18.9)7 classes

1 (1.9)9 classes

Image type

43 (81.1)Dermoscopic

5 (9.4)Clinical

4 (7.5)High quality

1 (1.9)Spectroscopic

Deployment

45 (84.9)Development

3 (5.7)System

3 (5.7)Web application

2 (3.8)Mobile application

With regard to the type of images used to train, test, and validate
the models, 43 of 53 studies (81.1%) used dermoscopic images;
5 studies (9.4%) used clinical images that were taken using a
normal camera; and 4 studies (7.5%) used high-quality images
that were taken with a professional camera. The remaining study
used spectroscopic images requiring a specialized system taking
images of a lesion from three different spots using polarized
and unpolarized light.

The majority of the studies (45/53, 84.9%) presented
technologies that are still in the development phase. The rest of
the studies (8/53, 15.1%) have been deployed into a usable form:
3 studies developed a health care system, 3 studies deployed
the model into a mobile application, and 2 studies transferred
the model into a web application. Multimedia Appendix 4
displays the data and deployment characteristics of each
included study.

Figure 5. Number of published papers by number of diagnostic classes used.
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Diagnostic Techniques
We categorized the papers into two groups based on the AI
technique used in detecting and classifying skin cancer. The
groups were shallow techniques and deep techniques. These
two groups differed mainly in the complexity of the AI
architecture underlying the model. Shallow techniques use either
simple machine learning algorithms, such as a support vector
machine (SVM), or only a couple of layers of neural networks
[63]. If, in contrast, the AI architecture is a neural network that
consists of at least three layers, it is categorized as a deep
technique [19]. It turns out that around a quarter of the studies
(14/53, 26.4%) used shallow techniques, while the rest (39/53,
73.6%) used deep techniques. Within each of the groups, studies
may have used different models or algorithms, and some studies
proposed multiple methods or provided testing data using

multiple methods. In this study, we only considered the model
that had the best-reported performance in each paper.

As shown in Table 3, most studies that used shallow techniques
adopted an SVM (9/14, 64.3%), which is a common two-class
classifier that uses a hyperplane as a decision boundary [6]. The
rest of the studies (5/14, 35.7%) adopted the naive Bayes (NB)
algorithm (1/14, 7.1%), which is a probabilistic classifier that
assumes conditional independence among the features [6];
logistic regression (LR; 1/14), which uses probability for
prediction; k-nearest neighbors (kNNs; 1/14), which classify a
sample based on samples close to it; and random forests (RFs;
1/14), which classify using decision trees [6]. A hybrid model
(1/14) classified images through multiple iteratives using
Adaboost and an SVM.

Table 3. Techniques used in included studies using shallow techniques (N=14).

Referencen (%)Model

[12,15,16,19,21,26,27,29,60]9 (64.3)SVMa

[11]1 (7.1)NBb

[13]1 (7.1)LRc

[25]1 (7.1)kNNd

[28]1 (7.1)RFe

[18]1 (7.1)Hybrid

aSVM: support vector machine.
bNB: naive Bayes.
cLR: logistic regression.
dkNN: k-nearest neighbor.
eRF: random forest.

The majority of the studies that used deep techniques (Table 4)
adopted different types of convolutional neural networks (CNNs;
36/39, 92.3%), which assign importance to parts of images using
ImageNet-pretrained architectures (18/39, 46.2%), including
the residual network (ResNet), Inception, AlexNet, MobileNet,
Visual Geometry Group (VGG), Xception, DenseNet, and
GoogleNet. In addition, some of the CNN-based studies (11/39,
28.2%) built customized CNNs or ResNets. Moreover, some
studies adopted different combinations of CNNs along with

other models (hybrid models; 5/39, 12.8%), as well as using
ensemble models (4/39, 10.3%); the remaining study (1/39,
2.6%) used the OpenCV library. Multimedia Appendix 5
provides further details regarding each of the models in terms
of the method used, the number of layers (ranging from 1 to
121 layers), the method used for selecting the hyperparameters,
and the performance of the proposed model with respect to other
reported models within the study.
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Table 4. Techniques used in included studies using deep techniques (N=39).

Referencen (%)Model

Pretrained CNNsa

[22,41,49,50,54]5 (12.8)ResNetb

[23,42,56]3 (7.7)Inception

[34,35,39]3 (7.7)AlexNet

[45,51,55]3 (7.7)MobileNet

[30,52]2 (5.1)VGGc

[43]1 (2.6)Xception

[58]1 (2.6)DenseNet

Custom

[14,24,40,47,53,57,59,61,62]9 (23.1)CNN

[31,33]2 (5.1)ResNet

[17,32,38,44,46]5 (12.8)Hybrid

[20,36,37,48]4 (10.3)Ensemble

[10]1 (2.6)OpenCV

aCNN: convolutional neural network.
bResNet: residual network.
cVGG: Visual Geometry Group.

Evaluation Metrics
The studies included in this scoping review used different
evaluation metrics to assess their proposed models. In the
studies, the following five primary evaluation metrics were used
to assess the built models: accuracy, sensitivity and specificity,
positive predictive value (PPV) or precision, area under the
curve (AUC), and F1-score. All five metrics ranged from 0%
to 100%; the higher the score, the better the model performance.
To compute the different evaluation metrics, the following types
of samples were identified: First, true positives (TPs), which
are malignant samples that the AI tool also detected as
malignant; second, false positives (FPs), which are benign
samples that the AI tool detected as malignant; third, true
negatives (TNs), which are benign samples that were also
detected as benign by the AI tool; and fourth, false negatives
(FNs), which are malignant samples that were detected as benign
by the AI tool. It is worth mentioning that more than half of the
studies (33/53, 62.3%) reported multiple evaluation metrics, in
addition to the primary metric.

Accuracy = (TP + TN)/(TP + TN + FP + FN), which implies
how well the model detects the diagnostic classes, was reported
in the majority of the papers (44/53, 83%). Sensitivity or recall
= TP/(TP + FN), which is the probability of the model, given
only malignant samples, to correctly diagnose them as
malignant, was reported in 30 (56.6%) papers. Specificity =
TN/(TN + FP), which determines the proportion of negative
samples that are correctly detected, was reported in 24 (45.3%)
papers. The PPV or precision = TP/(TP + FP) was reported in
13 (24.5%) papers. The AUC, which is the area of the receiver

operating characteristic (ROC) curve and plots the TP against
the FP, was reported in 11 (20.8%) papers. The F1-score, which
is the harmonic mean of recall and precision, was reported in 9
(16.9%) papers. In addition, the dice coefficient = 4TP/(FN +
2TP + FP) was reported in 4 (7.5%) papers. The negative
predictive value (NPV) = TN/(TN + FN) was reported in 2
(3.8%) papers. The Jaccard index = 2TP/(TP + FN + FP) was
reported in 2 papers. The Cohen κ was also reported in 2 papers.
Finally, the Youden index = sensitivity + specificity – 1 was
reported in 1 (1.9%) paper.

Herein, we conducted our analysis of each paper based on the
best-performing experiment in case multiple experiments were
conducted. In addition, if multiple evaluation metrics were used,
we used the primary evaluation metric score that was reported
by the authors in the abstract or conclusion as the main focus
of the paper or the used average score of each of the diagnostic
classes for multiclass classification papers. Of the
aforementioned metrics, accuracy, AUC, sensitivity and
specificity, and the F1-score were used as the primary evaluation
metrics. Around 73% (39/53) of the papers used accuracy as
their primary evaluation metric to assess the trained models.
The average accuracy value was 86.8%, with a maximum of
98.8% [60] and a minimum of 67% [10]. The AUC was reported
in 9 studies, with an average score of 87.2%; the highest AUC
score was 91.7% [41], whereas the lowest AUC score was 82.0%
[26]. Sensitivity and specificity were used in 4 studies, and the
F1-score was reported in 1 study. Multimedia Appendix 6 shows
the data characteristics, used model, and evaluation scores for
each included study (Table 5).
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Table 5. Primary evaluation metrics and scores reported by included studies (N=53).

ReferenceScore

Accuracy

[60]99%

[21,27]98%

[24]96%

[17,22,61]95%

[20,40]94%

[16]93%

[18]92%

[51,52,62]91%

[36,42,57]90%

[11,43]89%

[13,48]88%

[25,49,53]87%

[35,44,58]86%

[34]84%

[54,55]83%

[14]81%

[19]80%

[28]77%

[39,47,59]75%

[23,56]72%

[10]67%

AUCa

[41]92%

[33,38]91%

[32]89%

[46]87%

[37,50]85%

[30]84%

[26]82%

Sensitivity

[31]96%

[15]90%

[12]83%

[29]77%

Specificity

[15]96%

[12]90%

[31]89%

[29]70%

F1-score

[45]83%
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aAUC: area under the curve.

Discussion

Main Findings
We studied multiple characteristic types for the 53 selected
studies. First, we included the study characteristics. Most studies
were published in 2019, the majority of the studies were
published in Southern Asia, and most studies were published
in journals. Second, we discussed the data characteristics. For
training and testing, most of the studies used medium-size data
sets, the majority of the studies built binary classifiers, and
dermoscopic images were used the most. Third, we categorized
the adopted AI models into shallow and deep. Most shallow
models were SVM based, whereas most deep models were
CNN-based neural networks. Generally, deep models were
adopted more than shallow models. Fourth, we listed the
evaluation metrics used along with the reported scores to assess
the performance of the models. In total, 11 different evaluation
metrics were used, where accuracy was the most commonly
used metric, so we focused on accuracy.

Performance Factors
After analyzing the reported performance scores, we concluded
that there is a correlation between the performance and the
number of classes used. In addition, another factor that affects
the performance is the data set size. Next, we study this
hypothesis with respect to accuracy since most of the studies

(39/53, 73.6%) used it as the primary evaluation metric, although
it might not be the most fitted evaluation metric to assess such
a task, especially in the case of imbalanced data. We believe
that having a confusion matrix or the number of TPs, FPs, TNs,
and FNs would avoid bias and give a clearer evaluation of how
the model behaves with regard to each of the diagnostic classes.
From the studies, the top accuracy scores were ~98% [21,27,60].
In studies leading to this accuracy, the authors built a two-class
classification (benign vs malignant) model using data sets of
200, 356, and 200 images, respectively. The top 10 accuracy
scores (99%-92%) also built two-class classifiers using an
average of around 800 images. In addition, 26 studies built
two-class classifiers with an average accuracy score of around
88% using an average data set size of around 1000 images,
while 17 studies built multiclass classifiers with an average
accuracy score of 85%; they used around 15,000 images on
average. The second-lowest accuracy score was 72% [23], in
which the authors developed a multiclass classifier using 9
different diagnostic classes and 129,450 images, which is the
highest number of classes and the biggest data set size included
in this study. Figure 6 plots the logarithmic data set size over
accuracy, using colors to indicate the number of diagnostic
classes. As can be seen, accuracy increases as the number of
diagnostic classes and data set size decreases. Specifically, after
the threshold of 90% in accuracy, we can see that the majority
of the studies built two-class classifiers. The factors that might
be behind such a pattern are further discussed next.

Figure 6. Effect of the number of diagnostic classes and data set size on accuracy.

Classification Type Factor
Binary classifiers tend to have better performance when
compared to multiclass classifiers. This seems intuitively right
since binary classifiers are less expressive. Instead of
distinguishing between several classes, binary classifiers have
“less to learn.” To illustrate this point, let us compare limits on

the probability of each class for a binary and a five-class
classifier. For the five-class classifier, there must be at least one
class with a probability of ≤20% (according to the pigeonhole
principle [64]). Predicting this low probability class is, therefore,
typically harder than in the case of a binary classifier, for which
we know that there exists exactly (and, thus, at most) one class
with a probability of ≤50%. Another way of looking at it is to
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consider an algorithm that performs a random choice assuming
perfectly balanced data. In the binary case, the error rate of this
algorithm would be 50%, whereas for the five-class classifier,
it increases to 80%, a 1.6-fold increase. The problem may be
further exacerbated by imbalanced data, which often arises
naturally due to differences in the prevalence rates of medical
conditions. Therefore, it is also not surprising that binary
classifiers work well, given less data for training, since the
model may still be fed sufficient numbers of examples for each
class.

Data Set Size Factor
However, what is surprising is that Figure 6 suggests that the
performance increased with decreasing training data. To this
end, we would like to note that the two methods with the best
performance used shallow techniques that tend to be far less
hungry for data than deep methods, since manual feature
engineering is often part of the pipeline. Furthermore, Afifi et
al [21] used clinical image data, which may be of superior
quality. In addition, depending on the testing setup, it cannot
be ruled out that methods relying on less data lack the generality
of models that have been trained using large volumes of data.
In such scenarios, the models would be closer to data retrieval
machines due to overfitting than general detectors and
classifiers. To fully assess apparent issues such as this, it is
important not to rely on a single performance metric when
reporting results. Especially, sensitivity and specificity can be
as important as accuracy in this context since they model FN
and FP rates. All considered, we would, therefore, like to
reiterate our earlier statement that we believe it is important for
any AI to undergo rigorous clinical studies and testing before
being deployed in a clinical environment.

Technique Type Factor
With regard to the techniques described in the studies included
in this review, deep and shallow models (regardless of the
number of layers) have similar performances. For example,
within the shallow models, the top five skin cancer detectors
were built using an SVM with accuracy scores of 93%-99%
using relatively small data sets. The SVM was the most
commonly used method among the shallow models. Similarly,
within the deep models, the top five CNN-based skin cancer
detectors had 94%-96% accuracy using medium-size data sets.
CNNs were also the most commonly used method among the
deep models. Theoretically, deep neural networks tend to have
better performance with regard to image classifications [65].
One reason is that shallow models are often limited to less
expressive functional spaces when compared to deep networks.
From a technical perspective, this may well explain their lower
performance due to a lack of the ability to fully capture the
complex nature of images during training. In contrast, deep
networks and CNNs can learn features at multiple scales and
complexity to provide fast diagnoses [66]. Therefore, they not
only detect, select, and extract features from medical images
but also contribute by enhancing and constructing new features
from the medical images [67]. Such similarities and
inconsistencies in the performances of the included studies are
due to the diverse evaluation metrics used, the data set size,

image types, and the number of diagnostic classes among the
studies.

Publication Year
Based on the study characteristics, we noticed that the number
of published papers has increased since 2016 and that most
papers discuss the use of dermoscopic images, making it the
most used image modality for the detection and classification
of skin cancer. We believe that this is because the International
Skin Imaging Collaboration (ISIC) competition started in 2016
[8], which offered several medical data sets of dermoscopic
images that have ever since been used to build AI-based models.
Most of these studies are still in the development stage, and we
firmly believe that these models still need to be further validated
and tested in hospitals. However, dermatologists and patients
are beginning to adapt to the notion of relying on AI to diagnose
skin cancer.

Practical and Research Implications
In this scoping review, we summarized the findings in the
literature related to diagnosing skin cancer by using AI-based
technology. We also categorized the papers included in this
review based on the methodology used, the type of AI
techniques, and their performance, and found the link between
these aspects.

We noted that although all the papers included in this scoping
review discuss the application and performance of a specific
AI technology, the reporting is performed heterogeneously. A
discussion of the relationship between using one specific AI
technique and other aspects, such as data set size, or even a
discussion of why the evaluation metric used is reasonable is
normally not attempted. This, of course, potentially hampers
research in this direction, as it becomes harder for future studies
to provide a comprehensive comparison with the existing work
that follows scientific rigor. This scoping review filled this gap
by performing the necessary characterizations and analyses.
This was achieved by grouping each of the used AI technologies
into shallow and deep approaches, linking each type to the
evaluation metrics used, listing and interpreting the number of
diagnostic classes used in each study, and highlighting the
dependency of performance on data set size and other factors.
To the best of our knowledge, no similar work has been
performed to fill this gap. In the Conclusion section, we will
highlight our main findings.

Limitations
This scoping review examined papers that were published
between January 2009 and July 2020, and any published study
outside this time line was excluded, which may have excluded
older AI-based methods. In addition, we examined papers
written in English; other languages were not included, which
may have led to the exclusion of some studies conducted in
other parts of the world. Another limitation might be the gap
between the time the research was performed and the time the
work was submitted, which excluded published papers during
that period. Although we applied all due diligence, a small
residual chance of accidentally having overlooked papers in an
academic database cannot be fully ruled out. In addition,
although we tried to discuss all findings in the literature, it is
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beyond the scope of this review to detail every single finding
of the papers. Similarly, an investigation into data biases in the
literature (imbalanced data with respect to diagnostic classes,
patient ethnicity and skin color, gender, etc) is left as a direction
for future studies.

Conclusions
The use of AI has high potential to facilitate the way skin cancer
is diagnosed. Two main branches of AI are used to detect and
classify skin cancer, namely shallow and deep techniques.
However, the reliability of such AI tools is questionable since
different data set sizes, image types, and number of diagnostic

classes are being used and evaluated with different evaluation
metrics. Accuracy is the metric used most as a primary
evaluation metric but does not allow for independently assessing
FN and FP rates. This study found that higher accuracy scores
are reported when fewer diagnostic classes are included.
Interestingly and counterintuitively, our analysis also suggests
that higher accuracy scores are reported when smaller sample
sizes are included, which may be due to factors such as the type
of images and the techniques used. Furthermore, only
independent, external validation using a large, diverse, and
unbiased database is fit to demonstrate the generality and
reliability of any AI technology prior to clinical deployment.
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