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Abstract

Background: Trust in science meaningfully contributes to our understanding of people’s belief in misinformation and their
intentions to take actions to prevent COVID-19. However, no experimental research has sought to intervene on this variable to
develop a scalable response to the COVID-19 infodemic.

Objective: Our study examined whether brief exposure to an infographic about the scientific process might increase trust in
science and thereby affect belief in misinformation and intention to take preventive actions for COVID-19.

Methods: This two-arm, parallel-group, randomized controlled trial aimed to recruit a US representative sample of 1000 adults
by age, race/ethnicity, and gender using the Prolific platform. Participants were randomly assigned to view either an intervention
infographic about the scientific process or a control infographic. The intervention infographic was designed through a separate
pilot study. Primary outcomes were trust in science, COVID-19 narrative belief profile, and COVID-19 preventive behavioral
intentions. We also collected 12 covariates and incorporated them into all analyses. All outcomes were collected using web-based
assessment.

Results: From January 22, 2021 to January 24, 2021, 1017 participants completed the study. The intervention slightly improved
trust in science (difference-in-difference 0.03, SE 0.01, t1000=2.16, P=.031). No direct intervention effect was observed on belief
profile membership, but there was some evidence of an indirect intervention effect mediated by trust in science (adjusted odds
ratio 1.06, SE 0.03, 95% CI 1.00-1.12, z=2.01, P=.045) on membership in the “scientific” profile compared with the others. No
direct nor indirect effects on preventive behaviors were observed.

Conclusions: Briefly viewing an infographic about science appeared to cause a small aggregate increase in trust in science,
which may have, in turn, reduced the believability of COVID-19 misinformation. The effect sizes were small but commensurate
with our 60-second, highly scalable intervention approach. Researchers should study the potential for truthful messaging about
how science works to serve as misinformation inoculation and test how best to do so.

Trial Registration: NCT04557241; https://clinicaltrials.gov/ct2/show/NCT04557241

International Registered Report Identifier (IRRID): RR2-10.2196/24383

(J Med Internet Res 2021;23(10):e32425) doi: 10.2196/32425
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Introduction

Background
The COVID-19 pandemic has been accompanied by a
substantive, pervasive outpouring of misinformation about the
disease [1] that can be described as an infodemic [2]. Concerns
about this infodemic were raised by members of the science
community almost immediately, and steps were taken to develop
a research agenda [3], as misinformation about COVID-19 has
taken many forms and been amplified across numerous types
of media [4-6]. Anecdotal stories about behaviors and
consequences associated with COVID-19 misinformation can
be readily identified (as we have done in small measure in our
prior work [7,8]), and some scholars have documented negative
outcomes of COVID-19 misinformation [9,10]. Though Greene
and Murphy [11] recently found “surprisingly little”
experimental research examining the effects of misinformation
on behavior, their study found that even brief, single exposures
to COVID-19 misinformation may nudge (have a small effect
on) some behavioral intentions. Loomba et al [12] similarly
found evidence for decreases in COVID-19 vaccination intention
due to exposure to misinformation.

Unfortunately, far from tapering more than a year into the
pandemic, the volume of misinformation has remained high;
representatives of multiple organizations, including the World
Health Organization and US Food and Drug Administration,
recently warned that misinformation poses a global concern and
may drive pandemic-related harms [13]. It is clearly incumbent
on researchers to develop a thorough understanding of
COVID-19 misinformation and to establish evidence-based
mitigation tools.

Belief in COVID-19 Misinformation Clusters Is
Associated With Trust in Science
In May 2020, in response to growing concern about the
COVID-19 infodemic, our team conducted one of the first
studies of COVID-19 misinformation believability and the
factors associated therewith [7]. We examined 5 brief narrative
statements ranging from clearly false (eg, 5G transmission of
COVID-19) to likely misinformed or improbable but not
impossible (eg, purposeful laboratory development as a weapon)
to a statement reflecting the scientific consensus at the time (eg,
zoonotic origin). Using latent profile analysis, we identified 4
belief profiles into which it was possible to classify participants.
Members of the largest profile (70.15% of the sample) reported
high believability for a statement about the zoonotic origin and
much lower believability for the misinformed statements.
Members of the other, smaller profiles did not disbelieve the
zoonotic statement, but tended to report higher believability for
misinformation. In other words, findings suggested the existence
of a large “scientific” or science-consistent group and multiple
smaller groups that found misinformation believable to various
degrees.

Then, we found that—controlling for race/ethnicity, gender,
age, and education level—trust in science and scientists, a scale
variable computed from 21 Likert-type questions of the Trust
in Science and Scientists Inventory [14], was strongly associated
with belief profile membership, with greater trust being
associated with considerably higher odds of belonging to the
“scientific profile.” The magnitude of adjusted odds for trust
substantially exceeded that of other variables hypothesized to
be associated with profile membership (political orientation and
religious commitment) that were simultaneously analyzed [7].

Based on our findings and research described subsequently, we
speculated that the strong association between COVID-19
narrative belief profile and trust in science might mean that (1)
if a brief, inexpensive intervention could increase trust in
science, it might possibly (2) affect individuals’ COVID-19
narrative belief profile membership. We also wondered whether
this effect, mediated by belief profile, might (3) influence
behavioral intentions to undertake COVID-19 preventive
behaviors. Much of our rationale for these ideas is laid out in
the published protocol for the present study [8]. Here, we present
a brief explanation outlining why we have focused on trust and
how this study fits among current COVID-19 misinformation
interventions.

Trust in Science May be an Effective Intervention
Target for Misinformation Prevention

Theoretical Basis for Focusing on Trust
Trust is highly complex [14]. Often, “we know by trusting what
others tell us” [15]. This is the case because there are many
things about which we cannot produce our own knowledge, but
there are often experts who do have that capability. Here, we
posit that beliefs about COVID-19 are linked to rational
epistemic trust, the idea that it is reasonable to believe statements
made by experts. This might be expressed by the principle, “If
[person] has good reasons to believe that [scientist] has good
reasons to believe [a finding], then [person] has good reasons
to believe that [finding]” [16].

Importantly, though, the prior formulation only pertains to
claims about research findings, which make assertions about
reality with varying degrees of certainty (eg, face mask use can
reduce community transmission of COVID-19 [17]).
Recommendations from scientists or experts, which may be
based on scientific claims, instead suggest what people can do
to achieve a specific outcome, and so they appeal to a different
form of trust. For example, the manuscript reporting that face
mask use could reduce community transmission also stated,
“face mask use should be as nearly universal as possible” [17].
However, one can be logically consistent and believe both that
face mask use can prevent community spread (eg, trust the
findings of the research study) and that face mask use should
not be universal (eg, not thinking that preventing community
spread is important or that it is less important than other interests
such as social identity [18]). An alternate formulation that
pertains to trusting recommendations might be, “If [person] has
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good reasons to believe [scientist] has good reasons to believe
that a certain action is in [person’s] interest, then [person] has
good reasons to believe that they should perform that action”
[19].

These concepts can help illustrate how the Trust in Science and
Scientists Inventory [14] might be associated with COVID-19
preventive behavioral intentions or belief in COVID-19
misinformation. For example, the item “when scientists change
their mind about a scientific idea, it diminishes my trust in their
work” might reflect the conditions in which a person trusts a
scientific finding, or the item “today’s scientists will sacrifice
the well-being of others to advance their research” could inform
our understanding of how a person perceives recommendations
from a scientist.

Evidentiary Basis for Focusing on Trust
In addition to our own identification of associations between
trust in science and belief in misinformation [7], studies
conducted early in the pandemic found that willingness to abide
by COVID-19 preventive guidelines was directly associated
with trust in science and risk perception [20-22], the former of
which also served as a mediator [22] or moderator [23] for other
characteristics such as political conservatism. Trust in science
has also been associated with intention to get vaccinated for
COVID-19 [21,24]. However, we have not located any prior
studies examining misinformation as a mediator in any such
relationships.

Extant Interventions to Reduce the Influence of
COVID-19 (and Related) Misinformation
One prominent approach to addressing misinformation is
debunking (eg, fact checking). Despite some initial concerns,
fact checking appears unlikely to backfire [25], and a recent
Dutch randomized controlled trial demonstrated that debunking
messaging can reduce endorsement of myths about vaccines
and influenza [26]. At the same time, fact checking still suffers
from scalability issues and a variety of other nuanced concerns
and effects [27]. For example, on its face, the time and effort
needed to prepare and disseminate a specific piece of
misinformation are typically less than the time and effort spent
debunking it. Thus, fact checking is likely a useful but not
sufficient response amid rapid proliferation of misinformation.
Other issues also add complexity to debunking, such as the
recent finding that social media users who reported correcting
others about COVID-19 online were also more likely to endorse
misperceptions about the disease [28].

A promising additional approach is prebunking (eg, inoculation)
to confer resistance to the potential influence of misinformation
before it is encountered [29-31]. Somewhat related are recent,
robust studies suggesting that the likelihood of sharing fake
news can be reduced by interventions to reduce inattention and
encourage a focus on accuracy [32,33]. Further, in one study,
active (online game) and passive (infographic) prebunking
interventions targeting misinformation and fake news improved
participants’ability to identify misinformation about COVID-19,
and the active condition also reduced willingness to share it
[34].

Study Aims and Hypotheses

Rationale
In our prior study of COVID-19 misinformation, around 70%
of respondents were classified as belonging to the “scientific
profile,” and classification therein was strongly associated with
trust in science. Such an association is also supported both by
theoretical and scientific literature. Separately, research on
COVID-19 misinformation has suggested the value of scalable,
universal prophylaxis that can support people in resisting the
influence of misinformation. Therefore, our current study
combines those ideas to examine an inoculation approach to
COVID-19 misinformation using trust in science as a scalable
intervention target.

In this preregistered, randomized controlled trial, we examined
the effects of a brief prophylactic intervention (viewing a single
infographic about the scientific process for at least 60 seconds).
The study had 3 aims with corresponding hypotheses, which
we copied verbatim from the study protocol [8] here for
narrative clarity.

Aim 1
We aim to assess the effect of a brief informational infographic
about the scientific process on trust in science. We hypothesize
that exposure to such an intervention will have a moderate,
positive effect on trust in science.

Aim 2
We aim to assess the effect of a brief informational infographic
about the scientific process on the likelihood of believing
scientifically implausible narratives about COVID-19. We
hypothesize that exposure to such an intervention will have a
small, negative effect on the likelihood of believing implausible
narratives, as evidenced by profile membership, and that this
will be partly mediated by trust in science.

Aim 3
We aim to assess the effect of a brief informational infographic
about the scientific process on behavioral intentions to engage
in recommended COVID-19 [nonpharmaceutical preventive
behaviors (NPBs)]. We hypothesize that exposure to such an
intervention will have a small, positive effect on behavioral
intentions to engage in recommended COVID-19 NPBs that
will be partly mediated by misinformation profile membership.

Methods

Study Design and Participants
This study of COVID-19 misinformation prophylaxis was a
single-stage, two-arm, parallel-group, randomized superiority
trial with a 1:1 allocation ratio. Participants were a US-based
nationally representative population sample by age, sex, race,
and ethnicity recruited using the online data collection platform
Prolific [35]. Participants were eligible for this study if they
were aged 18 years or older and were selected by Prolific to be
part of the nationally representative sample. Prior to
randomization, evidence-based quality control mechanisms to
manage virtual private network usage, automated responses,
dishonest respondents, and inattentive respondents were
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implemented [36], and participants were considered ineligible
if they failed any of these steps. Replacements were drawn in
a manner that preserved the representative nature of the sample.
All participants provided digitally signed informed consent
according to the protocol approved by the Indiana University
Institutional Review Board. This study was preregistered with
Clinicaltrials.gov (NCT04557241), and the protocol was
published in full before any data collection [8].

Randomization and Masking
After providing sociodemographic information and passing
quality control checks, participants were randomly assigned to
1 of 2 study arms: (1) a control group that viewed an infographic
about how hunting dogs point at targets (Figure 1) or (2) an
intervention group that viewed an infographic about purchasing
butter and margarine at the grocery store that was intended to
highlight how scientific recommendations change along with
newly available evidence (Figure 2). The same artist designed
both infographics.

Figure 1. Control infographic.

Figure 2. Intervention infographic.
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Enrollment was managed by Prolific, entirely independent of
the study team. Enrolled subjects accessed a link to Qualtrics
(QualtricsXM, Seattle, WA) to participate in the study. Eligible
participants were randomized to study arms using the
randomizer procedure in Qualtrics with a 1:1 allocation ratio,
ensuring no involvement by study personnel. To prevent
expectancy biases, study hypotheses and intentions were masked
to participants. The summary statement indicated only that “we
are interested in understanding how people perceive and think
about messages and images.”

Procedures
As prespecified [8], the intervention infographic (Figure 2) was
iteratively developed using a multistage pilot procedure prior
to study initiation. The results of that procedure, which included
a randomized pilot comparison between 5 potential infographics,
are described in a separate publication [37]. Participants who
entered the Qualtrics survey completed sociodemographic items
(see the Covariates section) and quality control checks, the latter
of which are described in detail in a separate methodological
paper [36].

Eligible participants who passed quality control checks were
randomized (no indication of this was provided to participants)
and then proceeded to the Trust in Science and Scientists
Inventory [14]. Then, the program proceeded to display either
the control or intervention infographic for the participant to
view for a minimum of 60 seconds. To ensure maximum
visibility of the infographic for participants on multiple
platforms, the Lightbox script [38] was integrated into Qualtrics
to allow participants to manually enlarge and reduce images.
Following the intervention, participants were asked about the
believability of 7 statements about COVID-19 and then were
asked about 7 behavioral intentions based on recommendations
by the US Centers for Disease Control and Prevention (CDC).
These measures were described in detail in the protocol [8], and
their use in this study is described in the Outcomes section.
Finally, participants completed the Trust in Science Inventory
a second time.

Outcomes
This study had 3 primary prespecified outcome measures
corresponding with 3 aims.

Aim One
Aim One investigated the effect of the intervention on
participants’ trust in science and scientists. That construct was
measured using the 21-item Trust in Science Inventory [14],
which produces a composite score ranging from 1 (low trust)
to 5 (high trust). Items in this inventory use Likert-type
responses to statements like, “When scientists change their mind
about a scientific idea, it diminishes my trust in their work,”
and “Scientists will protect each other even when they are
wrong.”

Aim Two
Aim Two investigated the effect of the intervention on
participants’ classification into misinformation believability
profiles [8]. To compute these profiles, participants were asked
how believable they found 7 different statements about

COVID-19, with responses ranging from 1 (extremely
unbelievable) to 7 (extremely believable). Four of these
statements were used in our prior research [7] and were derived
from an early list of COVID-19 misinformation [5]:

The rollout of 5G cellphone networks caused the
spread of COVID-19.

Bill Gates caused (or helped cause) the spread of
COVID-19 in order to expand his vaccination
programs.

COVID-19 was developed as a military weapon (by
China, the United States, or some other country).

The number of deaths from COVID-19 has been
exaggerated as a way to restrict liberties in the United
States.

A fifth statement referenced the explanation that is currently
considered most plausible by much of the scientific community
[39]:

SARS-Cov-2, the virus that causes COVID-19, likely
originated in animals [like bats] and then spread to
humans.

Finally, 2 additional misinformed statements about face masks
were added for this study [6,40,41]:

Wearing a face mask for COVID-19 prevention can
cause oxygen deficiency or carbon dioxide
intoxication.

Face masks are probably not helpful in reducing
COVID-19 spread in a community.

Statistical and logical classification of participants into latent
profiles based on the believability of misinformation was
demonstrated in our prior research [7]. However, the current
study occurred 8 months later than the original study and
included new statements about face masks. Thus, profiles were
computed based on the data from this study without
prespecifying the existence of any classes (see the Statistical
Analysis section). Then, all participants were assigned a numeric
variable corresponding with their latent profile membership.

Aim Three
Aim Three targeted the intervention’s effect on participants’
behavioral intentions to engage in the COVID-19 preventive
behaviors recommended by the CDC at the time of study
administration [8,42]. Questions were based on structured
measurement of intentions using the Theory of Planned Behavior
[43], with response options ranging from 1 (unlikely) to 7
(likely). We prespecified 6 intentions in the protocol:

Wash your hands often (or use a hand sanitizer that
contains at least 60% alcohol).

Avoid close contact (stay at least 6 feet from other
people).

Cover your mouth and nose with a mask when around
others.

Cover coughs and sneezes.

Clean and disinfect frequently touched surfaces daily.

Monitor your health daily.
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Intention to get vaccinated was not prespecified in the protocol
but was added as the seventh behavioral intention prior to
administration in response to availability of vaccination for
some US residents.

As planned, overall preventive behavioral intentions were
assessed using exploratory factor analysis (see the Statistical
Analysis section) to determine the number of factors present
and then by computing mean scores for each factor to serve as
outcomes. Intention to get vaccinated was analyzed as an
isolated outcome of interest in a separate study [44] but was
also included as a preventive behavior in this study’s factor
analysis.

Because they already had received at least one shot of the
vaccine, 49 participants were not asked to respond to the
question about intention to get vaccinated for COVID-19; data
for those individuals were imputed as a 7 (likely). Sensitivity
analyses were performed without imputing data for those 49
participants, which led to similar results and conclusions.
Therefore, imputed results were used in analyses throughout
the manuscript.

Covariates
Additional measures were added as covariates for analysis, as
prespecified, including political orientation and religious
commitment [7,45]; race, gender, age, and education level;
whether the participant had been diagnosed with (or believed
they had) COVID-19 [46]; perceived severity of contracting
COVID-19 and perceived ability to avoid contracting COVID-19
[47]; and normative belief about friends’and family’s avoidance
of crowded areas [48].

Due to evolving circumstances in the United States during this
study, a question about COVID-19 vaccination status was added
after the protocol was published. It read, “Vaccines to prevent
COVID-19 have been approved by the Food and Drug
Administration for use in the United States. The vaccines will
be available to different people at different times. Did you
already get a COVID-19 vaccine (at least one shot)?”

Statistical Analysis
We planned to recruit 1000 participants, which would allow
detection of small differences (Cohen d=0.18) with 80% power
and would be sufficient for both types of planned analysis, linear
mixed models (LMM) and path analyses [8].

Aim One
The primary outcome for Aim One, the effect of the infographic
intervention on trust in science, was analyzed using an LMM
controlling for all covariates (see the Outcomes section) with
a random intercept for the individual participant. The interaction
between study condition (intervention/control) and time
(pre/postintervention) was estimated using contrasts to obtain
the difference-in-difference using Kenward-Roger degrees of
freedom approximation.

Aim Two
For the first component of this aim, we examined believability
profiles for narrative statements about COVID-19 using latent
profile analysis. To select the number of classes, we reviewed

the Akaike information criterion (AIC), Bayesian information
criterion (BIC) and adjusted BIC, class size, entropy, and results
from the Vuong-Lo-Mendell-Rubin likelihood ratio test (LMR)
to examine improvements in model fit for k versus k-1 classes.

Next, we assigned a “profile” value to each participant based
on the profile to which they most closely belonged. That variable
was used as an outcome in the prespecified path analysis for
this aim, which investigated adjusted odds of being a member
of a less-scientific profile by examining the direct effect of the
intervention and the indirect effect of the intervention mediated
by trust in science, controlling for all other covariates. Finally,
we presented results in parallel, treating profile as a multinomial
variable (single model) and treating it as a dummy variable (one
model per identified profile).

To elucidate other potentially interesting connections between
the study variables, we conducted an exploratory, unplanned
multivariate logistic regression analysis using profile
membership as the outcome variable. All other variables served
as dependent predictors except pre-intervention trust in science
and having a professional diagnosis of COVID-19, which were
highly associated with postintervention trust and believing one
had been infected by COVID-19, respectively.

Aim Three
To determine the format of the outcome variable for this aim,
we first conducted exploratory factor analysis (maximum
likelihood with varimax rotation) to decide whether it was
appropriate to treat the behavioral intentions regarding
preventive behaviors as a monotonic scale [8]. Identification of
a solution was based on assessment of eigenvalues, parallel
analysis, factor loadings, and 2-dimensional spatial inspection.
The computed scale variable(s) were used as outcomes in the
prespecified path analyses for this aim, which computed the
direct effect of the intervention on intentions to perform
preventive behaviors and the indirect effect of the intervention
thereon mediated by misinformation belief profile, controlling
for all other covariates.

We computed exploratory path analyses to assess the influence
of trust in science on preventive behaviors, with a mediation
pathway through believability profile membership, with other
variables serving as covariates. These analyses were for
informative purposes only and were not used to generate any
causal inferences.

Role of the Funding Source
The funders of the study had no role in data collection, analysis,
interpretation, or writing of the report. As reported in the
protocol, grant reviewers made suggestions to improve study
rigor that were incorporated prior to study initiation. Grant
reviews were published alongside the protocol [8].

Results

Sample Characteristics
A representative panel of 1000 paid US respondents by gender,
age, and race/ethnicity was solicited from Prolific on January
22, 2021 [35]. In total, 1077 Prolific panel members accepted
the survey on the Prolific platform and accessed the Qualtrics

J Med Internet Res 2021 | vol. 23 | iss. 10 | e32425 | p. 6https://www.jmir.org/2021/10/e32425
(page number not for citation purposes)

Agley et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


study platform through January 24, 2021. The additional 77
cases included those who declined to participate after reading
the study information sheet (n=2); who were rejected for failing
a quality check (n=23); who exited the study (eg, closed their
internet browser) prior to the intervention, most often
immediately following a failed quality check (n=35); and who
successfully completed the study but for unknown reasons did
not request payment from Prolific (n=17). The latter 17 cases

were retained for analysis in the arm to which they were
randomly assigned, but random assignment beyond 1000
participants did not adhere to a 1:1 allocation ratio. The 3 cases
who did not provide complete data for trust in science were
excluded listwise from analyses except the latent profile
computation for Aim 2. Thus, the final sample included 511
individuals randomized to the intervention arm and 503
individuals randomized to the control arm (Figure 3; Table 1).

Figure 3. CONSORT flow diagram.
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Table 1. Sample characteristics by study arm.

Control (n=503)Intervention (n=511)Variable

Gender, n (%)

238 (47.3)251 (49.1)Male

261 (51.9)254 (49.7)Female

3 (0.6)3 (0.6)Nonbinary

1 (0.2)3 (0.6)Transgender

Race, n (%)

394 (78.3)388 (75.9)White

58 (11.5)74 (14.5)Black or African American

2 (0.4)3 (0.6)American Indian or Alaska Native

37 (7.4)35 (6.8)Asian

1 (0.2)0 (0.0)Native Hawaiian or Pacific Islander

11 (2.2)11 (2.2)Other

35 (7.0)28 (5.5)Hispanic or Latino/a (Yes), n (%)

COVID-19 diagnosis from a professional, n (%)

27 (5.4)15 (2.9)Yes

476 (94.5)496 (97.1)No/unsure

4.06 (3.35)4.15 (3.45)Religious commitment (1=low to 10=high), mean (SD)

4.15 (2.71)4.27 (2.78)Political orientation (1=liberal to 10=conservative), mean (SD)

5.50 (2.10)5.48 (2.14)Vaccination intentiona (1=unlikely to 7=likely), mean (SD)

6.41 (2.61)6.60 (2.72)Seriousness of contracting COVID-19 (1=not at all serious to 10=very serious), mean (SD)

3.27 (0.97)3.25 (0.98)Confidence avoiding COVID-19 (1=not very confident to 5=very confident), mean (SD)

5.72 (1.40)5.56 (1.51)Family/friends COVID-19 avoidance (1=strongly disagree to 7=strongly agree), mean (SD)

45.28 (16.19)45.50 (16.61)Age (years), mean (SD)

aData do not include imputed values of “7” for vaccinated individuals.

Aim One (Primary Outcome)
We hypothesized that exposure to the infographic intervention
would have a moderate, positive effect on trust in science. This
hypothesis was partly upheld. Our difference-in-difference

analysis suggested that, controlling for all covariates, viewing
the intervention infographic had a small, positive effect (0.03,
SE 0.01, t1000=2.16, P=.031) on trust in science (Table 2; Figure
4). Additional details from the model as well as parceled analytic
code are available in Multimedia Appendix 1.

Table 2. Contrast estimates for aim one.

PtdfSEEstimateContrast

>.9990.101048.170.030.00Control pre vs intervention pre

<.001–5.111000.000.01–0.04Control pre vs control post

<.001–8.231000.000.01–0.07Intervention pre vs intervention post

.90–0.691048.170.03–0.02Control post vs intervention post

.0312.161000.000.010.03Difference-in-difference (control pre-post) vs (intervention pre-post)
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Figure 4. Trust in science scores and 95% CIs.

Aim Two (Primary Outcome)

Computation of the Outcome Variable (Narrative
Believability Profiles)
Based on fit statistics (see Multimedia Appendix 1 for analytic
code), we selected a 3-class model for use in this study. The

primary metrics used to make this decision were the LMR test,
entropy, and correspondence with extant data and prior studies.
Table 3 and Figure 5 demonstrate the believability of narrative
statements across each of the 3 profiles.

Table 3. Standardized means for latent profiles of narrative believabilitya for aim two.

Profile Three (147/1017, 14.45%)Profile Two (42/1017, 4.13%)Profile One (828/1017, 81.42%)Statement

1.264.171.065G

2.753.541.14Gates/vaccine

3.864.381.49Masks—CO2 or O2 concerns

4.484.382.19Military weapon

5.514.391.39Restrict liberty

4.313.511.47Masks—not prevent spread

4.154.635.55Zoonotic

aBelievability scores ranged from 1 (Extremely unbelievable) to 7 (Extremely believable).
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Figure 5. Believability of narrative statements by latent profile. Believability scores range from 1 (Extremely unbelievable) to 7 (Extremely believable).

Profile One (828/1017, 81.42%), the largest class, was most
likely to believe the zoonotic narrative (mean 5.55) and found
most other narratives to be extremely unbelievable (mean
<1.50), with the exception of the military weapon narrative
(mean 2.19).

Profile Two (42/1017, 4.13%) was the smallest class and
considered all the narratives to be moderately plausible, within
a narrow band of believability scores (mean >3.50 and <4.65).

Profile Three (147/1017, 14.45%) reported differential
believability across narratives. Members reported that the 5G
theory (mean 1.26) and Bill Gates/vaccine narrative (mean 2.75)
were extremely or mostly unbelievable. The misinformed idea
that face masks can cause carbon dioxide intoxication or oxygen
deficiency was perceived to be somewhat more believable (mean
3.86), as were the scientifically implausible statements that

masks are not helpful in reducing COVID-19 spread (mean
4.31) or that COVID-19 was developed as a military weapon
(mean 4.48). Believability of the zoonotic narrative also fell
within this range (mean 4.15). For this profile, the most
believable narrative was that the number of deaths from
COVID-19 was exaggerated as a way to restrict liberties in the
United States (mean 5.51).

Impact of the Intervention on Profile Membership
We hypothesized that exposure to the intervention would have
a small, negative effect on the likelihood of belonging to a
profile that believed misinformed or implausible narratives and
that it would be partially mediated by trust in science. This
hypothesis was partly upheld, as there was no evidence of a
direct effect, but some evidence of a mediated effect (Table 4;
Figure 6).
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Table 4. Path analysis of the effects of the intervention on the believability profile.

AICaP valuezUpper CILower CISEOdds ratioDependent variables

416.88Multinomial analysis: Profile Twob

.92–0.101.640.280.350.96Direct effect

.051–1.951.000.840.040.92Indirect effect

.74–0.341.520.250.320.89Total effect

Multinomial analysis: Profile Threeb

.91–0.111.410.540.220.98Direct effect

.07–1.821.000.900.020.95Indirect effect

.75–0.321.350.520.210.93Total effect

Binomial analysis: Profile Onec

214.38.880.161.450.610.211.03Direct effect

.0452.011.121.000.031.06Indirect effect

.660.441.540.650.231.10Total effect

Binomial analysis: Profile Twoc

–147.42.990.011.700.310.351.00Direct effect

.07–1.841.000.860.040.93Indirect effect

.85–0.191.590.280.330.94Total effect

Binomial analysis: Profile Threec

146.461.000.001.430.560.221.00Direct effect

.12–1.561.010.930.020.97Indirect effect

.88–0.151.390.550.220.97Total effect

aAIC: Akaike information criterion.
bReference is Profile One.
cEach profile is a dummy variable.

Figure 6. Influence of the intervention on the likelihood of being classified in Profile One, adjusted for age, gender, race, vaccination status, political
orientation, perceived severity, perceived susceptibility, family behavior, prior diagnosis, prior infection, and pre-intervention trust. OR: odds ratio.

In the multinomial analysis, controlling for all covariates, the
direct effect of viewing the intervention on belonging to Profile
Two (versus Profile One) was nonsignificant (adjusted odds
ratio [AOR] 0.96, SE 0.35, 95% CI 0.28-1.64, z=–0.10, P=.92),
but there was some evidence of a marginal indirect effect

mediated by trust in science (AOR 0.92, SE 0.04, 95% CI
0.84-1.00, z=–1.95, P=.051). Results for Profile 3 (versus Profile
One) were similar, with a nonsignificant direct effect (AOR
0.98, SE 0.22, 95% CI 0.54-1.41, z=–0.11, P=.91) and limited
evidence of a marginal indirect effect mediated by trust in
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science (AOR 0.95, SE 0.02, 95% CI 0.90-1.00, z=–1.82,
P=.07).

To support disambiguation of the indirect effect, we also
conducted binomial path analyses using each profile as a dummy
variable. The direct effect of viewing the intervention on
belonging to Profile One was nonsignificant (AOR 1.03, SE
0.21, 95% CI 0.61-1.45, z=0.16, P=.88), but there was evidence
of a small indirect effect mediated by trust in science (AOR
1.06, SE 0.03, 95% CI 1.00-1.12, z=2.01, P=.045). Full output
from the model and analytic code are available in Multimedia
Appendix 1.

Aim Three (Primary Outcome)

Computation of the Outcome Variable (COVID-19
Preventive Behaviors)
Exploratory factor analysis did not clearly indicate whether the
7 preventive behaviors formed a monotonic or 2-factor scale.
Discrimination based on eigenvalues favored a 2-factor solution,

which cumulatively explained 46% of the variance (χ2
8=124.1,

P<.001), while parallel analysis favored a 1-factor solution,

which explained 37% of the variance (χ2
14=357.1, P<.001).

Conceptually, both approaches were logical.

In the 2-factor solution, handwashing, cleaning and disinfecting
surfaces daily, and monitoring one’s health daily cleanly loaded
on factor 1, while avoiding close contact, covering one’s mouth
and nose with a mask when around others, and getting
vaccinated for COVID-19 loaded on factor 2, with covering
coughs and sneezes loading weakly on both factors, but more
strongly (0.41) on factor 1. The 95% CIs for the Cronbach alpha
were 0.68-0.73 for factor 1 and 0.64-0.71 for factor 2. In the
1-factor solution, variable loadings ranged from 0.48 to 0.71,
and the 95% CIs for the Cronbach alpha was 0.74-0.79.

As prespecified [8], the factor analysis guided further analyses
for this aim. Given the conceptual complexity, we opted to
complete separate analyses for both 1-factor and 2-factor
preventive behavior solutions and to interpret them in tandem.

Impact of the Intervention on Behavioral Intentions
We hypothesized that exposure to the intervention would have
a small, positive effect on behavioral intentions that would be
partially mediated by believability profile membership (Figure
7). Controlling for all covariates, we found no evidence that the
intervention affected behavioral intentions to engage in
COVID-19 preventive behavior using either a 1-factor or
2-factor outcome (Tables 5, 6, and 7).

Figure 7. Hypothesized causal pathway of the intervention (not supported), adjusted for age, gender, race, vaccination status, political orientation,
perceived severity, perceived susceptibility, family behavior, prior diagnosis, prior infection, and pre-intervention trust.
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Table 5. Path analysis of effects of the intervention on preventive behaviors (1-factor solution).

AICaP valuezUpper CILower CISECoefficientMediators

Multinomial analysis: Profile Twob

3018.13.39–0.850.05–0.120.04–0.04Direct effect

.820.230.49–0.380.220.05Indirect effect

.950.060.46–0.430.230.01Total effect

Multinomial analysis: Profile Threeb

.39–0.850.05–0.120.04–0.04Direct effect

.820.240.33–0.260.150.04Indirect effect

1.000.000.30–0.300.160.00Total effect

Binomial analysis: Profile Onec

2814.37.39–0.860.05–0.120.04–0.04Direct effect

.730.350.31–0.220.130.05Indirect effect

.940.070.29–0.270.140.01Total effect

Binomial analysis: Profile Twoc

2528.63.48–0.700.06–0.120.05–0.03Direct effect

.920.100.31–0.280.150.01Indirect effect

.91–0.110.29–0.320.16–0.02Total effect

Binomial analysis: Profile Threec

2763.44.45–0.760.05–0.120.04–0.03Direct effect

.930.080.27–0.240.130.01Indirect effect

.87–0.170.25–0.290.14–0.02Total effect

aAIC: Akaike information criterion.
bReference is Profile One.
cEach profile is a dummy variable.
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Table 6. Multinomial path analysis of the effects of the intervention on preventive behaviors (2-factor solution), in which the reference is Profile One.

AICaP valuezUpper CILower CISECoefficientMediator

3376.55Factor 1bas the dependent variable: Profile Two

.53–0.620.07–0.130.05–0.03Direct effect

.820.230.28–0.220.130.03Indirect effect

.98–0.020.26–0.270.140.00Total effect

Factor 1b as the dependent variable: Profile
Three

.53–0.620.07–0.130.05–0.03Direct effect

.810.240.15–0.120.070.02Indirect effect

.86–0.180.15–0.180.09–0.02Total effect

3440.75Factor 2c as the dependent variable: Profile Two

.42–0.810.06–0.150.05–0.04Direct effect

.820.230.77–0.610.350.08Indirect effect

.920.110.73–0.660.350.04Total effect

Factor 2c as the dependent variable: Profile
Three

.42–0.810.06–0.150.05–0.04Direct effect

.810.240.57–0.440.260.06Indirect effect

.940.070.53–0.490.260.02Total effect

aAIC: Akaike information criterion.
bPreventive behaviors 1, 4, 5, and 6.
cPreventive behaviors 2, 3, and 7.
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Table 7. Binomial path analysis of the effects of the intervention on preventive behaviors (2-factor solution), in which each profile is a dummy variable.

AICaP valuezUpper CILower CISECoefficientMediator

Factor 1b as the dependent variable: Profile One

3172.83.53–0.620.07–0.130.05–0.03Direct effect

.730.350.15–0.100.060.02Indirect effect

.91–0.120.15–0.170.08–0.01Total effect

Factor 1b as the dependent variable: Profile Two

2820.14.57–0.570.07–0.130.05–0.03Direct effect

.920.090.19–0.170.090.01Indirect effect

.84–0.200.19–0.230.11–0.02Total effect

Factor 1b as the dependent variable: Profile Three

3100.05.56–0.580.07–0.130.05–0.03Direct effect

.930.080.12–0.110.060.00Indirect effect

.74–0.330.13–0.180.08–0.03Total effect

Factor 2c as the dependent variable: Profile One

3237.87.42–0.810.06–0.150.05–0.04Direct effect

.730.350.52–0.360.230.08Indirect effect

.880.150.49–0.420.230.04Total effect

Factor 2c as the dependent variable: Profile Two

3020.59.56–0.590.08–0.150.06–0.03Direct effect

.920.100.46–0.420.220.02Indirect effect

.96–0.050.44–0.470.23–0.01Total effect

Factor 2c as the dependent variable: Profile Three

3203.54.49–0.690.07–0.150.05–0.04Direct effect

.930.080.46–0.420.230.02Indirect effect

.94–0.080.44–0.480.23–0.02Total effect

aAIC: Akaike information criterion.
bPreventive behaviors 1, 4, 5, and 6.
cPreventive behaviors 2, 3, and 7.

Secondary Outcomes

Exploratory Multivariate Logistic Regression on Profile
Membership
Independent of the path analysis, we investigated what factors
were associated with classification in each of the 3 belief
profiles. Each 1-point movement toward political conservatism
on a 10-point scale was associated with 1.39 adjusted odds of

belonging to Profile Three versus Profile One (χ2
1=40.52, 95%

CI 1.25-1.53, P<.001), and each 1-point increase in perceived
severity of COVID-19 was associated with 0.82 adjusted odds

of belonging to Profile Three versus Profile One (χ2
1=19.04,

95% CI 0.75-0.90, P<.001). Each additional year of age was
associated with a slight decrease in adjusted odds (0.972) of

belonging to Profile Two versus Profile One (χ2
1=4.65, 95%

CI 0.95-1.00, P=.031).

Finally, each 1-point increase in trust in science was associated
with substantially lower adjusted odds of belonging to Profile
Three (0.21) or Profile Two (0.14) compared with Profile One

(Profile Three: χ2
1=55.57, 95% CI 0.14-0.31, P<.001; Profile

Two: χ2
1=39.20, 95% CI 0.08-0.26, P<.001). See Multimedia

Appendix 1 and Multimedia Appendix 2 for all outputs and
code.

Exploratory Path Analysis of the Association Between
Trust in Science and Preventive Behavioral Intentions
We computed exploratory path analyses to assess the influence
of trust in science on preventive behaviors, with a mediation
pathway through believability profile membership. In the
1-factor preventive behavior model treating believability Profile
One as a dummy variable, there was a significant direct effect
(0.46, SE 0.11, 95% CI 0.24-0.69, z=4.05, P<.001) of trust in
science on preventive behavior, as well as a significant indirect
effect mediated by believability profile (1.28, SE 0.36, 95% CI
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0.57-1.99, z=3.53, P<.001). Similar outcomes were observed
for the 2-factor model (see Multimedia Appendix 1 and
Multimedia Appendix 2). These specific findings were
correlational, not causal.

Discussion

This study provides preliminary evidence and a proof-of-concept
for using infographics that truthfully address underlying reasons
why a person might not trust science or scientists to (1) improve
trust in science and (2) provide inoculation against COVID-19
misinformation. However, observed effects were small, as
expected for a short, passive, and inexpensive intervention.
Much remains to be learned in this area of research. Here, we
discuss the main findings separately by study aim, provide
additional interpretation of exploratory analyses, and make
recommendations for future work.

Aim One

Principal Finding
This study found that viewing an infographic designed to
truthfully address underlying reasons why a person might not
trust science or scientists [37] once, for a minimum of 60
seconds, caused a small aggregate increase in participants’
overall trust in science.

Interpretation
The scale used in this study measured trust in science as a
composite from 21 questions to yield a score from 1 to 5. We
posit that the small difference-in-difference improvement
estimate (+0.03) is meaningful due to the simplicity of the
intervention and the ease with which such an intervention could
be deployed to large numbers of people. Especially given recent
research indicating that aggregate social trust in science may
affect variables like vaccine confidence beyond individual-level
trust [49], we believe this finding merits replication research.
At the same time, though trust in science is a worthy concept
to study in and of itself, we were particularly interested in the
degree to which changing trust might affect misinformation or
behavioral intentions. This aim simply established that it is
plausible that a brief, single exposure to an infographic can
improve trust in science.

Aim Two

Principal Finding
We found some evidence that viewing an infographic designed
to truthfully address underlying reasons why a person might
not trust science or scientists [37] once, for a minimum of 60
seconds, may have had a very small indirect effect on belief in
COVID-19 misinformation.

Interpretation
There is ongoing discussion among methodologists and
metascientists as to how to interpret mediation effects in terms
of causal attribution, especially when the direct and total effects
are nonsignificant. In general, we can think of a direct effect as
proposing that “X is regularly followed by Y,” while an indirect
effect suggests “Y if and only if A” [50]. Here, X is “viewing
the infographic about science,” and Y is “belonging to the

scientific latent belief profile,” while A is “an increase in trust
in science and scientists.” We did not find any evidence of a
direct effect or total effect—that is, viewing our intervention
infographic was not regularly followed by increased likelihood
of belonging to the scientific profile, nor was it sufficient for
establishing increased likelihood of belonging to that profile.
However, the mediation effect (in this case, OR 1.06) suggests
that viewing the intervention resulted in increased likelihood
of belonging to the scientific profile if and only if viewing the
intervention also increased trust in science to a sufficient degree.
In conjunction with the main finding from Aim One, this
supports the plausibility of the intervention functioning in this
manner.

Because this study used a randomized, controlled experimental
design and included numerous covariates, endogeneity bias was
not a substantive concern in interpretation [51,52]. Further, the
sample was drawn to be nationally representative of the US
population by age, sex, race, and ethnicity [35], attenuating but
not eliminating concerns about generalizability [53]. Given the
complexity of the topic, further investigation of this relationship
as well as experimental replication are both needed before
drawing any sort of definitive conclusion.

That noted, we encourage such research to be undertaken with
some urgency. This work has meaningful, practical application
if the findings hold true. While fact checking can reduce belief
in misinformation, it is not likely feasible to respond to the
amount and variability that is produced, even for a single topic
like COVID-19 [27]. Further, the type and nature of
misinformation can rapidly shift in unexpected ways. For
example, during revision of this manuscript, the Mississippi
State Department of Health issued a warning that 70% of recent
calls to their Poison Control Center were related to ingesting
livestock or animal formulations of ivermectin [54]. The
comparative advantage of the type of trust-mediated prophylaxis
proposed and tested here (versus debunking or fact checking)
is that it does not require addressing each new misinformed
claim. In that sense, such interventions affecting believability
of misinformation might work well alongside interventions to
reduce the likelihood of sharing it [32,33].

Aim 3

Principal Finding
Viewing an infographic designed to truthfully address
underlying reasons why a person might not trust science or
scientists [37] once, for a minimum of 60 seconds, did not
significantly affect behavioral intentions to engage in COVID-19
preventive behaviors.

Interpretation
We hypothesize, but cannot be certain, that this null finding
emerged because this specific infographic addressed a
component of rational epistemic trust (eg, why it makes sense
to trust scientific findings even when they change over time)
[16] but did not address recommendation trust (eg, did not offer
any reassurance that scientists make recommendations that are
in the best interests of others) [19]. Our exploratory analyses
did indicate a significant, strong association between trust in
science and COVID-19 preventive behavioral intentions,
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indicating the plausibility that a strategic effect targeting that
recommendation trust might affect such intentions. It is also
possible, of course, that behavioral intentions are sufficiently
complex and difficult to change that a single infographic
viewing, regardless of content, would not “move the needle”
[55].

Exploratory Findings
This study also identified potentially valuable information about
how beliefs about COVID-19 may cluster. In May 2020, we
identified a single latent profile that endorsed the zoonotic
narrative and generally found other narratives unbelievable and
3 profiles that believed misinformed narratives to varying
degrees but also believed the zoonotic narrative [7]. The present
study was conducted in a different information ecosystem
(around 8 months later) and included 2 additional narratives
about face masks.

Two major findings about profiles were consistent between our
studies: There was a single profile endorsing the zoonotic
narrative and generally disbelieving other narratives, and no
narrative profile rejected the zoonotic explanation. However,
there were only 2 nonscientific profiles in this study rather than
3, and interpretation of their meaning was clearer than in the
original study. The smallest profile (Profile Two) found all
narratives to be at least somewhat believable. In contrast, Profile
Three was comparatively less likely to endorse narratives that
were subjectively less political in the United States (eg, 5G,
Gates/vaccine) and more likely to believe other narratives (eg,
restrict liberty, masks don’t prevent spread). It is unclear whether
this difference was due to the addition of the face mask
narratives, a change in the information ecosystem, the use of a
nationally representative sample, or a different reason altogether.

Notably, in our unplanned regression analysis, trust in science
remained the most substantive predictor of profile membership,
as in May 2020. However, unlike our previous study, in which
political orientation was not associated with profile membership,
here we found that conservative political orientation was

associated with classification in Profile Three versus Profile
One, but not with classification in Profile Two. Along with the
profile analysis itself, this suggests the possibility of 2
“typologies” of misinformation belief, 1 that is apolitical and
may believe even scientifically impossible narratives (eg, finding
all narratives to be plausible) and 1 that is associated with
political orientation and that believes misinformation somewhat
selectively, applying an alternate decision heuristic in
determining what is plausible.

Limitations and Future Directions
This study investigated multiple outcomes and so there was
some increased risk of Type 1 error. For this reason, we
interpreted the outcomes cautiously and recommend replication
prior to any definitive determination about these findings. At
the same time, the primary outcomes were prespecified and
were assessed using a limited number of models. A limitation
specific to the third aim is that behavioral intentions are not
behaviors, so this study should not be interpreted to assess the
effect of the intervention on actual behavior. In addition, we
opted to limit the allowable content in the intervention. As we
note in our pilot study [37], we very purposefully used
messaging about science and scientists that we believed to be
truthful. Our intention specifically was not to “manipulate” trust
in science but rather to determine whether exposure to an easily
digested, truthful accounting had a causal effect.

There were numerous decisions made in the course of
developing the single image used as the intervention in this
study, as well as the structure of the intervention. Given this
proof-of-concept, there is much room to explore alternative
approaches, including, but not limited to, investigating whether
a brief video would be more efficacious than a static image, the
art style or amount of wording matters, embedding the image
as an ad in social media (eg, repeated natural exposures) over
a period of time affects the results, and comparison to real
negative messages about science would produce similar results
to this study, which used an active placebo about dogs.
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