
Original Paper

Quantifying the Severity of Adverse Drug Reactions Using Social
Media: Network Analysis

Adam Lavertu1,2, PhD; Tymor Hamamsy3, MS; Russ B Altman2,4,5, MD, PhD
1Biomedical Informatics Training Program, Stanford University, Stanford, CA, United States
2Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
3Center for Data Science, New York University, New York, NY, United States
4Department of Bioengineering, Stanford University, Stanford, CA, United States
5Department of Genetics, Stanford University, Stanford, CA, United States

Corresponding Author:
Russ B Altman, MD, PhD
Department of Bioengineering
Stanford University
Shriram Center Room 213
443 Via Ortega MC 4245
Stanford, CA, 94305
United States
Phone: 1 650 725 0659
Email: rbaltman@stanford.edu

Abstract

Background: Adverse drug reactions (ADRs) affect the health of hundreds of thousands of individuals annually in the United
States, with associated costs of hundreds of billions of dollars. The monitoring and analysis of the severity of ADRs is limited
by the current qualitative and categorical systems of severity classification. Previous efforts have generated quantitative estimates
for a subset of ADRs but were limited in scope because of the time and costs associated with the efforts.

Objective: The aim of this study is to increase the number of ADRs for which there are quantitative severity estimates while
improving the quality of these severity estimates.

Methods: We present a semisupervised approach that estimates ADR severity by using social media word embeddings to
construct a lexical network of ADRs and perform label propagation. We used this method to estimate the severity of 28,113
ADRs, representing 12,198 unique ADR concepts from the Medical Dictionary for Regulatory Activities.

Results: Our Severity of Adverse Events Derived from Reddit (SAEDR) scores have good correlations with real-world outcomes.
The SAEDR scores had Spearman correlations of 0.595, 0.633, and −0.748 for death, serious outcome, and no outcome, respectively,
with ADR case outcomes in the Food and Drug Administration Adverse Event Reporting System. We investigated different
methods for defining initial seed term sets and evaluated their impact on the severity estimates. We analyzed severity distributions
for ADRs based on their appearance in boxed warning drug label sections, as well as for ADRs with sex-specific associations.
We found that ADRs discovered in the postmarketing period had significantly greater severity than those discovered during the
clinical trial (P<.001). We created quantitative drug-risk profile (DRIP) scores for 968 drugs that had a Spearman correlation of
0.377 with drugs ranked by the Food and Drug Administration Adverse Event Reporting System cases resulting in death, where
the given drug was the primary suspect.

Conclusions: Our SAEDR and DRIP scores are well correlated with the real-world outcomes of the entities they represent and
have demonstrated utility in pharmacovigilance research. We make the SAEDR scores for 12,198 ADRs and the DRIP scores
for 968 drugs publicly available to enable more quantitative analysis of pharmacovigilance data.
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Introduction

Background
Adverse drug reactions (ADRs) are among the leading causes
of mortality and morbidity in the United States, affecting
hundreds of thousands of people and costing more than US $500
billion every year in the United States alone [1,2]. An ADR is
characterized as “an appreciably harmful or unpleasant reaction
resulting from an intervention related to the use of a medicinal
product” [3]. A drug’s ADRs are primarily derived from clinical
trial data and augmented through postmarketing surveillance
[4]. The ADR labeling process for each drug is based on the
frequency of the ADRs in the treated populations and the
severity of the outcomes associated with each ADR. The severity
of an ADR is traditionally classified into one of three categories
characterized by where it appears on the label: boxed warning,
warnings and precautions, or adverse reactions, listed in
decreasing order of associated severity [5]. Boxed warnings
refer to “serious warnings, particularly those that lead to death
or serious injury.” Under the existing system, death is severe
enough to warrant a boxed warning, but so is restlessness;
therefore, it would be useful for prescribers, patients, and
researchers to have systems for recognizing that death is more
severe than restlessness [6]. Similarly, warnings, precautions,
and adverse reactions include a diverse spectrum of ADRs, and
it can be difficult for patients, prescribers, and researchers to
compare the risk profiles of different drugs.

The existing categorical definitions of ADR severity limit the
ability of researchers and regulators to apply quantitative
methods to regulatory and pharmacovigilance efforts. For
instance, tracking the regulatory performance of drug safety
efforts is primarily achieved through a categorical analysis of
ADR case outcomes and drug label changes. The creation of a
quantitative numerical scale that provides a relative severity
score for each ADR would enable these analyses to leverage
the powerful tools of quantitative decision and utility theory.

The pioneering study by Tallarida et al [7] examined the ability
to create a continuous ADR severity scale. A total of 53
physicians were interviewed and asked to estimate the
acceptable probabilities in a set of scenarios specifying
risk-benefit trade-offs. These probabilities were then used to
define a set of equations and the expected benefit to the patient
in each scenario. Solving the system of equations resulted in
numerical severity weights that were relative to the lowest ADR
severity. The effort took approximately 45 minutes per interview
and resulted in relative scores for seven ordinal categories of
ADR severity.

The study by Gottlieb et al [8] expanded this ADR severity
ranking task using the crowdsourcing platform Amazon
Mechanical Turk. Individual workers were presented with a
pair of ADRs and a link to more information on these ADRs
and asked to select the ADR that they perceived to be more
severe. Over 146 person-days, 2589 workers produced severity
comparisons for 126,512 ADR pairs composed from 2929
unique ADRs. A linear programming algorithm was used to
create a unified ADR severity ranking. To validate the ranking,
the ADR severities were correlated with ADR case outcomes

from the Food and Drug Administration Adverse Event
Reporting System (FAERS). The highest Spearman correlation,
ρ=0.53, was associated with the proportion of cases resulting
in death. This effort drastically increased the number of ADRs
included in the severity ranking but was costly in terms of
human time, labor, and money.

Recent work in natural language processing has resulted in
numerous methods for creating vectorized word representations
(also known as embeddings) that capture semantic meaning in
a dense numerical representation [9,10]. These methods rely on
the distributional hypothesis that word meaning is captured by
the contexts in which a word appears [11]. The practical
implication of the distributional hypothesis is that training a
model to predict word context (ie, co-occurring word pairs)
results in model weights that capture the meaning of the word.
These model weights can then be used as a numerical
representation of a given word.

Word embeddings learned on social media data sets have been
deployed for pharmacovigilance previously but not for the
purpose of exploring ADR severity [12]. By using a social media
corpus generated by the general public, especially on
pseudoanonymous social media platforms such as Reddit,
researchers can capture meanings that reflect people’s unfiltered
experiences of, and opinions about, health and disease [13,14].
Investigating the utility, benefits, and challenges of different
social media platforms and methods for pharmacovigilance has
been an area of active research [15]. Previous research on
Twitter data annotated samples of tweets for personal medication
intake versus individuals simply mentioning a drug [16,17].
Together, the 2 studies found that approximately 40% of the
tweets mentioning a drug indicated that the individual tweeting
was possibly personally taking that medication. Here, we
focused on ADRs, but it is likely that the individuals discussing
ADRs on social media have more direct experience with the
ADRs, either by being directly affected by the ADRs or being
informed about the ADR experience by a close relation, than
individuals selected from a pool of crowdworkers. Word
embeddings trained on a corpus generated by the general public
can then be leveraged as a metric for public opinion in a similar
fashion to previous crowdsourced approaches. We used the
RedMed embeddings trained on more than 580 million
health-enriched Reddit comments from more than 10 million
users [18]. These numbers dwarf the number of votes gathered
in a typical crowdsourcing experiment and are therefore
potentially more indicative of a representative population’s
perception of ADRs than traditional survey-based methods.

Objective
In this study, we used publicly available word embeddings and
a network-based label propagation method to estimate the
severity of 12,198 ADR concepts from Medical Dictionary for
Regulatory Activities (MedDRA) terminology. The resulting
Severity of Adverse Events Derived from Reddit (SAEDR)
scores were validated against human rankings as well as FAERS
case outcomes. We used System Organ Classes (SOCs) and
other groupings within the MedDRA to examine how the
SAEDR severity scores differ at various levels of abstraction
and within ADR categories. We used the SAEDR scores to

J Med Internet Res 2021 | vol. 23 | iss. 10 | e27714 | p. 2https://www.jmir.org/2021/10/e27714
(page number not for citation purposes)

Lavertu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


compare the severity among ADRs in different sections of drug
labels, ADRs with disproportionate rates between sexes, and
ADRs discovered at different stages of drug development. We
combined the SAEDR scores with frequency information from
Side Effect Resource (SIDER)–derived drug labels to generate
drug-specific aggregate side effect severity scores [19]. The
SAEDR scores enabled new analyses that were not possible
with the existing categorical classifications.

Methods

Data Sources and Preparation

ADR Terms and Phrases
We sourced our ADR phrases and their synonyms from the
lowest-level terms within the terminology of the MedDRA,
version 22 [20]. We filtered terms based on their semantic types
within the Unified Medical Language System Metathesaurus
[21] and retained terms of the following semantic types: Disease
or Syndrome (T047), Finding (T033), Neoplastic Process
(T191), Injury or Poisoning (T037), Pathologic Function
(T046), Sign or Symptom (T184), Mental or Behavioral
Dysfunction (T048), and Congenital Abnormality (T019).

Word-Embedding Model
We used the word-embedding model from the RedMed project
[18]. This model was selected because it was directly optimized
for medical term similarity and was trained on a corpus of Reddit
comments generated by the public and preprocessed to maximize
the inclusion of ADR terms. ADRs that were a phrase such as
“abdominal pain” were represented using the average embedding
of all terms within the phrase. In previous work, not presented
here, we found that the use of average embeddings, for example,
“abdominal” + “pain”/2, produced better results than the use of
embedded phrases, for example, “abdominal pain.”

Gottlieb Severity Data
We used the crowdsourced severity estimates included within
the supplement of the study by Gottlieb et al [8], which included
2929 ADRs with rank scores.

FAERS Data
All adverse drug event data were downloaded in JSON format
from the openFDA website, which includes data from both the
Legacy Adverse Event Reporting System and the FAERS. Data
were retrieved on August 8, 2020, and included adverse event
case reports up to June 30, 2020. Drug reactions were
normalized to the MedDRA, version 22. We filtered to unique
case IDs using the provided duplicated flag to remove duplicate
reports and case reports that did not originate in the United
States. Case outcomes were normalized according to the
following schema: “Death”: {“Death”}, “Serious Outcome”:
{“Life-Threatening,” “Hospitalization,” “Other Serious,”
“Required Intervention”}, and “Disability”: {“Congenital
Anomaly,” “Disability”}. We created an additional outcome
category denoted No Outcome for cases with no reported
outcome. We felt the need to create this category because the
FAERS only allows for the reporting of serious case outcomes,
and there is information in the absence of a serious outcome
being reported. The outcome proportions for each ADR were
calculated by dividing the number of cases reporting that ADR
for a particular outcome by the total number of cases reporting
that ADR.

FAERS Severity Rankings
For the ranking of ADRs based on the FAERS data, we ranked
ADRs based on their marginal likelihood to be included in a
case with death or serious outcome as the reported case outcome.
This was calculated by dividing the number of cases with the
ADR that resulted in death or serious outcome by the number
of cases without the ADR that resulted in these outcomes.

Semisupervised Severity Propagation

Overview
Given a word-embedding model and a set of initial, potentially
noisy, seed-word labels for the severe and benign categories,
we sought to propagate severity information over the rest of the
vocabulary, similar to the sentiment propagation methods
described in the study by Hamilton et al [22]. A graphical
overview of this method is presented in Figure 1.
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Figure 1. Overview of the network method for estimating ADR severity from word embeddings. Word embeddings for 28,113 ADR terms and phrases
were extracted from the RedMed word-embedding model. A network is constructed based on nearest-neighbors in the embedding space. A subset of
nodes is labeled as severe or benign ADRs, and random walks from these labeled nodes are conducted. The Severity of Adverse Events Derived from
Reddit scores for each ADR are calculated based on the relative number of encounters in random walks initiated from severe versus benign nodes. ADR:
adverse drug reaction.

Lexical Network Creation
The network was constructed by connecting words (nodes) with
edges to their k-nearest neighbors based on the cosine distance
between their embeddings. The corresponding edge weight was
set to the cosine similarity of the two words (ie, the edge weight
increases with term similarity).

Seed Selection From Terminology
An initial set of ranked seed terms was labeled. Biomedical
terminologies and ontologies often contain many terms that are
highly similar to each other. To reduce the effect of lexical
similarities on label propagation, we filtered the benign and
severe seed terms based on the edit ratio among the terms in
each list, as defined by the ratio function in the
python-Levenshtein package [23]. Only terms that had an edit
ratio >0.5 from a higher-ranking term were included in the list,
resulting in a reduced list of lexically distinct seed terms. Both
benign and severe seed term lists were truncated to the minimum
seed term list size of both seed sets.

For instance, if the severe seed term list had [“death,” “cardiac
arrest acute,” “cardiac arrest”] in rank order and the benign seed
term list had [“dry skin,” “yawning,” “cold sweat”] in rank
order, then, after lexical filtering, the severe seed term list would
be [“death,” “cardiac arrest acute”], and the benign seed term
list would remain unchanged. The final seed term lists would
be truncated to the minimum seed term list size, resulting in a
severe seed term list [“death,” “cardiac arrest acute”] and a
benign seed term list [“dry skin,” “yawning”].

Random Walks From Seed Nodes
Given a network and a set of seed nodes, we modified code
from node2vec [24] to perform 5000 weighted random walks
of length 200 from each seed node. We selected the number of
random walks to ensure that all nodes within the graph were
visited a nonzero number of times. We noted that this value

needs to be empirically determined and will likely change based
on the size and structure of the network.

SAEDR Score Calculation
The SAEDR score of a given node u is calculated using the
following formula:

uSAEDR = su / su + bu

In the formula, su and bu are the respective number of times that
node u is encountered in a random walk from a severe node or
a benign node. If node u was contained within one of our seed
node sets, self-visits during the random walks were excluded
from the calculation. To increase the robustness of these score
estimates, we performed 10,000 iterations of bootstrap sampling
[25] of the random walks, and the average of these bootstrap
estimates was calculated. The SAEDR scores from multiple
seed sets were averaged at the preferred term (PT) level, and
the final combined scores were normalized to a zero to one
range.

Hyperparameter Tuning for Severity Propagation
We randomly split the crowdsourced severity data into training
(1778/2369, 75.05%) and test (591/2369, 24.95%) sets, with
284 ADRs dropped because of mapping. We performed a grid
search over the number of neighbors used to construct the lexical
network {2, 5, 10, 15, 20, 25, 30} and the percentage of nodes
to label for the severe and benign seed nodes {2, 5, 10,15, 20,
25}. For example, an individual run would use the 25 nearest
neighbors and 5% at each end of the training severity rank (ie,
the top 5% most severe and bottom 5% least severe ADRs). We
ultimately selected the parameters with the highest Spearman
correlation with the training data.

ADR Discovery Group Analysis
We analyzed the SAEDR score distributions of several different
categories of ADRs.
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ADRs Included in a Boxed Warning
We downloaded the counts for the number of appearances of
ADRs in the boxed warning section of drug labels from the
supplement of the study by Wu et al [26]. ADRs that appear on
a drug label based on their appearance in the SIDER but were
not included in the list provided in the study by Wu et al [26]
were considered to not have appeared in a boxed warning section
[19].

ADRs With Disproportionate Reporting Between Sexes
A set of ADRs shown to have sex differences was identified
from the supplement of the study by Chandak et al [27]. We
filtered out ADRs considered borderline (mean log(ROR)<0.4
and mean log(ROR)>−0.4), as defined in the original study by
Chandak et al [27]. Their study reported ADRs at the high-level
group term (HLGT) level within the MedDRA, whereas our
severity estimates were generated at the PT level. There are
many PT ADRs per HLGT; therefore, all PTs within the
specified HLGT terms were averaged to create a single SAEDR
score for that HLGT. We did not use the drug information except
to note distinct instances of sex-specific HLGTs (ie, HLGTs
associated multiple times with different drugs each time).

ADRs Discovered at Different Stages of Drug
Development
ADRs discovered at the clinical trial stage were identified based
on their inclusion in a drug label in the SIDER with a
non-postmarketing ADR frequency [19]. Postmarketing ADRs
were identified as those included on drug labels with
postmarketing frequency information and no clinical trial
frequency information. OFFSIDES and TWOSIDES ADRs
were discovered from the FAERS data by looking at
disproportionate reporting after correcting for the effects of
demographics and other case information [28]. The OFFSIDES
and TWOSIDES sets are the results of a study by Tatonetti et
al [28] in which propensity score matching was used to identify
matched cases and controls among the FAERS cases and to also
identify potentially novel ADRs based on disproportional
reporting metrics. This was done to discover ADRs that were
associated with a single drug, OFFSIDES, as well as ADRs that
were potentially the result of drug-drug interactions,
TWOSIDES. We considered both OFFSIDES and TWOSIDES
ADRs discovery-stage postmarketing ADRs because they have
not yet been included in the drug labeling.

Drug-Risk Profile Scores
The drug-risk profile (DRIP) scores were calculated based on
our SAEDR score and the frequency of each ADR for a given
drug. The DRIP score for a given drug is the sum of the severity
multiplied by the frequency of each ADR on the drug label.
Drug ADR frequency information was retrieved from the SIDER
[19]. In situations where multiple ADR frequencies were
indicated, 1000 frequency estimates were sampled from a
uniform distribution with a lower bound at the
minimum-reported frequency and an upper bound at the

maximum-reported frequency. When there was no frequency
information, we sampled 1000 estimates from a uniform
distribution over the interval of 0.001 to 0.01. The final DRIP
score was the average score across 1000 samples.

Results

Network Statistics
We used the ADR terms and phrases from the MedDRA, version
22.0, lowest-level terms [20] as the initial lexicon for the lexical
ADR network. Although the FAERS uses the MedDRA to
encode ADRs, versioning differences over the years have
resulted in some FAERS ADRs not being included in the
MedDRA. We were able to generate embeddings for 92.35%
(2450/2653) of the unique crowdsourced ADRs, 100%
(14,045/14,045) of the unique FAERS ADRs, and 68.72%
(28,113/40,905) of all filtered MedDRA terms. This resulted
in a final lexical network with 28,113 nodes, representing 12,198
MedDRA PTs.

SAEDR Score Performance
We compared our severity estimates using crowdworker-ranked
seeds, FAERS-ranked seeds, and the average severity estimate
across the two seed sets with two different ADR rankings: (1)
a held-out test set of crowdworker-ranked ADRs (n=591) and
(2) ADRs ranked by case outcome statistics in the FAERS
database.

The crowdworker-seeded severity estimates had the highest
training performance with a 25 nearest-neighbors graph and
using 10% of the most and least severe ADRs as seeds. The
Spearman correlation with the crowdworker test set was 0.747
(P<.001). The Spearman correlations for events with at least
100 reports in the FAERS were 0.595, 0.616, and −0.732 for
death, serious outcome, and no outcome, respectively, with
P<.001 for all (Figures S1 and S2 of Multimedia Appendix 1).

The FAERS-seeded severity estimates had the highest training
performance with a 10 nearest-neighbors graph and using 10%
of the most and least severe ADRs as seeds. The Spearman
correlation with the crowdworker test set was 0.587. As no
information from the crowdworker rankings was used to select
these seeds, we can also report the Spearman correlation with
the entire set of crowdworker ADRs: 0.765. The Spearman
correlations for events with at least 100 reports in the FAERS
were 0.509, 0.557, and −0.656 for death, serious outcome, and
no outcome, respectively, with P<.001 for all (Figures S1 and
S2 of Multimedia Appendix 1).

The SAEDR score—the average of the two severity
estimates—had a Spearman correlation with the crowdworker
test set of 0.735 (Figure 2). The Spearman correlations for events
with at least 100 reports in the FAERS were 0.595, 0.633, and
−0.748 for death, serious outcome, and no outcome, respectively
(Figures S1 and S2 of Multimedia Appendix 1). All these
correlations were statistically significant (P<.001).
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Figure 2. Comparison of SAEDR scores and crowdworker severity estimates. (A) Histogram of SAEDR scores for 12,198 adverse drug reactions
(ADRs). (B) Crowdworker severity estimates (x-axis) versus SAEDR scores (y-axis) for a test set of 591 ADRs. The SAEDR scores showed a strong
Spearman correlation, ρ=0.735, with the human crowdworker rankings. We noted that this correlation is greater than the interrater correlation, ρ=0.71,
reported in the original crowdsource study by Gottlieb et al [8]. A select set of the least and most severe ADRs based on the SAEDR score has been
annotated. (C) Differences between severity estimates seeded with FAERS rankings and those seeded with crowdworker rankings (x-axis) for different
System Organ Class groups (y-axis). The dashed blue line indicates where the severity would be the same for both estimates. FAERS: Food and Drug
Administration Adverse Event Reporting System; SAEDR: Severity of Adverse Events Derived from Reddit.

Seed-Ranking Comparisons
We examined the effects of seeding on the severity estimates
of individual ADRs. Most ADRs were not substantially changed
by the use of different seeds. We aggregated ADR severity
differences at the MedDRA SOC level and found that the
FAERS seeds led to increased severity estimates for Psychiatric
Disorders and Social Circumstances (Figure 2). The most drastic
shift in values was the decrease in severity of Product
Issue–related ADRs using FAERS seeds compared with their
severity when using crowdworker-based seeding.

SOC Severity Rankings
We compared the severity of ADRs based on the MedDRA
SOC groupings as a qualitative evaluation (Figure 3). We found
the ADRs related to cancer (neoplasms), cardiac, and liver
(hepatobiliary) to be the most severe, with high SAEDR scores,
whereas skin, general disorders, and product issues were
considered the least severe, with low SAEDR scores. We
performed a qualitative examination of ADRs at various other
levels. We compared the severity distributions between the
ADRs describing benign neoplasms and those describing
malignant neoplasms (Figure S3 of Multimedia Appendix 1).
A one-sided t test found malignant neoplasms to be significantly
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more severe than benign neoplasms based on their SAEDR
scores (P<.001). We found a wide range in terms of severity
within the different levels of the MedDRA ADR term groupings
(Figure 3). We noted that among ADRs in the Cardiac Disorders
HLGT, cardiac neoplasms have the highest SAEDR scores,
whereas signs and symptoms of cardiac disorder have the lowest

relative SAEDR scores (Figure 3). When examining the level
of individual ADRs within the Heart Failure Signs and
Symptoms HLGT, we found that the ADRs that we would judge
to be more severe were ranked higher than those that are more
general and considered less severe.

Figure 3. Severity of adverse drug reactions (ADRs) at different group resolutions. (A) SAEDR score (x-axis) for 11,981 ADRs with System Organ
Class (SOC) groups (y-axis). The dashed blue line indicates an overall median SAEDR score of 0.554. The SAEDR score distributions indicate that
cancers and cardiac-related side effects are considered the most severe, with product issues being the least severe. (B) Severity distributions of the
Medical Dictionary for Regulatory Activities high-level group terms (HLGTs) within the Cardiac Disorders SOC. There are large differences in severity
within these term groups. (C) High-level terms within the Heart Failure HLGTs show a tighter distribution of severity, with "Heart Failure Signs and
Symptoms" being the least severe within this group. (D) Individual side effects within the signs and symptoms of heart failure suggest cardiac asthma
and ascites (accumulation of fluid in the peritoneal cavity) are the most severe symptoms, and peripheral swelling is the least severe symptom NEC:
necrotizing enterocolitis; SAEDR: Severity of Adverse Events Derived from Reddit.

Severity of ADRs Grouped by Labeling Section, Sex
Effects, and Time Point of Discovery
On the basis of our estimate, we calculated that the ADRs that
have never been included in a boxed warning had a median
SAEDR score of 0.538, whereas the ADRs that had been

included in at least one boxed warning had a median SAEDR
score of 0.624. We found that among the ADRs that have
appeared on a drug label, those that have been included in at
least one boxed warning were significantly more severe (P<.001)
than the ADRs that have never been included in a boxed warning
section based on a one-sided t test (Figure 4).
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Figure 4. Differences in adverse drug reaction (ADR) severity between ADR groupings and discovery periods: ADR groups (x-axis) versus SAEDR
scores (y-axis). The grey dashed line indicates the median severity, 0.624, of the ADRs that have been included in a boxed warning. The orange boxed
line indicates the median severity, 0.538, of the ADRs that appear on a drug label but have not been included in a boxed warning. (A) The ADRs that
were listed as a black box warning at least once (n=356) were significantly more severe than those that have not appeared in a black box warning
(n=3305). (B) The ADRs that are disproportionately reported for men (n=56,405) are significantly more severe than those disproportionately reported
for women (n=50,801). There was no significant difference (ns) in severity between the ADRs included in black box warnings and those disproportionately
reported for men. (C) The ADRs discovered in the postmarketing period (n=11,506) are significantly more severe (*** indicate P<.001) than those
discovered in the clinical trials (n=35,450). The ADRs identified in the postmarketing period through OFFSIDES (n=350,631) and the postmarketing
polypharmacy ADRs identified through TWOSIDES (n=4,210,513) are significantly more severe than those discovered in the clinical trials. The severity
of all postmarketing ADR groups is significantly less than the severity of the ADRs that have appeared in a black box warning. SAEDR: Severity of
Adverse Events Derived from Reddit.

We found that the ADR HLGTs that are disproportionately
reported for men were significantly more severe (P<.001) than
those disproportionately reported for women (Figure 4). The
HLGTs disproportionately experienced by men were not
significantly different from the severity of the ADRs that have
been included in at least one boxed warning, P=.13, based on
a one-sided t test.

We examined the severity of the ADRs that were found during
the clinical trial versus the severity of those discovered in the
postmarketing period based on the SIDER label annotations.
We found that the ADRs discovered in the postmarketing period
had significantly higher severity (P<.001) than the ADRs
discovered in the clinical trials based on a one-sided t test
(Figure 4). We compared the severity of the clinical trial ADRs
with the severity of those discovered in the postmarketing period
using FAERS data. The study by Tatonetti et al [28] identified
two different sets of ADRs: OFFSIDES is a set of ADRs
disproportionately reported for a drug, whereas TWOSIDES is
a set of ADRs disproportionately reported for a pair of drugs
being taken concurrently, after correcting for case demographics
and other information. The severity distribution of ADRs in
both OFFSIDES and TWOSIDES was significantly higher
(P<.001) than the severity distribution discovered in the clinical
trials based on a one-sided t test (Figure 4). We found that the
ADRs associated with polypharmacy, through TWOSIDES,

had the highest severity of the postmarketing ADRs. All
postmarketing ADRs were significantly lower in severity than
the boxed warning ADRs based on a one-sided t test.

DRIP Score Analysis
We calculated the DRIP scores for 968 drugs using SIDER label
data, with a resulting median DRIP score of 0.439. The
Spearman correlation between the drugs ranked by the
proportion of FAERS cases, with that drug as the primary
suspect that resulted in death, and the drugs ranked by our DRIP
scores was 0.377, P<.001.

We analyzed DRIP score distributions by the Anatomical
Therapeutic Chemical (ATC) classification system for the subset
of drugs with an ATC designation (Figure 5). Antineoplastic
and antiepileptic drugs were the drug classes with the highest
DRIP scores, indicating that the drugs in these classes have
severe ADR profiles. Drugs used in the management and
treatment of diabetes and urologic issues had the lowest DRIP
scores, indicating that these drugs are relatively safe and have
less-severe side effects. We examined individual drugs within
the opioid class and found that fentanyl had a markedly higher
DRIP score than other drugs in the same class (Figure 5). Drugs
within the statin class were primarily below the overall median
DRIP score (0.439), with only atorvastatin being markedly
above the median DRIP score (Figure 5).
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Figure 5. DRIP scores calculated using side effect severity and frequency. (A) DRIP scores (x-axis) for ATC classification system groups (y-axis)
ordered by median severity with outliers labeled. The dashed blue line indicates the median DRIP score of 0.439 across all drugs. (B) DRIP scores
(x-axis) for opioid class drugs (y-axis), as denoted by the N02A ATC group. Fentanyl, an extremely potent synthetic opioid, is ranked first as having
the most severe side effect. (C) DRIP scores (x-axis) for statins (y-axis), as denoted by the C10AA ATC group. Atorvastatin, the strongest statin in
broad use, is ranked to have the most severe side effect, whereas lower-efficacy statins are ranked as having less-severe side effects. ATC: Anatomical
Therapeutic Chemical; DRIP: drug-risk profile.

Discussion

Principal Findings
In this study, we present the SAEDR scores and quantitative
estimates of the severity of 28,113 MedDRA ADR terms. The
SAEDR scores have strong correlations with both
crowdworker-based severity estimates and real-world ADR case
outcome statistics. We generated these estimates using a
network-based label propagation approach that required only a
small percentage of the terms to be labeled. This study
demonstrated the feasibility of using distantly supervised
techniques such as label propagation to generate quantitative
values for medical concepts.

Our approach enabled us to increase the number of ADRs with
quantitative severity estimates from 2929 to 28,113, an almost
tenfold increase, while minimizing the human time involved in
generating the estimates. Our severity estimates can be updated
routinely based on the recomputation of the embeddings and
reseeding of the reference severe or benign ADRs. We noted

that our severity estimates had a higher correlation with the
aggregate crowdworker rankings (ρ=0.735) than the
crowdworker rankings had among the three replicates in the
original study (ρ=0.710). In addition, our estimates had a greater
correlation with real-world outcomes such as FAERS cases
resulting in death (ρ=0.595) than the crowdworker rankings
(ρ=0.53). Thus, our severity estimates track with both human
judgments of ADR severity and real-world outcomes of
consequence to patient health.

We found that our SAEDR scores had a strong negative
correlation, ρ=−0.748, with no case outcome being reported in
the FAERS. We assigned a No Outcome label to the FAERS
cases for which none of the available but relatively severe case
outcomes had been reported. We took this as an indication that
the FAERS cases lacking outcomes may be a result of cases
having an outcome below the level of seriousness that is
reportable in the FAERS. FAERS case outcome completeness
could potentially be improved by creating a lower-severity
category for case outcome documentation. We also noted that
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the SAEDR scores have a stronger correlation with serious
outcomes in FAERS cases than with death outcomes. This can
be partially explained by the fact that many more ADRs result
in serious outcomes than in death, leading to poor differentiation
of severity based on death for many ADRs where death is a rare
or unobserved outcome.

In an effort to compare the impacts of using different methods
to select the initial severe and benign ADR seed terms for label
propagation, we compared crowdworker and real-world
outcomes–based seed selections. We found that both methods
resulted in consistently high severity scores for ADRs in the
highest-severity SOC groups such as Neoplasms and Cardiac
Disorders. We observed the largest differences in the Product
Issues SOC group. Real-world outcomes–based seeds increased
the severity of psychiatric disorders and social circumstances
and decreased the severity of product issues. The importance
and impact of psychiatric disorders may not be apparent to those
not in the medical profession. Thus, it is possible that the
crowdworkers did not perceive mental illness to be as severe
as physical illnesses, leading to a bias in the rankings. The use
of real-world outcomes–based rankings to select seeds led to
more psychiatric disorders being included in the seed terms for
the severity propagation. Similarly, the shifts in social
circumstances and product issues are likely due to their limited
presence or absence within the original crowdworker rankings
because only seven ADRs in the social circumstances category
were included in the 2929 ADRs ranked by crowdworkers, and
no Product Issues ADRs were included in that ranking. This
absence resulted in no ADRs from these groups being included
in the initial seed set of labeled ADRs for the
crowdworker-seeded method run, likely limiting the ability of
the label propagation to accurately estimate the severity of these
ADRs.

We found that the overall severity ordering of the SOC classes
based on our SAEDR scores made intuitive sense. We were
surprised by the ability of the label propagation approach to
adjust the severity estimates based on particular key terms. For
instance, the ADR terms for cancer (Neoplasm) ADRs are
relatively similar on a lexical basis, but individual modifiers
such as malignant and benign resulted in significantly different
SAEDR scores for the respective groups of ADRs (Figure S3
of Multimedia Appendix 1). Similarly, examining groups of
ADRs at different MedDRA hierarchy levels demonstrated
relative severity estimates that were sensible to us, such as Heart
Failure Signs and Symptoms having lower severity than the
different types of actual heart failure.

We found a significantly higher estimate of severity among the
ADRs that had been included in a boxed warning section than
among those that had not. This offers further validation of the
SAEDR scores because they are in agreement with past
regulatory and drug labeling decisions. Our comparison of
HLGTs with disproportionate rates between sexes revealed that
male-associated ADRs were more severe. Notably, the SAEDR
scores of the male-associated ADRs were not significantly
different from those of the ADRs that have been included in a
boxed warning. This is in agreement with previous work that
highlighted the relatively higher severity of ADRs experienced
by men [29,30].

We found that ADRs discovered in the postmarketing period
are generally more severe than those discovered in the clinical
trials based on our SAEDR scores. This indicates that
postmarketing surveillance and ongoing regulatory discussions
of risk-benefit trade-offs for particular drugs are necessary to
keep the public safe [31]. These findings are not new because
a recent study examining internal Food and Drug Administration
data on drug labeling changes found that 35% of the ADRs
added to drug labels were added to the boxed warnings and
warnings and precautions sections [32]. Of the postmarketing
ADRs, those involving more than one drug, as identified by
TWOSIDES, were among those with the highest severity,
indicating the increased risks associated with polypharmacy.
This finding highlights the need for further research into the
safety of polypharmacy because approximately half of the
individuals prescribed a prescription drug are prescribed more
than one concurrent medication [33].

One of the original aims of the pioneering study by Tallarida
et al [7] was to create quantitative risk scores for individual
drugs. Our DRIP scores are an attempt to do so, and we
combined ADR severity with frequency information to generate
a numerical estimate of a drug’s risk profile. We were able to
generate DRIP scores for 968 drugs using ADR frequency data
from the SIDER. Our DRIP scores have a modest Spearman
correlation, ρ=0.377, with FAERS cases that resulted in death,
where that drug was the primary suspect. Generally, correlations
greater than 0.8 are considered strong, but this generally assumes
that the comparison is with a gold standard ground truth.
Because of a lack of an objective gold standard of DRIPs, we
compared with FAERS case outcomes for the drugs in question,
although the case outcomes are imperfect because of reporting
bias and other issues. In addition, the DRIP scores were created
using estimates of ADR frequencies from the SIDER that are
primarily derived from clinical trial data. These ADR frequency
estimates are affected by the dosage and underlying health of
the clinical trial population, both of which are only sometimes
reported. High-quality frequency estimates for postmarketing
ADRs are essentially nonexistent, and many challenges exist
to accurately estimating their frequency [29]. These issues limit
the ability of our DRIP scores to accurately quantify risk.
However, despite the limitations of the benchmark data and the
ADR frequency information, the DRIP scores still demonstrate
a modest correlation with real-world outcomes. We interpret
this as an indication that our DRIP scores track with real-world
outcomes and capture signals related to a drug’s safety profile
that could be useful for downstream application. Further
evidence of their validity is provided by the qualitative
evaluation of the DRIP score distributions for the ATC groups.
The relative distributions of the ATC groups make intuitive
sense, with drugs used to treat cancer—antineoplastic
drugs—having the most severe side effect profiles, whereas
drugs used to treat diseases that are known to have safe and
effective treatment options, such as diabetes, are ranked among
the safest drug categories.

We present ADR severity estimates that track with both
real-world outcomes and human perception, but these estimates
are still limited. We used word embeddings trained on Reddit
data, but other social media data could improve the severity
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prediction model. We used RedMed because the model was
publicly available and contained many ADR terms of interest
to this study. However, Reddit as a social media platform is
skewed toward men and young people, who may discuss ADRs
in different ways from the general population. Learning new
embeddings from social media corpora generated by the patient
groups most at risk for a given set of ADR experiences or from
biomedical literature might improve model performance and
address issues with demographic model biases.

FAERS case outcome proportions as a benchmark for severity
are limited because of the outcomes being reported at the case
level by the FAERS. Because of this case-level aggregation,
the ADRs in the severe category may have inflated severity.
For instance, symptoms of cardiac arrest may often be reported
as separate ADRs for a FAERS case of cardiac arrest, resulting
in symptoms that seem to be more severe than they are when
occurring independently of the severe ADR with which they
are associated.

Our results indicate that men reported more severe ADRs based
on sex-specific ADRs identified in the study by Chandak et al
[27]. Other research efforts have reported similar findings based
on ADR-reporting databases [29], but there are potential sources
of bias that could have affected this result. The data underlying
the sex-specific ADRs identified in the study by Chandak et al
[27] were derived from the FAERS. The study method focused
on the analysis of a sex-balanced cohort of case reports, with
cohort creation through propensity score matching of
individuals. Propensity score matching can correct for factors
included in the model, but it is unable to correct for underlying
biases in reporting. It has been documented that there are higher
rates of ADR reporting for female patients than for male
patients, whereas male patients tend to have more severe
outcomes reported [30]. It is likely that male patients are
enriched for severe ADRs because of this reporting bias, and
ADR reports should not be conflated with all ADRs experienced
by individuals because of the low rate of ADR reporting [34].

Another limitation is that sex-specific ADRs were only reported
at the HLGT level, resulting in SAEDR scores that were an
average of all PTs within the HLGT. Figure 3 highlights the
large range in terms of severity, even within a particular HLGT.
It is possible that an analysis of sex-specific ADRs at the PT
level would result in a different finding. Overall, although ADRs
disproportionately reported in men are more severe than those
disproportionately reported in women, more research is needed
to reach a complete understanding of sex-specific differences
in ADR severity.

Although we captured some nuances in ADR severity, such as
benign versus malignant neoplasms, we only created SAEDR
scores for the ADR terms contained in the MedDRA. However,
while exploring the RedMed word embeddings, we observed
that individual ADR terms were often contained in phrases
indicating modified severity. For instance, a report of stomach
pain might be modified with an adjective such as excruciating
or mild. Although the MedDRA does not contain an intensity
scale component for its terms, capturing this information from
patients might further enable risk-benefit trade-off calculations.
The approaches for general word sentiment assignment, similar
to the one used in the study by Hamilton et al [22], could be
repurposed here to assign severity to ADR modifier terms.

Conclusions
In summary, we demonstrated that lexical networks and label
propagation can be used quantitatively to estimate the severity
of medical conditions. We showed the distributions of ADR
severity among different groups of conditions, different groups
of patients, and different ADR discovery time points. We
combined our SAEDR scores with available ADR frequency
data to generate quantitative DRIP scores and examined the
distribution of the resulting DRIP scores. Our results (and future
improved estimates) enable new quantitative analyses within
the field of pharmacovigilance. To this end, we provide the
complete set of SAEDR scores and DRIP scores in Multimedia
Appendix 2 and Multimedia Appendix 3, respectively.
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