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Abstract

Background: Prior literature suggests that psychosocial factors adversely impact health and health care utilization outcomes.
However, psychosocial factors are typically not captured by the structured data in electronic medical records (EMRs) but are
rather recorded as free text in different types of clinical notes.

Objective: We here propose a text-mining approach to analyze EMRs to identify older adults with key psychosocial factors
that predict adverse health care utilization outcomes, measured by 30-day readmission. The psychological factors were appended
to the LACE (Length of stay, Acuity of the admission, Comorbidity of the patient, and Emergency department use) Index for
Readmission to improve the prediction of readmission risk.

Methods: We performed a retrospective analysis using EMR notes of 43,216 hospitalization encounters in a hospital from
January 1, 2017 to February 28, 2019. The mean age of the cohort was 67.51 years (SD 15.87), the mean length of stay was 5.57
days (SD 10.41), and the mean intensive care unit stay was 5% (SD 22%). We employed text-mining techniques to extract
psychosocial topics that are representative of these patients and tested the utility of these topics in predicting 30-day hospital
readmission beyond the predictive value of the LACE Index for Readmission.

Results: The added text-mined factors improved the area under the receiver operating characteristic curve of the readmission
prediction by 8.46% for geriatric patients, 6.99% for the general hospital population, and 6.64% for frequent admitters. Medical
social workers and case managers captured more of the psychosocial text topics than physicians.

Conclusions: The results of this study demonstrate the feasibility of extracting psychosocial factors from EMR clinical notes
and the value of these notes in improving readmission risk prediction. Psychosocial profiles of patients can be curated and
quantified from text mining clinical notes and these profiles can be successfully applied to artificial intelligence models to improve
readmission risk prediction.

(J Med Internet Res 2021;23(10):e26486) doi: 10.2196/26486
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Introduction

Background
Hospital readmission of older adults is a significant challenge
for the individual, caregivers, and health system. For individuals,
readmissions can be distressing, may compromise quality of
care, and increase the risk of adverse health outcomes. For
caregivers, readmission is often burdensome and increases their
health care spending. As for health systems, readmissions often
cause resource demands and financial costs to escalate [1]. The
30-day readmission rate among patients aged 65 years or older
in Singapore has been reported to be 19% [2], which is
comparable to the readmission rate of Medicare patients in the
United States, most of whom are older adults [3]. Significant
risk factors for hospital readmission in adults aged 65 years and
older include (a) sociodemographic factors such as higher age,
male gender, ethnicity, and poor living conditions; (b)
health-related factors such as poor overall condition,
comorbidity, functional disability, and recent hospital
admissions; and (c) organizational factors such as prolonged
length of stay in the index hospitalization and discharge
destination [4,5]. These risk factors have been used extensively
in predictive models for hospital readmission by health service
researchers worldwide [6-10]. Recently, other readmission
predictors such as those in the psychosocial domain have begun
to receive more attention.

Psychosocial factors can be defined as “the combination and
interplay of psychological and social factors that potentially
influence health, injury, illness, and disease” [11]. However, a
review of the medical literature suggests that different medical
specialties have slightly different definitions of psychological
factors [11-17]. Based on the various factors identified in earlier
studies, we observed that psychosocial factors can be divided
into three relevant dimensions: (1) individual psychological
well-being, (2) social structures, and (3) resources. Individual
psychological well-being factors include psychological
conditions such as mood [11,18], attitude [11,19], coping
mechanism [11,17], depression [15,16,20], perceived control
[13,19], and psychological distress [16,17,21]. Social structures
represent the conditions of the environment in which the
individual lives, including support structures [11,14,16,17],
social relationships [14,18], social norms [19], and family life
[22]. Finally, resources represent the means available to the
individual, such as financial means, accessibility to health care
[13,14], and the health service system [19].

Prior research has shown that these factors—depressive
symptoms [23], poor social support, and financial
stress—contribute to hospital readmission for specific patient
subgroups such as those with chronic obstructive lung disease,
chronic kidney disease, and heart failure [24-26]. In general,
psychosocial factors could play a significant role in the hospital
readmission of older adults and account for a significant
proportion of the readmission risk. At the same time,
psychosocial factors are indicators of a patient’s complex needs
that are amenable to tailored care interventions. Such
interventions can improve the patient’s clinical outcomes and
reduce the utilization of health care resources.

Literature Review
There are two conceptual models in the extant literature that
link psychosocial factors to hospital readmissions for older
adults. The first is Andersen’s [27] Behavioral Model of Health
Services Use that posits an individual’s use of health services
as a function of predisposing, enabling, and need factors.
Psychosocial factors (ie, individual-level and structural-level
variables) can be categorized as the model’s predisposing and
enabling factors, respectively. The other is Adler and Stewart’s
[28] Pathways Linking Socioeconomic Status and Health model,
which suggests that environmental resources and constraints,
as well as psychological influences are mechanisms that lead
to health outcomes such as hospital readmission. Individual-level
and structural-level psychosocial factors map to the model’s
psychological and environmental variables.

In contrast to the numerous clinically related risk factors that
are stored as structured data in electronic medical records
(EMRs), most psychosocial factors are recorded as free text in
the patient’s clinical notes such as the initial and progress
clinical notes of physicians, allied health professionals, case
managers, and social workers. Such unstructured textual data
in the EMR represent a potentially rich and untapped source of
data related to patients’ psychosocial factors. The manual
extraction of psychosocial keywords from unstructured data is
challenging and impractical given the copious and
ever-increasing amount of clinical notes recorded in a typical
EMR system. As such, there have been systematic efforts by
clinicians to capture social and behavioral data, including
psychosocial information, as structured data in EMR systems
[29]. However, the effectiveness of these efforts in different
health care contexts remains unclear. At the same time, other
researchers have begun to apply text-mining techniques to
efficiently extract and analyze unstructured text data in EMR
clinical notes to identify these psychosocial factors.

Text-mining techniques represent a broad range of approaches
for analyzing and processing semistructured and unstructured
text data to construct structured data. By using powerful
algorithms applied to large textual documents such as those
typically found in EMR systems, text mining can “turn text into
numbers” to be used for further analysis. Topic modeling, which
is a specific domain in text mining that examines individual
words to identify common topics and concepts, holds significant
promise for extracting psychosocial factors from EMR clinical
notes.

To date, only a few text-mining studies have set out to identify
individuals with psychosocial factors using EMR data [30]. As
such, we have limited evidence on the effectiveness of extracting
psychosocial information from EMRs for the purpose of
secondary health care research or routine clinical care.

Objective
This study proposes a text-mining approach to identify older
adults with key psychosocial factors obtained from clinical notes
to help predict adverse health and health care utilization
outcomes. To validate the efficacy of including psychological
factors in the predictive model, we append these psychosocial
factors to the commonly used LACE (Length of stay, Acuity
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of the admission, Comorbidity of the patient, and Emergency
department use) Index for Readmission [31] to improve
readmission risk prediction accuracy on an independent,
hold-out sample of patients.

Methods

Design
The study was a retrospective analysis of EMR data captured
by the EPIC system over a 26-month period from January 1,
2017 to February 28, 2019. Ethical approval was provided by
the Domain-Specific Review Board of the National Healthcare
Group, Singapore (2018/01072).

Settings and Data Context
The sample consists of 9393 patients with 43,216 admission
encounters in a 26-month period from all wards in Ng Teng
Fong General Hospital, Singapore. Each clinical record was
classified by the role of the author. In this sample, clinical
records were authored by physicians, medical social workers,
or case managers. Specifically, medical social workers and case
managers are assigned to some patients who may require
additional social support upon hospital admission. The dataset
consists of two cohorts of patients. The first cohort includes
892 patients (3282 admission encounters) identified by the
hospital as frequently readmitted patients (“Frequent Admitters”
cohort). This cohort consists of patients who (1) are frequently
admitted to the hospital despite having their acute medical needs
met, (2) have medical conditions that require multidisciplinary
care, (3) show signs of caregiver stress, (4) encounter frequent
falls (more than two falls in the last 12 months) and require
functional management at home, or (5) face medication
management issues (eg, noncompliance to their medication
regime). The second cohort consists of 9377 randomly selected
patients (39,934 admission encounters) admitted to the hospital
(“Standard” cohort). The “Standard” cohort consists of patients

admitted to the hospital’s inpatient wards during the sampling
period. The purpose of including the “frequent admitters” cohort
was to oversample the frequent readmission cases and facilitate
the training of the text-mining algorithm to extract psychosocial
topics often associated with readmission risks. This type of
oversampling method is commonly applied in health care
research to train machine-learning algorithms [32,33]. The
combined cohorts were randomly split into a training dataset
and a hold-out/test dataset to ensure that both the training and
test dataset had similar distributions of patients in the “frequent
admitters” and “standard” cohorts. The training dataset
comprised 30,252 admission encounters and the hold-out/test
dataset comprised 12,964 admission encounters. The unit of
analysis is each admission encounter.

We used the 10-fold cross-validation method to train and
validate the model with the training dataset. The validated model
was subsequently tested against the hold-out/test dataset in four
ways. First, we used the “Combined” test dataset, which is the
dataset compiled to have a similar distribution as the training
dataset, containing proportionally more “frequent admitters” to
ensure that the model was tested using a similar distribution of
patients as that used to train the model. Second, we used the
“Standard” test dataset, which was the sample randomly drawn
among patients from the hospital; this sample represents a
typical patient that a hospital encounters. We used this dataset
to test for the generalizability of the model and to rule out
overfitting. Third, we used a “Frequent” test dataset, consisting
of “frequent admitters,” which was mainly used to test the fit
of the model in predicting frequent admitters, as a key concern
for many hospitals. Finally, we used a “Geriatrics” test dataset,
comprising only geriatric patients (≥65 years old selected from
the “standard” cohort test dataset), to test if the model works
for the geriatric specialty where it is likely to be deployed.
Additional details and procedures of cohort selection are shown
in Figure 1.
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Figure 1. Sampling methodology. All values represent the admission encounters. For the “frequent admitters” cohort (3282 encounters), there are 892
unique patients and for the “standard” cohort (39,934 encounters), there are 9377 unique patients. The “geriatrics” cohort represents a subsample of
patient encounters within the “standard” cohort where the age of the patient at time of encounter is greater or equal to 65 years.

Data Processing and Algorithm Development
For each admission encounter, we combined the clinical notes
written by authors with similar roles (eg, all notes written by
physicians were combined as physician’s notes). The notes were
combined based on the author’s role (physician, medical social
worker, and case manager) because each role would potentially
document similar issues. Hence, it is more efficient to mine the
unstructured clinical notes for each role to identify common or
similar topics. We combined the notes for each admission
encounter instead of analyzing each note entry as the unit of
analysis because a patient’s psychosocial conditions are less
likely to vary for each admission encounter.

We then applied natural language processing text mining to the
clinical notes in the training dataset. We used the latent Dirichlet
allocation (LDA) topic modeling algorithm to extract the
common topics present in the clinical notes and then numerically
weighed each topic’s intensity (loadings) in the clinical notes.
A vector of lexicographically related words represents each
topic due to the frequent occurrence of these words in proximity
across different notes. A high loading value represents the
presence of the topic in the clinical note. This process was
performed separately for the physician, medical social worker,
and case manager notes. A total of 100 topics were extracted

from each set of notes based on the clinician’s role (ie,
physician, medical social worker, case manager).

Two geriatric specialists reviewed and classified these 100 topics
into broader themes, specifically dividing them into psychosocial
issues or nonpsychosocial-related issues. Additionally, we
conducted four interviews with a group of medical social
workers and case managers to triangulate if this classification
is appropriate. It is important to note that this added
classification into broader themes by clinicians is solely to
facilitate the reporting and interpretation of results. These
broader themes were not used in the subsequent development
of the readmission risk model, and only the LDA classification
loadings were used in the training of the readmission risk model.
Further details of the text mining procedure are provided in
Multimedia Appendix 1.

We combined the topic’s intensity (loadings) for each set of
notes with structured predictors of readmission established in
the LACE Index for Readmission as predictors for estimating
readmission risk. As readmission risk is a function of various
factors beyond psychosocial factors, we incorporated the LACE
index to take into account some of the factors reported in the
literature. The LACE index is a score commonly used to predict
a patient’s 30-day hospital readmission risk [31]. The index
consists of the following variables: (1) the length of stay (L),
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(2) the acuity of the current or previous admission (A), (3)
comorbidities of the patient as measured by the Charlson
Comorbidity Index score (C), and (4) the number of visits to
the emergency department in the preceding 6 months (E).

The readmission risk model was fitted using the gradient
boosting trees (GBT) algorithm to predict the outcome of
readmission within the next 30 days from the discharge date of
the current admission. GBT uses an ensemble of multiple trees
to generate more accurate prediction models for classification
and regression. The algorithm’s premise is to build a series of
trees, where each tree is trained with the objective to correct
the misclassification errors of the previous tree in the series.

We tested the model’s predictive accuracy using the four
different hold-out test samples described above. To assess the
predictive value of the clinical notes, we fitted a LACE baseline

readmission model without using the topics from the notes. We
then compared this baseline model against models that include
the physician notes and social notes (ie, medical social worker
notes and case manager notes) jointly and separately.

Results

Evaluating the Predictive Value of Psychosocial
Information
As expected, we observed that physicians record fewer
psychosocial issues than medical social workers and case
managers (Table 1). The more detailed distribution of the
specific topics extracted is provided in Tables A1-A3 of
Multimedia Appendix 1.

The descriptive statistics of the variables used in the readmission
risk model for each test cohort are provided in Table 2.

Table 1. Distribution of psychosocial topics (N=100).

Proportion of nonpsychosocial topics, n (%)Proportion of psychosocial topics, n (%)Role of author

75 (75)25 (25)Physician

0 (0)100 (100)Medical social worker

12 (12)88 (88)Case manager

Table 2. Descriptive statistics of variables in the LACE (Length of stay, Acuity of the admission, Comorbidity of the patient, and Emergency department
use) readmission model (patient encounter level).

Combined cohortd,
mean (SD)

Geriatrics cohortc,
mean (SD)

Standard cohortb,
mean (SD)

Frequent cohorta,
mean (SD)

Variable

67.51 (15.87)77.62 (8.09)67.07 (15.98)72.94 (13.24)Age (years)

0.54 (0.50)0.50 (0.50)0.55 (0.50)0.50 (0.50)Gender (1: Male, 0: Female)

5.57 (10.41)6.65 (10.81)5.47 (10.15)6.73 (13.18)Length of stay (days)

0.42 (1.20)0.49 (1.38)0.41 (1.18)0.47 (1.39)Charlson Comorbidity Index

0.56 (0.50)0.58 (0.49)0.57 (0.50)0.50 (0.50)Emergency department admission (1: Yes, 0: No)

0.05 (0.22)0.04 (0.21)0.05 (0.22)0.03 (0.17)Intensive care unit stay (1: Yes, 0: No)

1.50 (2.82)1.47 (2.44)1.39 (2.77)2.86 (3.07)Emergency department visits in last 6 months

aPatients identified by the hospital as frequent readmission patients.
bSample of a typical hospital patient.
cSubset of patients in the “Standard” sample who are 65 years of age or older.
dCombination of the “Frequent” and “Standard” samples.

The area under the receiver operating characteristic curve
(AUROC) of the LACE baseline predictive model ranged from
0.8288 to 0.8397 (Table 3) for the four different test cohorts
(Frequent, Standard, Geriatrics, and Combined). The baseline
model only considered common factors identified in the prior
literature associated with readmission risks and did not include
psychosocial factors extracted from the clinical notes. The
receiver operating characteristic curve is a plot representing the
diagnostic ability of a binary classifier while varying the
discriminatory threshold (ie, the cut-off value to reclassify one

state to the other). With varying discriminatory threshold values,
the different sets of true positive rate (sensitivity) are plotted
against the corresponding false positive rates (1–specificity).
Thus, AUROC is a representation of the overall performance
of the classifier.

Adding the text-mined notes from the medical social workers
and case managers increased the AUROC of the model to
0.8573-0.8707. Further appending the clinical notes from
physicians increased the AUROC to 0.8952-0.9100.
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Table 3. Results of the readmissions prediction model.

NPVcPPVbSpecificitySensitivityAUROCaModel

LACEd baseline

0.74380.74660.78400.70210.8288Frequente

0.81560.66490.76060.73410.8302Standardf

0.79940.67130.73280.74790.8254Geriatricsg

0.82210.66960.77570.73030.8397Combinedh

LACE baseline+sociali

0.77670.73940.75730.75980.8573Frequent

0.83750.69220.77960.76610.8621Standard

0.82670.72280.78320.77490.8686Geriatrics

0.84900.68960.78250.77630.8707Combined

LACE baseline+physicianj+social

0.83540.80010.81360.82320.8952Frequent

0.87760.75090.82350.82240.9001Standard

0.87160.78430.83310.83180.9100Geriatrics

0.88450.75340.83180.82540.9069Combined

aAUROC: area under the receiving operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dLACE: Length of stay, Acuity of the admission, Comorbidity of the patient, and Emergency department use.
eHold-out sample of patients identified by the hospital as frequent readmission patients.
fHold-out sample of a typical hospital patient.
gSubset of patients in the “Standard” sample who are 65 years or older.
hCombination of “Frequent” and “Standard” hold-out samples.
iSocial represents the text-mined notes that medical social workers and case managers provided.
jPhysician represents the text-mined notes provided by physicians.

Comparison Across Patient Profiles
The addition of textual information improved the AUROC of
the readmission model. This improvement was particularly more
significant for geriatric patients than for other cohorts of patients

(Table 4). For geriatric patients, notes from the medical social
workers and case managers improved the AUROC by 4.32%.
Combining these notes with physician notes further improved
the AUROC by 8.46% compared with the baseline LACE
readmission model.

Table 4. Improvements of prediction (area under receiver operating characteristic curve) over the baseline LACE (Length of stay, Acuity of the
admission, Comorbidity of the patient, and Emergency department use) model for different test cohorts.

Combined cohortdGeriatrics cohortcStandard cohortbFrequent cohortaNotes

3.10%4.32%3.19%2.85%Sociale

6.72%8.46%6.99%6.64%Social and physicianf

aHold-out sample of patients identified by the hospital as frequent readmission patients.
bHold-out sample of a typical hospital patient.
cSubset of patients in the “Standard” sample who are 65 years or older.
dCombination of “Frequent” and “Standard” hold-out samples.
eThe readmission model with clinical notes from the medical social worker and case manager.
fThe readmission model with clinical notes from the medical social workers and case managers.
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Discussion

Principal Findings
The AUROC of our readmission risk model was higher than
the typical accuracy of readmission predictive models, ranging
from 0.66 to 0.83, as reported in an earlier review of 30 studies
[6]. The results also suggest that the readmission predictive
algorithm’s performance for all four cohorts (frequent admitters,
standard, geriatrics, and the combination of frequent and
standard groups) are relatively similar. Thus, this model can be
applied to geriatric patients as the typical pool of patients who
require additional management for readmission risks. Further,
when taking into account the psychosocial information captured
by nonphysicians (ie, medical social workers and case managers)
by adding social topics, the prediction accuracy improved by
0.0285-0.0432. When we added the physicians’ textual clinical
notes, the AUROC further increased by 0.0362-0.0414 in
different cohorts.

Overall, the results show that with the addition of text-mined
clinical notes from physicians and other clinicians, the AUROC
of readmission prediction improves by 0.0664 to 0.0842,
suggesting the added benefits of extracting psychosocial
information from textual clinical notes in predicting readmission
risk.

This study shows that clinicians could leverage natural language
processing to gain more information from the EMR system
beyond the traditional structured data commonly used to predict
readmission risk. Specifically, this study establishes a proof of
concept for the use of text-mining techniques with EMR
unstructured free text to identify psychosocial predictors of
hospital readmission, particularly among geriatric patients. In
doing so, our findings support the viability of the psychosocial
approach in potentially reducing readmission rates. Thus, our
study represents a T2 translational stage (to patients) of research,

paving the way toward the T3 translational stage (to practice).
In terms of development along the translational pathway, the
next phase will focus on proof of value of embedding
text-mining techniques in prediction models used to identify
the risk of early readmission among hospitalized patients. The
purpose of this phase is to perform a comprehensive geriatric
assessment for high-risk patients with the goal of offering
tailored care management. By managing patients’ specific
physical and psychosocial needs, we should observe
improvement in the quality of care and a reduction in
unnecessary health care utilization. In this way, precious heath
care resources can be optimally allocated to patients who will
obtain the greatest benefit. This strategy is particularly relevant
for older hospitalized patients, who are more likely to have
unmet psychosocial needs and for whom our augmented risk
prediction model performs the best. To achieve proof of value,
future research could use quasiexperimental designs to compare
the feasibility and effectiveness of a product that combines
text-mined psychosocial factors in a state-of-the-art prediction
model with those of a product that only has a prediction model.

Beyond the application of text-mining techniques to the
prediction of hospital readmission, this study also presents the
broader and extended possibility of using the same technical
approach developed for the EMR to identify a set of
underdiagnosed clinical conditions in older adults, which will
have an important influence on their health and health care
utilization outcomes.

Conclusion
Psychosocial profiles of patients can be curated and quantified
from text mining clinical notes, and these profiles can be
successfully applied to artificial intelligence models to predict
readmission risks. The use of text mining improved the accuracy
of predicting readmission, and this improved predictive accuracy
was higher for geriatric patients than for other patient cohorts.
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