
Original Paper

Validation of Fitbit Charge 2 Sleep and Heart Rate Estimates
Against Polysomnographic Measures in Shift Workers: Naturalistic
Study

Benjamin Stucky1,2*, PhD; Ian Clark1*, PhD; Yasmine Azza3,4,5, PhD; Walter Karlen2,6, PhD; Peter Achermann2,7,

PhD; Birgit Kleim2,3,4, PhD; Hans-Peter Landolt1,2, PhD
1Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
2Sleep & Health Zurich, University Center of Competence, University of Zurich, Switzerland
3Department of Experimental Psychopathology and Psychotherapy, University of Zurich, Zurich, Switzerland
4Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry, University of Zurich, Zurich, Switzerland
5Department of Psychiatry and Psychotherapy, Translational Psychiatry Unit, University of Lubeck, Lubeck, Germany
6Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
7The Key Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry,
University of Zurich, Zurich, Switzerland
*these authors contributed equally

Corresponding Author:
Hans-Peter Landolt, PhD
Institute of Pharmacology and Toxicology
University of Zurich
Winterthurerstrasse 190
Zurich, 8057
Switzerland
Phone: 41 44 635 59 53
Email: landolt@pharma.uzh.ch

Abstract

Background: Multisensor fitness trackers offer the ability to longitudinally estimate sleep quality in a home environment with
the potential to outperform traditional actigraphy. To benefit from these new tools for objectively assessing sleep for clinical and
research purposes, multisensor wearable devices require careful validation against the gold standard of sleep polysomnography
(PSG). Naturalistic studies favor validation.

Objective: This study aims to validate the Fitbit Charge 2 against portable home PSG in a shift-work population composed of
59 first responder police officers and paramedics undergoing shift work.

Methods: A reliable comparison between the two measurements was ensured through the data-driven alignment of a PSG and
Fitbit time series that was recorded at night. Epoch-by-epoch analyses and Bland-Altman plots were used to assess sensitivity,
specificity, accuracy, the Matthews correlation coefficient, bias, and limits of agreement.

Results: Sleep onset and offset, total sleep time, and the durations of rapid eye movement (REM) sleep and non–rapid-eye
movement sleep stages N1+N2 and N3 displayed unbiased estimates with nonnegligible limits of agreement. In contrast, the
proprietary Fitbit algorithm overestimated REM sleep latency by 29.4 minutes and wakefulness after sleep onset (WASO) by
37.1 minutes. Epoch-by-epoch analyses indicated better specificity than sensitivity, with higher accuracies for WASO (0.82) and
REM sleep (0.86) than those for N1+N2 (0.55) and N3 (0.78) sleep. Fitbit heart rate (HR) displayed a small underestimation of
0.9 beats per minute (bpm) and a limited capability to capture sudden HR changes because of the lower time resolution compared
to that of PSG. The underestimation was smaller in N2, N3, and REM sleep (0.6-0.7 bpm) than in N1 sleep (1.2 bpm) and
wakefulness (1.9 bpm), indicating a state-specific bias. Finally, Fitbit suggested a distribution of all sleep episode durations that
was different from that derived from PSG and showed nonbiological discontinuities, indicating the potential limitations of the
staging algorithm.

Conclusions: We conclude that by following careful data processing processes, the Fitbit Charge 2 can provide reasonably
accurate mean values of sleep and HR estimates in shift workers under naturalistic conditions. Nevertheless, the generally wide
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limits of agreement hamper the precision of quantifying individual sleep episodes. The value of this consumer-grade multisensor
wearable in terms of tackling clinical and research questions could be enhanced with open-source algorithms, raw data access,
and the ability to blind participants to their own sleep data.

(J Med Internet Res 2021;23(10):e26476) doi: 10.2196/26476
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Introduction

Highly sensitive and precise instruments are necessary for the
accurate measurement of sleep in healthy and clinical
populations. Polysomnography (PSG), the prevailing gold
standard in clinical and research settings [1], reliably reflects
the physiological processes underlying sleep with high temporal
resolution [2]. The PSG recordings are conducted to capture
sleep macrostructure (eg, stages and cycles) and microstructure
(eg, K-complexes, spindles, and arousals), and to quantify
different variables such as power density spectra of the
electroencephalogram and heart rate (HR) variability, to estimate
an individual’s sleep quality and health. Despite the many
strengths of PSG, attendant disadvantages include high cost,
the need for personnel trained in technical aspects and
interpretation of data, and the highly technical recording system
itself, which usually necessitates a dedicated sleep laboratory,
although ambulatory systems also exist [3]. Inexpensive,
practical, and portable alternatives that are equally accurate and
reliable as PSG in measuring sleep would be welcome for
clinicians and researchers.

Currently, the only validated and United States Food and Drug
Administration–approved alternative to PSG in ambulatory
settings is actigraphy [4]. Actigraphy measures movement using
a multiaxis accelerometer in a device resembling a wristwatch,
sometimes accompanied by an embedded light sensor.
Actigraphy captures rest-activity behaviors such as sleep habits,
bedrest, rise times, and light exposure [5,6]. The basic
assumption of actigraphy is that motion implies wakefulness,
whereas no motion implies sleep. Fully disclosed algorithms
[7,8] are used to compute sleep variables with some precision,
but performance compared with PSG varies because of the
inherent limitation in discriminating sleep from waking that is
not accompanied by movement [3,4]. Actigraphy is a dedicated
scientific instrument in clinical and research contexts and
depends on specialists for setting up and interpreting data [9].

Recently, there has been greater acceptance, but also
controversy, among the scientific community about using
commercially available wearable devices such as fitness trackers
in research [10]. Fitness trackers are multisensor,
consumer-grade devices that represent a cost-efficient, practical,
and convenient means of objectively collecting rest-activity
data longitudinally under ambulatory conditions [4]. Fitbit is a
market leader [11], and efforts have been made to validate its
devices, such as the Fitbit Charge 2, against PSG [4,12-15] and
the portable single-channel electroencephalogram sleep scope
device [16]. Such devices not only rely on movement but also
measure HR via photoplethysmography. Changes in the activity
of the autonomic nervous system regulating HR are coupled to

changes in electroencephalogram patterns [17,18], and various
HR measures are correlated with electroencephalogram-defined
sleep states [19]. These relationships potentially permit a
multisensor fitness tracker to estimate an array of sleep variables
above and beyond that of conventional actigraphy [20-22].

A recent laboratory-based validation study suggested that the
proprietary algorithm of Fitbit Charge 2 (Fitbit Inc) to estimate
different sleep variables performed reasonably well [3]. More
specifically, the device displayed a 9-minute overestimation of
total sleep time (TST), whereas sleep onset (Son) latency was
underestimated by 4 minutes. Furthermore, Fitbit’s light stage
was overestimated by 34 minutes, and Fitbit’s deep sleep stage,
assumed to be equivalent to the N3 sleep stage, was
underestimated by 24 minutes compared with the PSG-derived
sleep stages N1+N2 and N3, respectively. No bias was observed
in wakefulness after Son (WASO) or the duration of rapid eye
movement (REM) sleep stage. Findings in patients with periodic
limb movements during sleep revealed comparable results [3].
In contrast, a study in patients with obstructive sleep apnea
contradicted the unbiasedness of WASO for 2 Fitbit devices,
Fitbit Charge 2 and Fitbit Alta HR. Both devices underestimated
WASO, possibly indicating variable performance in different
clinical populations [23]. Other work performed at participants’
homes compared Fitbit Charge 2 with a portable single-channel
electroencephalogram sleep monitor [16]. This study showed
86.9% agreement; however, there was an underestimation of
TST by 12.3 minutes, of light sleep by 42.4 minutes, and of
REM sleep by 11.6 minutes. Conversely, WASO was
overestimated by 24.5 minutes and deep sleep by 39.8 minutes.
These estimates also showed a large SD.

Regarding HR, a study found a moderate underestimation of
5.9 beats per minute (bpm) with Fitbit Charge 2 compared with
the electrocardiogram, whereas precision for individual
measurements was poor as reflected by wide limits of agreement
(LoA) [24]. Another study found that this device tended to
slightly overestimate HR in ranges <50 bpm (bias=0.51 bpm)
and underestimate HR in ranges >80 bpm (bias=0.63 bpm)
compared with the electrocardiogram [13]. The Fitbit Charge
HR model displayed a general underestimation (bias=0.88 bpm)
in a similar range [25].

Therefore, the findings of previous sleep and HR validation
studies of Fitbit Charge 2 are rather inconsistent and warrant
further research. It was previously concluded that apart from
the sample population studied, inaccurate temporal
synchronization between Fitbit wearables and PSG is an
important challenge in some validation studies [26]. In addition,
consumer-grade wearables need to be validated under
naturalistic conditions and in diverse populations, as such factors
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may affect their performance. We attempted to validate Fitbit
Charge 2 against gold-standard PSG in a healthy study sample,
but one that regularly performed shift work and exhibited an
elevated risk of occupational stressors, which likely interfered
with and attenuated the quality of sleep. With these objectives
in mind, we seek to validate the usefulness of Fitbit Charge 2
to evaluate sleep quality in first responder shift workers under
naturalistic conditions, with a special focus on rigorous data
preprocessing and time alignment of the data recordings.

Methods

Study Sample
The participants of this study were recruited from July 2017 to
November 2019 by various informational media, emails, and
presentations at shift change as part of a larger study
investigating sleep and resilience to psychological stress and
trauma. They completed 1 month of monitoring of wrist-derived
rest-activity behavior with a Fitbit Charge 2 that was worn
continuously by all individuals on their nondominant wrist.

The Ethics Commission of the Canton of Zurich approved
(2016-01357) all study protocols and experimental procedures,
and written informed consent was obtained before participation.
Participants invited to participate fulfilled all inclusion criteria:
aged between 18 and 65 years, BMI ≤26 (or if exceeding a BMI
of 26, which is typical of very athletic participants, an absence
of sleep problems, such as sleep breathing disorders, was
reported), current employment in 1 of 2 participating emergency
rescue stations and a police station in the greater Zurich area of
Switzerland, possession of a smartphone, and German language
fluency. Exclusion criteria included the presence of a
neurological disorder diagnosis or head injury with the potential
to affect electroencephalogram variables, reported intake of >5
alcoholic beverages per week, or if a urine drug screen (Drug
Screen Multi 12-AE; Nal von Minden GmbH) revealed drug
abuse. All participants were shift workers, although specific
shift schedules varied among individuals by occupation, such
that emergency medical rescue workers and emergency doctors
worked cycles of two 12-hour days followed by two 12-hour
nights, terminating in 4 free days. Police officers worked four
contiguous shifts with varying individual activities and bedrest
times. Data on individual shifts were not collected or analyzed.
Individuals received monetary compensation for participating
in the study. Participants additionally received a report on their
sleep derived from their own sleep data derived from Fitbit
Charge 2 and PSG. This report was explained to them by a study
staff member.

Validated German translations of questionnaires administered
at meetings at the start and upon completion of 1 month of
monitoring were used to assess lifestyle and psychological and
sleep variables. The Pittsburgh Sleep Quality Index (PSQI) [27],
Posttraumatic Stress Disorder Checklist for Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition [28], and
the Perceived Stress Scale 10 (PSS-10) [29] were used to assess
subjective sleep quality, posttraumatic stress symptoms, and
stress in the past month. Cutoff scores of ≥5 on the PSQI, >31
on the Posttraumatic Stress Disorder Checklist for Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edition, and

substantial deviations from the normative values—12.1 (SD
5.9) for men and 13.7 (SD 6.6) for women—indicate poor sleep
quality [27], a probable posttraumatic stress disorder diagnosis
[28], and elevated perceived stress [29], respectively. The
Horne-Östberg Morningness-Eveningness Questionnaire-A
Reduced Scale (rMEQ) was used to assess the participants’
preferred rest-activity behavior or chronotype, with higher scores
indicating increased morning activity preference. Scores on the
rMEQ have a range of 4-25. A previous study found that most
individuals (60%; scores: 12-17) show neither a pronounced
evening (20% of individuals; scores: 4-11) nor morning (20%
of individuals; scores: 18-25) activity preference [30].

Polysomnographic Recordings
A total of 62 individuals (43 emergency medical rescue workers,
16 police officers, and 3 emergency doctors), of whom 56%
(35/62) were women, completed 2 nights of ambulatory PSG
recordings in their homes. The PSG recordings were always
made of nocturnal sleep following a day work shift and consisted
of an adaptation night and then a baseline night the following
evening. Individuals were free to determine their bedtime and
sleep duration. The adaptation night served as a combined
adaptation and screening night, whereas the baseline night
provided the data analyzed in this report, with the exception of
8 individuals, whose data originated from the adaptation night
because the PSG data of the baseline nights were of poor quality.
The PSG data from one individual were excluded from the
analyses because the data were of poor quality on both nights.
Therefore, the total PSG sample consisted of 61 individuals.
On 2 nights, the Fitbit Charge 2 data sets for 2 individuals were
not obtained, reducing the sample to 59 individuals who had
both PSG and Fitbit Charge 2 data for comparison. All PSG
data were acquired using dedicated ambulatory
polysomnographic amplifiers (SOMNOscreen Plus,
SOMNOmedics GmbH). All electrodes and sensors for PSG
recordings were applied by trained members of the research
team. The overall PSG montage consisted of scalp electrode
sites Fz, Cz, Pz, Oz, C3, C4, A1, and A2 applied according to
the International 10-20 System [31] and electrooculogram,
submental electromyogram, and electrocardiogram and
grounding electrode according to the American Academy of
Sleep Medicine standards [32]. The Cz electrode served as the
reference during recording, and the opposite mastoid was used
for the rereferenced display. The sampling rate for all the sites
was 256 Hz. For recording, high-pass (0.2 Hz) and low-pass
filters (128.0 Hz) were used. High-pass (0.3 Hz) and low-pass
(35.0 Hz) filters in addition to a powerline filter were applied
for visual sleep scoring. Sleep stages were scored visually by
an experienced individual in 20-second epochs according to the
American Academy of Sleep Medicine (2007) criteria.

The electrocardiogram trace in the PSG recordings was
examined visually for one epoch at a time for all wake epochs
before Son and all epochs of sleep and wake stages after Son

(performed by an experienced individual). Artifacts and ectopic
beats present in the electrocardiogram trace that had the potential
to interfere with the quantification of interbeat intervals (IBIs),
defined as the time interval between the normal R peaks of the
QRS complex, were manually marked and removed before data
processing and analysis.
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Fitbit Charge 2 Recordings
All participants wore the Fitbit Charge 2 continuously during
the PSG recorded nights. The device records wrist activity using
accelerometry and pulses via photoplethysmography. It produces
two types of sleep data depending on whether certain criteria
are fulfilled during data collection. These criteria are sufficient
battery charge, a sleep episode >3 hours in duration, and
sufficient skin contact with the photoplethysmography sensor.
If these criteria are not fulfilled, then classic sleep data are
generated, comprising asleep, awake, and restless variables at
a 1-minute data granularity. If these criteria are fulfilled, then
stages data are produced, comprising wake, light, REM, and
deep sleep at a 30-second data granularity. If stages data are
obtained for a given sleep episode, then users receive two data
sets, that is, (1) sleep data, which is composed of stages, and
(2) wake data, which is composed exclusively of wake episodes
<30 seconds. Both data sets are present in a single JSON file
for a given data collection date. However, there were also wake
episodes contained within the sleep data set. This data structure
is especially relevant for researchers who wish to extract entire
hypnogram data and information not provided by Fitbit, such
as REM sleep latency (REML). The variable WASO was created
in this study by merging these two data sets contained within
the stages data type output. The Fitbit sleep staging algorithm
occasionally scores the first stage after Son and the last stage
before sleep offset (Soff) as wake. This runs counter to the
intuitive definition of Son and Soff as the first occurrence of sleep
and the last occurrence of sleep, respectively.

We manually omitted such bordering wake epochs and adjusted
the Son, Soff, TST (ie, Soff – Son), and WASO values accordingly.
Son, Soff, and REML are variables that are not provided directly
by Fitbit; hence, we calculated them from the sleep staging
information provided by Fitbit. All other variables were standard
Fitbit variables. Adjustments only affected the Bland-Altman
analyses. The results of the analyses without adjustment for the
standard Fitbit variables can be found in Figure S1 and Table
S1 in Multimedia Appendix 1. A sleep sensitivity setting is
needed to be set for Fitbit’s sleep recordings, with options
sensitive and normal. When set to normal, only major body
movements, such as rolling over, will register as wake, whereas
when set to sensitive, more subtle movements will additionally
be registered as wake. We set the setting to sensitive throughout
the data collection.

Statistical Analyses
All analyses and data processing steps were performed in the
programming language R (version 4.0.0; R Foundation for
Statistical Computing) [33]. Fitbit intraday HR measures were
used. For electrocardiogram R peak detection, the Pan-Tompkins
algorithm [34] was used as implemented in the rsleep package
(version 1.0.3) [35]. However, the algorithm could not
distinguish sharp T waves from R peaks on various occasions.
Thus, a modification of the algorithm had to be made. The signal
can sometimes be inverted in the sign, and for this reason, we
changed the signal to have positive R peaks (which was revealed
by the mean of the detected peak values by the Pan-Tompkins
algorithm). Sometimes, the peak can be slightly misaligned with
the actual R peak maximum. Therefore, after running the

Pan-Tompkins algorithm, the detected peak was aligned with
the actual maximum ±200 ms around the detected peak.
Furthermore, in cases where two peaks were observed within
less than 360 ms, we checked if the subsequent peak was a
mistakenly detected T wave or an actual R peak. This was done
by examining the signal in a small window of ±28 ms around
the detected and maximally aligned peak and taking its second
derivative. T waves generally display slower changes in the
tangents of the electrocardiogram signal as compared to faster
tangent changes found in R peaks. The 60% quantile of the
absolute value of the second derivative (QAVSD60) was then
compared with a cutoff point specific to an individual participant
derived from the density function of the QAVSD60 values from
all the detected peaks. The cutoff point was defined as the first
local minimum of the density within the hard limits of 35/256

µV/s2 and 120/256 µV/s2. If no local minimum was present,

35/256 µV/s2 was used instead. The density of QAVSD60

revealed a multimodal distribution of nearly no overlap between
the T wave characteristic QAVSD60 values compared with those
originating from R peaks. Erroneously detected T waves were
omitted, thereby rescuing the affected segments of the
electrocardiogram data sets for subsequent analyses. This small
T wave check and alignment of the peak to the local maximum
significantly improved the algorithm performance on visual
inspection. From PSG IBIs, a transformation into bpm was made
with 60 seconds divided by the IBI duration in seconds.

The internal clock times of the Fitbit and PSG systems were
misaligned. This is a common problem in studies involving
multiple measurement instruments, as they often do not share
the same clock and thus require temporal alignment [36,37].
Hence, we estimated a time shift for each individual to ensure
good time alignment. For this, linear interpolation was used to
estimate values between two data points in either the PSG
beat-per-beat data or the lower-resolution Fitbit data. We
resampled both the Fitbit and PSG interpolated time series of
a given night at 0.2-second intervals. The cross-correlation
function was used to extract the lag with the maximal correlation
between the time series.

Bland-Altman plots were constructed with the blandr package
(version 0.5.1) [38] for all the sleep variables, two tailed t tests,
and LoA defined as b (SD 1.96), where b denotes the bias and
SD is the standard deviation of the bias. A variable is termed
as unbiased if bias b is not significantly different from 0 from
the corresponding t test. The differences in the Bland-Altman
analyses were set to denote PSG minus Fitbit. Thus, a positive
difference corresponds to an underestimation of Fitbit compared
with PSG, and a negative difference corresponds to an
overestimation. Concerning the repeated measurements of the
10%-trimmed HR average (HR10) and 10%-trimmed HR
variance average (HRvar10) as measured at 1-minute intervals,
a linear mixed effects regression with the nlme package (version
3.1-147) was estimated [39]. The dependent variable was set to
be the PSG-Fitbit value, and just a single intercept without a
slope was considered the independent variable. For the random
effect, a random intercept per subject was included. Owing to
the consecutive 1-minute HR10 and HRvar10 measurements with
potential time correlations, an autocorrelation structure of order
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one was added. The t tests and LoAs were estimated using a
mixed model.

Epoch-by-epoch (EBE) analyses were performed through the
following statistical measures:

Sensitivity = TP/P (1)

Specificity = TN/N (2)

Accuracy = (TP + TN)/(P + N) (3)

Matthews correlation coefficient (MCC) = (TP * TN

- FP * FN)/ (4)

Positive predictive value (PPV) = TP/(TP + FP) (5)

Negative predictive value (NPV) = TN/(TN + FN)
(6)

In these equations, TP represents true positives (number of Fitbit
epochs that share a given PSG stage), TN represents true
negatives (the number of Fitbit epochs that are not in a given
stage and where the according PSG epoch is also not labeled
as that stage), FP represents false positives (number of Fitbit
epochs that do not share a given PSG stage), and FN represents
false negatives (number of Fitbit epochs that did detect a given
stage, whereas PSG did not detect it). Sensitivity measures the
proportion of epochs of a given PSG-derived sleep state that
was correctly identified by Fitbit (eg, for REM sleep, it is the
percentage of Fitbit REM sleep stages among all PSG REM
sleep stages). Specificity, however, describes the percentage of
Fitbit correctly identifying the nonoccurrence of a given sleep

state. Accuracy is a combined measure of the true discoveries
and true negatives of Fitbit divided by all positives and negatives
in the PSG sample. MCC is more informative than the measure
accuracy, because it considers all true positive, true negative,
false positive, and false negative. This can be interpreted as a
correlation coefficient, that is, the more positive, the better Fitbit
predicts the PSG epochs, such that 0 would be random guessing,
and negative values indicate disagreement. PPV, often called
precision, describes the proportion of Fitbit correctly identifying
a given stage among the number of times Fitbit assigned that
stage, and NPV describes the equivalent for correctly identifying
an epoch that is not a given stage. In our sample, the epoch
length was defined as 20 seconds, but Fitbit’s algorithm has an
epoch length of 30 seconds. Thus, a direct EBE analysis was
not possible. Therefore, we looked at all PSG-derived epochs
and compared them with the dominating Fitbit stage (>50%) in
the same interval. In cases where one PSG epoch contained two
different Fitbit stages of equal length, we chose the first stage.

Results

Demographic Characteristics of the Study Sample
The demographics of the 59 individuals studied as well as their
mean PSG- and Fitbit-derived sleep and HR measures are
summarized in Tables 1 and 2. The mean values on the PSQI
and PSS-10 indicated slightly impaired subjective sleep quality
and a slightly elevated perceived stress level [27]; however, no
diagnostic criteria for possible posttraumatic stress disorder
have been met [28].

Table 1. Demographics of study sample (N=59).

Value

33 (56)Female, n (%)

15 (25)Police, n (%)

33.5 (8.1)Age (years), mean (SD)

23.9 (2.9)BMI, mean (SD)

5.8 (2.7)PSQIa, mean (SD)

6.2 (7.9)PCL-5b, mean (SD)

12.2 (4.9)PSS-10c, mean (SD)

14.4 (3.5)rMEQd, mean (SD)

aPSQI: Pittsburgh Sleep Quality Index.
bPCL-5: Posttraumatic Stress Disorder Checklist for Diagnostic and Statistical Manual of Mental Disorders Fifth Edition.
cPSS-10: Perceived Stress Scale 10.
drMEQ: Horne-Östberg Morningness-Eveningness Questionnaire-A Reduced Scale.
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Table 2. Sleep and heart rate variables (N=59).

Value, mean (SD)

FitbitPolysomnography

23.4 (2.4)23.4 (0.9)N1so
a (clock time)

7.8 (2.6)8.0 (1.7)TSTb (hours)

1.7 (0.7)1.7 (0.8)REMd
c (hours)

4.4 (1.3)4.2 (1.1)lightd
d (hours)

1.3 (0.5)1.5 (0.6)deepd
e (hours)

1.0 (1.1)0.4 (0.5)WASOf (hours)

103.9 (59.7)76.3 (30.6)REMLg (minutes)

15 (8.7)11.6 (8.1)REMh in the first cycle (%)

59.9 (8.2)60.9 (9.1)HR10
i REM (bpmj)

59.2 (7.5)61.8 (9.2)HR10 N1k (bpm)

55.7 (7.0)56.6 (7.7)HR10 N2l (bpm)

57.2 (7.2)58.8 (8.8)HR10 N3m (bpm)

6.4 (16.1)28.1 (90.8)HRvar10
n REM (bpm)

6.8 (16.7)48.7 (110.1)HRvar10 N1 (bpm)

4.7 (24.3)22.0 (76.7)HRvar10 N2 (bpm)

2.9 (12.9)25.4 (111)HRvar10 N3 (bpm)

aN1so: sleep onset with non–rapid eye movement (NREM) sleep stages 1 criteria.
bTST: total sleep time.
cREMd: rapid eye movement sleep duration.
dlightd: light sleep or NREM sleep stages 1+NREM sleep stages 2 duration, respectively.
edeepd: deep sleep or NREM sleep stages 3 duration, respectively.
fWASO: wakefulness after sleep onset.
gREML: rapid eye movement sleep latency.
hREM: rapid eye movement.
iHR10: 10%-trimmed heart rate average.
jbpm: beats per minute.
kN1: NREM sleep stages 1.
lN2: NREM sleep stages 2.
mN3: NREM sleep stages 3.
nHRvar10: 10%-trimmed heart rate variability.

Time Alignment
Accurate temporal synchronization between the PSG system
and the wearable Fitbit device often poses a methodological
challenge in validation studies [4]. This was also the case in
this study. When scrutinizing our data, we noticed that the time
discrepancies between the PSG system’s and the Fitbit app’s

clocks increased as the study progressed. In other words, the
later the participant entered the study, the higher the time
difference between PSG and Fitbit recordings. This relationship
can be seen in Figure 1 as a linear association between the
individual participant identifier number and the estimated time
shift between the two measurement instruments.

J Med Internet Res 2021 | vol. 23 | iss. 10 | e26476 | p. 6https://www.jmir.org/2021/10/e26476
(page number not for citation purposes)

Stucky et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. The consecutive study participant numbers (higher numbers indicate chronologically later entry into the study) from the entire study sample
are shown on the x-axis; the data-driven timeshift between polysomnography and Fitbit is shown on the y-axis. There was a significant linear relationship

between the identifier and the shift (P<.001; adjusted R2=0.85). Thus, the times drifted apart as the study went on, with a minimum time misalignment
of 1.9 minutes and a maximum of 7.5 minutes. PSG: polysomnography.

To align the time series, we computed the cross-correlation
function for each participant and corrected the time shift by the
emergent maximum. Our time alignment efforts produced good
correspondence in our data between the two instruments, as
evident in the simultaneous occurrences of HR bursts in the two
time series (Figure 2). Nevertheless, the variability and

amplitude of the Fitbit curve were reduced compared with PSG
because only between 4 and 12 measurements per minute were
made available by Fitbit. The analysis of the entire Fitbit sample
revealed that an average of 7.48 HR counts per minute was
available (Figure 3). In contrast, PSG HR data were sampled
at a frequency of 1/256 Hz.
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Figure 2. Data on the validation night of the first participant in the study with identifying number 004 (left column) and the last participant in the study
with number 104 (right column) are shown. Row A displays the cross-correlation function, which displays a large visible maximum at the orange vertical
line representing the best alignment between the two devices (PSG and Fitbit). The dashed vertical reference line shows a lag of 0 minutes. Rows B-D
share the same x-axis, which denotes hours after PSG-derived sleep onset with criteria. For each hour in the recording, a vertical dashed gray line was
added. Row B shows the HR in bpm derived from PSG (red) and Fitbit (black) that were seen before any time alignment was applied, whereas row C
presents the HR data after the data-driven shift from panel A was applied. The time-aligned time series visually shows good agreement after correcting
for the time difference. Fitbit shows reduced variability in the signal but fairly good average correspondence. In panel D, the top row shows PSG-derived
hypnograms for both participants, whereas in the bottom row, the Fitbit-derived hypnograms are displayed. All hypnograms have been time-corrected
according to panel A. The overall sleep structure is captured reasonably well by Fitbit, but Fitbit detects more wake and REM episodes compared with
PSG, and the distinction of light (N1+N2) and deep (N3) sleep often seems to be particularly challenging for Fitbit. bpm: beats per minute; HR: heart
rate; PSG: polysomnography; REM: rapid eye movement; W: wake.
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Figure 3. The available data of all nights (n=59) were extracted and counted for the number of heart rate measures contained. A total of roughly 28,320
minutes (corresponding to 59 study participants who, on average, spent 8×60 minutes asleep) were expected. In fact, 28,601 individual minutes of data
were recorded; this figure displays the distribution of all heart rate measures, yielding an average of 7.48 measures per minute. Count data for >12
measures per minute and <4 measures per minute are not displayed because their occurrences were so small that they are not visible on the plot.

Distribution of Sleep Stage Durations
Next, we compared the distribution of sleep stage durations
between the Fitbit and PSG data (Figure 4). Duration was
defined as the duration of consecutive epochs with the same
sleep stage until interrupted by any other stage, independent of
its duration. We observed that Fitbit uses 30-second intervals
to classify the stages data, whereas the classic data are presented
with less time-resolved, 1-minute resolutions. With respect to
wake episodes, the Fitbit data resembled the PSG distribution,
with mostly short uninterrupted wake episodes and much rarer
longer episodes. The awake category in the classic datatype had
higher tails, possibly owing to having a resolution of 1 minute
instead of 30 seconds, thus potentially missing certain stage
changes that occur faster. On the basis of the inspection of the
data distributions, we assumed that Fitbit’s light sleep stage in
the stages datatype might capture PSG-defined N1+N2 sleep

stages, whereas deep sleep might capture PSG-defined N3 sleep.
However, these assumptions need to be treated with caution
because no information is provided by Fitbit. In general, light
and deep sleep showed longer tails than the PSG-defined
non–rapid eye movement (NREM) sleep stages, possibly owing
to different temporal resolutions or slower changes in HR and
HR variability compared with the more sudden changes in brain
states. Furthermore, the deep sleep distribution showed a
pronounced discontinuity at around 4 minutes and 30 seconds,
which could also be observed in the Fitbit REM sleep stage
duration. The distributions of light, deep, and REM sleep showed
discrepancies to the PSG-derived durations, indicating that the
algorithm does not fully reflect PSG-derived data and may miss
brief stage changes and stage interruptions. Furthermore, the
restless stage in the classic datatype is unknown. This stage
displayed a peak at approximately 11 minutes, with an unknown
origin.
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Figure 4. The distribution of sleep stage durations for Fitbit (left panel) and PSG (right panel). Both were computed on the sample of the nights used
for validation. Here, the plot has been cut off at 40 minutes for visual purposes; the tails continue to decrease as one would expect. The Fitbit sleep
staging data types "classic" (red) and "stages" (blue) show large deviations compared with PSG sleep stages (black). Of note, deep and REM sleep show
nonbiological discontinuity at around 4.5 minutes, and all Fitbit stages have larger tails. The stage "restless" has a peak at 11 minutes with unknown
meaning. PSG: polysomnography. REM: rapid eye movement; WASO: wakefulness after sleep onset.

Bland-Altman Analyses of Sleep Variables
We split our validation into two analyses, one with the
PSG-determined first occurrence of N1 sleep as the criterion
for Son (N1 Son [N1on]) and the other with the first occurrence
of N2 sleep as the criterion for Son (N2 Son [N2on]). This was
done because it is unknown how Fitbit estimates Son. In Figure
5, we plotted the variables computed with N1on, and Table 3
provides the associated statistics. The N2on analyses revealed
systematically higher biases. These data are presented in Figure
S2 and Table S2 in Multimedia Appendix 1. Son, defined as
N1on, was unbiased (–1.6 minutes; P=.73). Soff, TST, REM
sleep duration (REMd), the duration of Fitbit’s light sleep
duration (lightd) in minutes (as recorded by the Fitbit; interpreted
as N1+N2), and the deep sleep duration (deepd) in minutes (as
recorded by the Fitbit) did not display significant bias.
Nevertheless, deepd showed a trend toward a bias of 11.2

minutes with N1on (P=.08), likely pointing to a slight
underestimation with Fitbit of N3 sleep. REML and WASO
both exhibited a significant overestimation with Fitbit—REML
was overestimated by 29.4 minutes and WASO by 37.1 minutes
(Pall<.001). Although the marginal densities of the differences
for Son, Soff, and TST were quite narrow, indicating a good
estimator in general, some occasional sleep episodes disagreed
strongly between the Fitbit and PSG instruments, as reflected
in the large LoA (Table 3). The marginal distributions of REMd,
lightd, and deepd showed higher variance, even if outliers were
neglected. This observation may indicate that the estimation of
stages of sleep is challenging for Fitbit’s algorithm and a source
of variability, although being unbiased. The data on the standard
Fitbit variables without the bordering wake epoch adjustment
revealed very similar results, however, with slightly larger biases
for TST and WASO, as shown in Figure S1 and Table S1 in
Multimedia Appendix 1.
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Figure 5. Bland-Altman plots for various sleep variables are shown with sleep onset defined as the first occurrence of N1. The dashed lines denote
lower limits of agreement, bias, and upper limits of agreement. The dotted lines are the respective 95% CI of limits of agreement. On the top and right
of each panel, the marginal densities are plotted. The x-axis displays the PSG variables, and the y-axis denotes the differences between the two devices
(PSG-Fitbit). N1-derived sleep onset is unbiased. Sleep offset, total sleep time, light sleep or N1+N2 sleep duration, deep sleep or N3 sleep duration,
and REMd do not have significant bias. WASO and REML display a significant deviation of the difference between the devices from 0. deepd: deep
sleep duration; lightd: light sleep duration; PSG: polysomnography; REMd: rapid eye movement sleep duration; REML: rapid eye movement sleep
latency; Soff: sleep offset; Son: sleep onset; TST: total sleep time; WASO: wake after sleep onset.
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Table 3. Bland-Altman statisticsa.

P valueUpper LoALower LoAcPSGb-FitbitVariable

.7365.6–68.8–1.6Son
d (minutes)

.66178.2–189.3–5.6Soff
e (minutes)

.77196.3–204.3–4.0TSTf (minutes)

.6782.4–87.8–2.7REMd
g (minutes)

.27116.0–136.8–10.4lightd
h (minutes)

.0895.2–72.911.2deepd
i (minutes)

.001113.8188.1–37.1WASOj (minutes)

.00186.6–145.4–29.4REMLk (minutes)

HR10
l (bpmm)

<.0018.6–6.90.9Overall

.039.2–5.41.9WASO

.1411.3–8.91.2N1n

.0016.0–4.70.6N2o

.0087.6–6.40.6N3p

<.0016.0–4.70.7REMq

aStatistics accompanying the Bland-Altman plots (Figure 5). Sleep onset and rapid eye movement (REM) sleep latency were calculated using the
non–rapid eye movement (NREM) sleep stages 1 sleep onset criteria. The average 10%-trimmed heart rate and 10%-trimmed heart rate variance values
in various sleep states are presented in the columns below the sleep variables. The average difference between polysomnography and Fitbit measures
bias can be found in the first column. The lower and upper limits of agreement describe 1.96 times the SD around the bias and can be found in the
subsequent columns. In the last column, the P values for the paired t test are reported; we tested whether the bias was significantly different from 0.
bPSG: polysomnography.
cLoA: limit of agreement.
dSon: sleep onset.
eSoff: sleep offset.
fTST: total sleep time.
gREMd: REM sleep duration.
hlightd: light sleep duration.
ideepd: deep sleep duration.
jWASO: wakefulness after sleep onset.
kREML: REM sleep latency.
lHR10: 10%-trimmed heart rate average.
mbpm: beats per minute.
nN1: NREM stage 1 sleep.
oN2: NREM stage 2 sleep.
pN3: NREM stage 3 sleep.
qREM: rapid eye movement.

Bland-Altman Analyses of HR Variables
The Bland-Altman plots for the HR variables are shown in
Figure 6. When computing the interval between 30 minutes
before N1on until Soff without considering the different
wakefulness and sleep states, HR10 and HRvar10 measures both
appeared biased. More specifically, Fitbit underestimated HR10

overall by 0.9 bpm and displayed LoA of –6.9 and 8.6 bpm

(Table 3). This underestimation was rather small, with a
relatively narrow marginal distribution of the differences. When
focusing on 1-minute HR10 values restricted to the time interval
between Son and Soff and dividing among the PSG-derived states
N1, N2, N3, REM sleep, and wake, HR10 displayed a higher
bias in the wake (1.9 bpm; P=.03) and N1 (1.2 bpm; P=.14)
stages compared with the sleep stages N2 (0.6 bpm; P=.001),
N3 (0.6 bpm; P=.008), and REM sleep (0.7 bpm; P<.001).
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When analyzing overall HR variance, Fitbit strongly
underestimated HRvar10 with a bias of 20.3 bpm (P<.001),
which was associated with higher LoA –82.1 and 122.7. When
HRvar10 was divided among the different sleep stages, we

observed behavior similar to HR10, such that HRvar10 wake and
N1 had a higher bias (60.2 and 51.1 bpm) than N2, N3, and
REM sleep (17.6, 16.3, and 18.5 bpm), all with low P values
and considerably large LoA.
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Figure 6. Bland-Altman plots for heart rate–derived variables. The dashed lines denote lower limits of agreement, bias, and upper limits of agreement
for a mixed model dealing with the repeated measures. On the top and right of each panel are the marginal densities. The x-axis displays the means of
both devices (ie, [polysomnography + Fitbit]/2), and the y-axis denotes the differences between the two devices (polysomnography-Fitbit). Overall
average 10%-trimmed heart rate and 10%-trimmed heart rate variance values are calculated for 1-minute intervals between 30 minutes before sleep
onset with N1 criteria and 30 minutes after sleep offset. All other variables are calculated between sleep onset and sleep offset, only extracting the
designated variable, in 1-minute intervals. HR10: 10%-trimmed heart rate average; HRvar10: 10%-trimmed heart rate variance average; REM: rapid
eye movement; WASO: wake after sleep onset.

EBE Analysis
The EBE analysis results are displayed in Table 4. The EBE
comparison between Fitbit and PSG revealed that Fitbit

displayed better specificity (WASO: 0.898; light sleep as
N1+N2: 0.574; deep sleep as N3: 0.92; REM sleep: 0.889) than
sensitivity (WASO: 0.428; light sleep as N1+N2: 0.534; deep
sleep as N3: 0.279; REM sleep: 0.548). The sensitivity for REM
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sleep was worse during the initial 120 minutes of sleep (0.432)
when compared with REM episodes beginning 120 minutes or
more after Son (0.57). In contrast, for specificity, this relationship
was reversed (REM<120 minutes: 0.963; REM>120 minutes:
0.864). Accuracy was best for WASO (0.898) and REM sleep
(0.880) and worse for deep sleep N3 (0.776) and light sleep
N1+N2 (0.553). A similar relationship was reflected in the
MCC, ranging from weak to moderate correlation (REM sleep:
0.339; WASO: 0.329; deep sleep as N3: 0.25; light sleep as
N1+N2: 0.108). The MCC measure is preferable to accuracy

as it only leads to higher scores if the prediction is
simultaneously accurate in all confusion matrix categories (true
positive, false positive, true negative, and false negative) [40].
PPV, the probability that an episode with a given Fitbit stage
will also have the same PSG stage, was generally lower (WASO:
0.438; light sleep as N1+N2: 0.592; deep sleep as N3: 0.501;
REM sleep 0.306) compared with NPV, the probability that an
episode that does not have a certain Fitbit stage will also not
have that PSG stage (WASO: 0.894; light sleep as N1+N2:
0.516; deep sleep as N3: 0.815; REM sleep: 0.956).

Table 4. Epoch-by-epoch analysisa.

NPVdPPVcMCCbAccuracySpecificitySensitivityState

0.8940.4380.3290.8240.8980.428WASOe

0.5160.5920.1080.5530.5740.534Light sleep

0.8150.5010.2500.7760.9200.279Deep sleep

0.9560.3060.3390.8610.8890.548REMf sleep

0.9670.4030.3830.9340.9630.432REM sleep <120 minute

0.9530.2960.3290.8370.8640.570REM sleep >120 minute

aEpoch-by-epoch comparison of Fitbit and polysomnography stages.Each stage—wakefulness after sleep onset, light sleep (non–rapid eye movement
[REM] stage 1 [N1] sleep+NREM stage 2 sleep), deep sleep (NREM stage 3 sleep), and REM sleep—was analyzed. REM sleep was divided into
analyses with REM sleep episodes occurring during the first 120 minutes after sleep onset with N1 sleep criteria (N1 sleep onset) and REM sleep
episodes occurring later than 120 minutes after N1 sleep onset. Various performance measures were used, including sensitivity, specificity, accuracy,
the Matthews correlation coefficient, the positive predictive value, and the negative predictive value. More information on these measures can be found
in the Methods section. Fitbit showed mostly good specificity but poor sensitivity. The accuracy was relatively high except for the light sleep stage.
The Matthews correlation coefficient displayed a moderately positive relationship, with light and deep sleep being considerably less good. The negative
predictive value was usually higher than the positive predictive value.
bMCC: Matthews correlation coefficient.
cPPV: positive predictive value.
dNPV: negative predictive value.
eWASO: wakefulness after sleep onset.
fREM: rapid eye movement.

Discussion

Principal Findings
We evaluated the performance of the multisensor wearable Fitbit
Charge 2 against PSG of the sleep macrostructure and HR in a
sample of first responder shift workers under naturalistic
conditions. We observed that Son, Soff, TST, REMd, N1+N2
sleep duration, and N3 sleep duration showed unbiased estimates
but nonnegligible LoA. Fitbit overestimated REML by –29.4
minutes, possibly because the proprietary algorithm failed to
detect very short first REM sleep episodes. This hypothesis is
supported by the right shift in the maximum duration of stages
and larger tails (Figure 4) and a cluster of REML data points
occurring at approximately –100 minutes (Figure 5), indicating
that Fitbit cannot capture short-lasting stage durations well. Not
only REML but also other sleep variables often exhibited a wide
LoA. In addition, despite performing a careful, data-driven time
alignment between the Fitbit and PSG time series, which
differed from 1.9 minutes to 7.5 minutes depending on the
participants’entrance into the study, Fitbit overestimated WASO
by as much as 37.1 minutes. We concluded that the unbiased
sleep variables allow average estimations of important sleep

quality characteristics in ecological conditions. However, the
wide LoA in most variables and the large biases in REML and
WASO limited the meaningfulness of quantifying individual
sleep episodes. These findings highlight the considerable
challenges still present when relying on consumer-grade
technology to address clinical and research questions.

One of our most striking and novel findings is that the
distribution of all sleep episode durations differs between the
Fitbit Charge 2 and PSG. Fitbit’s sleep staging algorithm
probably treats REM and deep sleep states of less than 4.5
minutes differently than sleep stages exceeding this duration.
This introduces a nonbiological discontinuity, indicating the
potential limitations of the tracker’s staging algorithm.
Furthermore, it is not clear what PSG measurement corresponds
to the Fitbit stage restless, which renders meaningful
comparisons impossible. Our findings in the sleep episode
duration distribution are consistent with recent work [41], which
also revealed an underestimation of sleep stage transition
dynamics.

The Son measures from Fitbit were unbiased concerning the
N1on criteria, whereas there was a higher but nonsignificant
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underestimation for N2on. Thus, it is likely that Fitbit’s definition
of Son time roughly corresponds to PSG-derived N1on. Son

criteria should be reported in future validation studies because
whatever criterion one selects (eg, N1on, N2on, or alternatively
any stage of sleep) will impact many sleep variables, such as
TST, REML, and WASO, whose operational definition and
calculation depend upon the criterion of Son. This may be one
of the reasons for discrepancies reported in the validation
literature. A peculiarity of the staging information provided by
Fitbit is that the first stage after the Son time and the last stage
before Soff time is sometimes staged as awake or wake. We
manually adjusted the Son and Soff times to be delineated by the
first and last occurring stages of sleep rather than including
stages of wake at the border of sleep. In a large Fitbit data set
collected in 89 individuals for 1 month capturing roughly 3000
sleep episodes [42], 69.8% of all sleep episodes in the first stage
after Son and in 50% of all cases, the last stage before Soff was
not coded as a sleep stage. In other words, an appreciable
proportion of Fitbit sleep episodes are bookended by a stage of
wake. This is an inconspicuous but important caveat. Our
adjustment of these data could be a reason why we found N1on,
Soff, and TST to be unbiased when comparing Fitbit data with
PSG data, whereas Liang et al [16], de Zambotti et al [43], and
Morena-Pino et al [23] found TST biases in different directions.
More specifically, a previous study [43] found unbiasedness;
another reported an overestimation of WASO [16], whereas
Moreno-Pino [23] found an underestimation of WASO when
validating Fitbit Charge 2 against PSG. The study by Liang et
al [16] with a WASO bias of 24.5 minutes is closest to our
results of 37.1 minutes.

Overall, EBE analyses revealed better specificity than sensitivity
for all sleep states. This might have been expected. For example,
there are much fewer deep sleep epochs than epochs labeled as
any other sleep stage, which is why a single misclassification
carries more weight for sensitivity than specificity. We found
light sleep to have 0.55 accuracy, whereas de Zambotti et al
[43] found an accuracy of 0.81. However, the same study found
an accuracy of 0.49 for deep sleep, whereas we found a higher
respective value of 0.78. Furthermore, REM sleep showed an
accuracy of 0.86, similar to that of 0.74 found by de Zambotti
et al [43]. A recent systematic review (Haghayegh [14] on
various Fitbit devices including Alta, Alta HR, Charge 2, Charge
HR, Classic, Flex, One, Surge, Ultra and Versa models) found
accuracy values in the range of 0.69-0.81 for light sleep,
0.36-0.89 for deep sleep, and 0.62-0.89 for REM sleep. Thus,
our results for light sleep are slightly lower than the range
suggested previously, whereas, for deep sleep and REM sleep,
the accuracy in our study was in the upper range reported. The
MCC value, which can be interpreted as a usual correlation
coefficient, ranged from 0.11 in light sleep to 0.34 in REM
sleep. These numbers indicate low to medium strength of
correlation, pointing toward room for improvement in the
estimation of sleep stages by Fitbit.

The information Fitbit provides on the sleep sensitivity setting,
with options sensitive and normal, may have an influence on
the amount of stages that are scored as wake [44]. We set the
setting to sensitive when data were collected, which might have

led to an overestimation of WASO, as seen in Figure 2.
However, Fitbit states that this setting has no impact on devices
utilizing HR to track sleep [45]. Consistent with our results,
REMd was also found to be unbiased by [3]. In addition, we
found lightd and deepd to be unbiased. As the algorithm is not
open source, we do not know with certainty whether our study
was running on an updated version of the algorithm compared
with other validation studies. This limitation makes it difficult
to compare the validation study outcomes of consumer fitness
trackers in general [4] and could contribute to the discrepancies
with the previous literature. Another reason might stem from
the different populations sampled or recording conditions. For
example, the algorithm might be better suited to assess sleep in
healthy individuals than in patients or shift workers or may
perform better in a sleep laboratory than in a naturalistic
environment. The discrepancies among studies underscore the
necessity to define standardized procedures to test consumer
sleep technology to benefit from their potential to collect
large-scale sleep data in ecological conditions [21,22,26].

Regarding the HR data, Fitbit slightly underestimated overall
HR10 by 0.9 bpm with a limited capability to capture sudden
HR changes. This underestimation was smaller in N2, N3, and
REM sleep stages (0.6, 0.6, and 0.7 bpm, respectively) compared
with N1 sleep and wake (1.2 and 1.9 bpm), thus indicating a
sleep stage–specific bias. The bias was low and probably not
biologically relevant. The low P values of biases in differences
in the HR measures between the devices arise from the repeated
measure design as a vast number of 1-minute values during the
whole night for each subject was calculated, thereby increasing
the statistical power to detect small biases as significant. The
evident HR bias of 0.9 bpm is strikingly similar to the HR bias
of 0.88 bpm found in de Zambotti et al [25] in the related Fitbit
Charge HR device. As mentioned in the report by Haghayegh
et al [13], Fitbit Charge HR and Fitbit Charge 2 share the same
hardware and software, thus making a comparison feasible,
software updates notwithstanding. We found a stage-dependent
bias with lower underestimation in deeper sleep stages sharing
lower HR on average and a larger underestimation in wake state
and a more transitory sleep stage N1, which share higher HR
values on average, a finding compatible with the HR-dependent
bias reported by Haghayegh et al [13]. For an HR during sleep
of <50 bpm, these authors found an overestimation of 0.51 bpm,
and for an HR during sleep >80 bpm, an underestimation of
0.63 bpm. These values are comparable with our findings. On
the other hand, Benedetto et al [24] found an HR
underestimation of 5.9 bpm during wake state. We also found
a larger underestimation during wake episodes of 1.2 bpm, but
not as high as 5.9 bpm. In the study by Benedetto et al [24], no
time alignment between the two instruments was reported. The
method of capturing HR via video recording of live values
displayed on the Fitbit app was innovative but could be a source
of error. Hence, the results could potentially be influenced by
a timing misalignment between the instruments and data
collection methods.

Fitbit HR variance was reduced owing to the inaccessibility of
raw data and showed higher LoA than the LoA for HR. The
differences between the assessments are not surprising, as Fitbit
only provided 7.4 measurements per minute on average (Figure

J Med Internet Res 2021 | vol. 23 | iss. 10 | e26476 | p. 16https://www.jmir.org/2021/10/e26476
(page number not for citation purposes)

Stucky et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


3). This is probably owing to their algorithm providing some
averaged values in preferably 5 seconds, 10 seconds, and 15
seconds measurement intervals (but other interval lengths, eg,
2-second or 7-second intervals, can also be found in the data).
For comparison, a PSG-derived HR value can be computed for
each IBI. Thus, receiving preprocessed data from Fitbit instead
of raw data naturally leads to a considerably higher variance in
PSG recordings. Moreover, all HR values from Fitbit are
integers, whereas the values from the PSG are real values. This
difference in the nature of the values (rounded to integers)
additionally leads to slightly different behaviors of the HR10

and HRvar10 measures. The Fitbit photoplethysmography would
be able to capture brief bursts in HR, as evidenced by a study
on exercising awake individuals [24]. Data with approximately
1-second time resolutions are only made available in the device’s
exercise mode, which prevents sleep tracking. Nevertheless,
Fitbit may still be able to detect variability changes for longer
periods during sleep with a reasonable degree of accuracy even
without providing users with high resolution or raw HR data
(as seen in Table 1, where the ordering of the variance per sleep
stage remains nearly intact between Fitbit and PSG).

Limitations
The missing information regarding an objective marker of lights
out is a limitation of our study, which prevented us from
estimating sleep latency. In addition, the number of
measurements per minute provided by Fitbit varied, potentially
owing to variable signal quality and other internal
decision-making processes in Fitbit’s proprietary data
preprocessing algorithms. Updates to software or firmware
could have occurred without notice, harboring a great potential
to confound research or clinical undertaking, particularly in
longitudinal scenarios. Individual sleep episodes can vary

appreciably even within an individual, and caution should be
exercised when interpreting results from a Fitbit device. Not
being able to blind participants to their own sleep data after
collection could influence their behavior in subsequent sleep
episodes. This concern is particularly pressing when clinical or
otherwise vulnerable populations are involved, and device output
is interpreted, which may impact treatment options or health
outcomes. For this reason, it is crucial that these devices be
validated in more clinically diverse populations.

Conclusions
In a study conducted at home in a relatively large sample
validating Fitbit Charge 2 against PSG, compared with most
previous validation studies (n=15 [24]; n=25 [16]; n=35 [43];
n=35 [14]; and n=65 [23]), we found unbiased mean estimates
of various sleep and HR variables, although the data generally
exhibited wide LoA. In addition, we noticed problems in
capturing the first REM sleep episodes. The naturalistic design
of the study in a heterogeneous sample in terms of age and sex
and regularly performing shift work increased the external
validity and benefited our understanding of the Fitbit Charge
2’s performance in a minimally controlled home environment.
Nevertheless, for the reliable use of consumer-grade sleep
technology for clinical and research purposes, access to raw
data, the use of open-source data analysis algorithms, more
control of the data flow to blind users, and compliance with all
regulatory aspects are indispensable. Furthermore, future
validation studies should also be conducted in populations with
sleep disorders, such as narcolepsy, who often present with Son

REM sleep episodes that appear particularly difficult to detect.
Such studies can help identify the factors that determine the
accuracy of Fitbit’s sleep and HR measures.
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