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Abstract

Background: Cochlear implant technology is a well-known approach to help deaf individuals hear speech again and can improve
speech intelligibility in quiet conditions; however, it still has room for improvement in noisy conditions. More recently, it has
been proven that deep learning–based noise reduction, such as noise classification and deep denoising autoencoder (NC+DDAE),
can benefit the intelligibility performance of patients with cochlear implants compared to classical noise reduction algorithms.

Objective: Following the successful implementation of the NC+DDAE model in our previous study, this study aimed to propose
an advanced noise reduction system using knowledge transfer technology, called NC+DDAE_T; examine the proposed
NC+DDAE_T noise reduction system using objective evaluations and subjective listening tests; and investigate which layer
substitution of the knowledge transfer technology in the NC+DDAE_T noise reduction system provides the best outcome.

Methods: The knowledge transfer technology was adopted to reduce the number of parameters of the NC+DDAE_T compared
with the NC+DDAE. We investigated which layer should be substituted using short-time objective intelligibility and perceptual
evaluation of speech quality scores as well as t-distributed stochastic neighbor embedding to visualize the features in each model
layer. Moreover, we enrolled 10 cochlear implant users for listening tests to evaluate the benefits of the newly developed
NC+DDAE_T.

Results: The experimental results showed that substituting the middle layer (ie, the second layer in this study) of the
noise-independent DDAE (NI-DDAE) model achieved the best performance gain regarding short-time objective intelligibility
and perceptual evaluation of speech quality scores. Therefore, the parameters of layer 3 in the NI-DDAE were chosen to be
replaced, thereby establishing the NC+DDAE_T. Both objective and listening test results showed that the proposed NC+DDAE_T
noise reduction system achieved similar performances compared with the previous NC+DDAE in several noisy test conditions.
However, the proposed NC+DDAE_T only required a quarter of the number of parameters compared to the NC+DDAE.

Conclusions: This study demonstrated that knowledge transfer technology can help reduce the number of parameters in an
NC+DDAE while keeping similar performance rates. This suggests that the proposed NC+DDAE_T model may reduce the
implementation costs of this noise reduction system and provide more benefits for cochlear implant users.
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Introduction

Cochlear implants (CIs) are implanted electronic medical
devices that can enable patients with profound-to-severe hearing
loss to obtain a sense of sound. In their study, Gifford et al [1]
showed that 28% of individuals equipped with CI achieved
100% speech intelligibility. Sladen et al [2] also reported similar
results in their study: after undergoing CI implantation, the word
accuracy of CI users was 80% in a quiet environment. Although
CI users have few obstacles in a quiet environment, there is still
scope for improvement in a noisy environment [2].

Noise reduction (NR) is one of classical methods to alleviate
the effect of background noise for CI users. Over the past few
decades, many statistical signal processing NR methods have
been proposed, such as log minimum mean squared error [3],
Karhunen-Loéve transform [4], Wiener filter-based on a priori
signal-to-noise ratio (SNR) estimation [5], generalized maximum
a posteriori spectral amplitude [6], and SNR-based [7]
approaches. Loizou et al [8] proposed a single-channel algorithm
to conduct NR, and the results showed that the sentence
recognition scores in 14 participants with CI improved
significantly over their daily performances. Dawson et al [7]
evaluated a real-time NR algorithm which used the noise
estimation to pick up 1 NR approach out of 2 different levels
of NR approaches according to the SNR. The study results
showed that the proposed NR algorithm could benefit CI users
in speech a reception threshold under 3 kinds of noise. Mauger
et al [9] optimized the gain function to achieve a better
SNR-based NR, and the results showed that with the optimized
gain function, a 27% improvement was achieved for CI users
in speech-weighted noise. Although classical NR function can
improve speech intelligibility for CI users in stationary noise
conditions [7-9], improvements are still needed in nonstationary
noise conditions [10].

Deep learning (DL)–based NR methods have recently shown
better performance than classical statistical-based NR methods
[11-17]. Lai et al [18] used a deep denoising autoencoder
(DDAE)–based NR using vocoder simulation to perform NR
function for CI users; the listening test showed that the speech
intelligibility was better with DDAE-based NR than with
convectional single-microphone NR approaches, whether in
stationary or nonstationary noise conditions. Goehring et al
[19,20] used neural and recurrent neural networks to perform
the NR function for CI users, and the results showed that the
proposed NR function could significantly improve speech
intelligibility in babbling noise conditions. In DL methods, the
nonstationary noise can be processed well, but this needs a huge
amount of training data in different noise types and SNR levels.
However, when a mismatch exists, such as when there is a
difference in data between the training and testing phase, the
performance of the DL method is usually degraded [10,18].

An environment-aware–based NR system called noise classifier
(NC) +DDAE (NC+DDAE) was proposed to alleviate the above
issue [21]. The NC+DDAE NR system combines n-specific

noise-dependent (ND)-DDAE NR models and a
noise-independent (NI)-DDAE NR model. The NC function
(ie, deep neural network model) was used to distinguish n
different typical noises and select a suitable DDAE model to
perform the NR function for CI users. Hence, the NC function
made the NC+DDAE an environment-aware–based NR system.
The objective measures and listening test showed that the
NC+DDAE model had a much higher performance than did the
other NR methods. Although the NC+DDAE model has proven
to benefit the CI user and have the flexibility of customization,
the NC+DDAE model requires several parameters, which
increase the requirements for device implementation. Therefore,
the NC+DDAE model needs to be modified to have fewer
requirements while maintaining the performance at the same
level.

Recently, the knowledge transfer (so called transfer learning)
approach [22] has been used in many speech signal processing
tasks (eg, speech emotion detection [23], text-to-speech system
[24,25], and speech enhancement [26]) and has proven to
provide benefits for the DL-based model. Knowledge transfer
is a machine learning method developed for a specific task that
reuses the initial parameters for a new model for the target task.
In other words, the knowledge transfer technology transfers the
domain knowledge based on the source domain to the target
domain to help the DL-based model achieve better performance;
furthermore, it can speed up the time needed to develop and
train a model by reusing these pieces or modules that have
already been developed [22]. Following the concept of
knowledge transfer technology, we proposed an improved
NC+DDAE NR model, called NC+DDAE_transfer
(NC+DDAE_T). We first analyzed the differences between
features in each layer of DDAE to choose the most suitable
layer for NR adaptation. Next, we compared the performance
between NC+DDAE and NC+DDAE_T with 2 well-known
objective metrics: perceptual evaluation of speech quality
(PESQ) [27] and short-time objective intelligibility (STOI) [28].
The PESQ shows the result of comparing the clean and
processed speech by mean opinion score. In the mean opinion
score, 5 is the highest score while 1 is the lowest. According to
a previous study [27], a score over 4 is high enough for most
people to listen comfortably and a score of 3.6 is an acceptable
boundary for those with normal hearing. The STOI represents
the speech intelligibility by a correlation coefficient derived
from comparing the energy of clean and processed speech in
each frame. STOI ranges from 0 to 1, with a higher score
representing more clear and understandable speech. Finally, the
clinical effectiveness of NC+DDAE_T with the NC+DDAE
and DDAE NR systems for patients with CI was evaluated in
noisy listening conditions.

Methods

In this section, we describe first the NC+DDAE approach. We
then introduce the NC+DDAE_T method, the transfer
learning–based NC+DDAE NR modified in this study. Finally,
we describe the experimental setting and material to prove the
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benefits of the proposed NC+DDAE_T compared to 2
well-known DL-based NR systems (ie, DDAE and NC+DDAE).

NR Based on the NC+DDAE Approach
Figure 1 shows the proposed NC+DDAE model in our previous
study [21], where 2 critical units, NC and DDAE, were included.
In this approach, first, the noisy speech signals y(t) are processed

by feature extraction units to obtain Yj
MFCC and Yj

LPS, which
denote log power spectra (LPS) [29] and Mel-frequency cepstral
coefficients [30], respectively, with j denoting the frame in the

short-time Fourier transform. Yj
MFCC is the input of the NC

model to determine the current type of background noise and
to select a suitable DDAE model for NR, which includes
multiple ND-DDAE models each trained by a model-specific
noise type and a single NI-DDAE model trained by 120 noise
types [15]. When the noisy input signal is similar to one of the
specific noise types, the specific ND-DDAE model is chosen
for NR; otherwise, the NI-DDAE is used. Afterward, the

selected DDAE model processes Yj
LPS to obtain the enhanced

features. is combined with the noisy phase Yphase to finally

reconstruct the enhanced speech . The NC+DDAE NR
system has been defined in detail previously [21].

Figure 1. Structure of the noise classifier with a deep denoising autoencoder (NC+DDAE) system. DDAE: deep denoising autoencoder; FFT: fast
Fourier transform; IFFT: inverse fast Fourier transform; LPS: log power spectra; NC: noise classifier; ND: noise-dependent; NI: noise-independent;
MFCC: Mel-frequency cepstral coefficient.

NR With the Proposed NC+DDAE_T Approach
Figure 2 shows the pipeline of the NC+DDAE_T NR approach
proposed in this study. The signal processing procedure of the

NC+DDAE_T is similar to that of the above-mentioned
NC+DDAE. The major difference lies in the NR model as
described in the following sections.
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Figure 2. Structure of the proposed noise classifier system with DDAE and knowledge transfer. DDAE: deep denoising autoencoder; DNN: deep neural
network; FFT: fast Fourier transform; IFFT: inverse fast Fourier transform; LPS: log power spectra; NC: noise classifier; NI: noise-independent; MFCC:
Mel-frequency cepstral coefficient.

NC Model
The NC model of the proposed NC+DDAE_T is the same as
that in our previously described system. Initially, the system

receives a noisy speech y(t) and computes the Yj
MFCC and Yj

LPS

features separately. Yj
MFCC is then sent to the NC model. The

NC model is a deep neural network (DNN) composed of 3
hidden layers. Each layer consists of 100 neurons and an output
layer adapting the softmax function [30]. The output at the j-th

node of the l-th layer in a DNN hj
(l) is produced according to

equation 1:

(1)

where the term hj
(l–1) denotes the output from the i-th node in

the (l−1)-th layer, bj
(l) is the bias of index j, and Wij

l is the weight
between hidden unit j and i. σ(∙) is the activation function [30],
which is the logistic function described in equation 2:

(2)

Next, the trained DNN model is used in the NC function. The
output of the last layer is converted into the probability by the
softmax function [31] to obtain the normalized probability-based
output. The back propagation algorithm [32,33] is then applied
to parameter set θ in equation 3, where L(∙) is the loss function,

Ni denotes the correct noise class, and is the output class of
the DNN-based NC.

(3)

To avoid substantial variance in the DNN output, we use the
confidence measurement [34] to analyze the output of the
DNN-based NC. Based on the confidence measurement score,
a threshold is used to determine the classification results. In
other words, when the confidence measurement score is higher
than the threshold, the result predicted by the NC model is
considered trustworthy. Nevertheless, if the confidence
measurement score is not concrete to one noise type, then the
NI-DDAE is chosen for NR; on the other hand, if the confidence
measurement is solid, the ND-DDAE is selected.

DDAE-based NR Model

In the training phase, the noisy LPS feature Yj
LPS and clean LPS

feature Xj
LPS are the input and output, respectively, of the

DDAE–based NR model. The details for training the DDAE

NR model with L hidden layers mapping Yj
LPS to Xj

LPS are
available elsewhere [21]. The difference between NC+DDAE
and NC+DDAE_T is that only the parameters of a specific layer

(ie, wL-r and bL-r) are trainable as shown in equation 4, whereas
the other parameters remain untrainable in the fine-tuning
process. The constant L denotes the number of layers, and we
used 5 layers (ie, L=5) in this study.

(4)

where {W1…W(L-r)…WL} and {b1… b(L-r)… bL} are the matrices
of weights and bias vectors of the DDAE NR model,
respectively, whereas Relu represents the activation function
rectified linear unit [35]. The constant r is the index to identified
the specific trainable layer. In this study, the second layer (ie,
r=3) was chosen because, on average, substituting the second
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layer achieved the best performance in our pilot study. The
detailed experimental results are shown in Multimedia Appendix
1.

Based on the above idea, the original NI-DDAE, trained with
a huge database of noise samples, can be transformed into many
ND-DDAE models according to the type of background noise.
In this study, 12 common types of background noise were used;
hence, 12 ND-DDAE models were derived from the NI-DDAE
model. More specifically, each ND-DDAE model was
determined by optimizing the following objective function:

(5)

(6)

where M is the total number of training samples and F( ) is

the loss function derived from and Xj
LPS

. is the vector that
contains the logarithmic amplitudes of the enhanced speech

corresponding to the paired noisy LPS feature Yj
LPS.

Subsequently, the trained NI-DDAE provides the initial
parameters for the ND-DDAE model, and the noise data of the
specific environment are used to fine-tune this ND-DDAE

model. Finally, the transformed LPS feature is sent to the
waveform recovery unit to reconstruct the waveform. More

specifically, is first processed using square root and
exponential operations. The waveform recovery function then

reconstructs the enhanced speech with the noisy phase Yphase.

Training and Evaluation Procedure
In this section, we show how the NC, DDAE, and NC+DDAE_T
models were trained. First, we trained a new NC model
according to the 12 common background noises,
2talker_unseen1, 2talker_unseen2, Construction Jackhammer
(CJ), 2 Talker, Cafeteria, MRT (Mass Rapid Transit), cafeteria,
Toy-Squeeze-Several, speech shape noise from the Institute of
Electrical and Electronics Engineers (SSN_IEEE), Siren,
Multiple type noise 1, and Multiple type noise 2, which are
shown in Figure 3. Note that the training approach is described
in the previous section “NC Model”. After the training, the
prediction accuracy of the 12 noises was 100%. The detailed
results of the confusion matrix are shown in Multimedia
Appendix 2.

To train the DDAE NR model, the Taiwan Mandarin version
of the hearing in noise test (TMHINT) corpus [36] was selected
to conduct all experiments, including the training and evaluation
parts. All 320 sentences, each consisting of 10 characters, were
recorded at a 16 kHz sampling rate, after which 120 utterances
among the TMHINT corpus were selected and corrupted by
120 noise types [15] at 7 SNR levels (−10, −7, −4, −1, 1, 4, 7,
and 10 dB) as the training set for the DDAE model. The other

200 utterances were also corrupted with the 12 common
background noises—as mentioned in the description of NC
training—at 6 SNR levels (-6, -3, 0, 3, and 6 dB) as the outside
testing set. In our previous study, this trained model was defined
as the NI-DDAE.

Next, we combined the NC with NI-DDAE and fine-tuned the
model with each noise type in the NC, and the NI-DDAE was
transformed into NC+DDAE_T. In the fine-tuning step, we
could freeze or adopt each layer in the NI-DDAE. Previously,
we had studied which layer of the NI-DDAE model had to be
replaced to achieve the best performance. We substituted each
layer by modifying r in the range from 1 to 5; meanwhile, we
conducted 2 well-known objective speech evaluations, PESQ
[27] and STOI [28], to identify the most appropriate layer. On
average, replacing the middle layer of the NI-DDAE model (ie,
the second layer this study) achieved a better performance than
did substituting other layers. The detailed results can be found
in Multimedia Appendix 1. Hence, we uniformly replaced the
parameters of the third layer in all subsequent tests. As the 2
DL-based NR systems, DDAE and NC+DDAE, achieved better
performances in our previous studies [18,21] than did the
well-known unsupervised NR algorithms, the log minimum
mean squared error [3] and Karhunen-Loéve transform [37],
we used the DDAE and NC+DDAE algorithms for comparisons
to evaluate the NC+DDAE_T in this study.

Subsequently, we enrolled 10 CI users to conduct speech
intelligibility tests, and details of these subjects are shown in
the Multimedia Appendix 3. This study protocol was approved
by the Research Ethics Review Committee of Cheng Hsin
Hospital under the following approval number: CHGH-IRB
(645) 107A-17-2. The first author, LPHL, explained the study
to the patients and collected the signed institutional review board
informed consent before the experiment. All participants used
their own clinical speech processors and temporarily disabled
the built-in NR functions during the test. The test signals of
noisy and enhanced speech were played at 65 dB sound pressure
level by a speaker and were then processed through a CI
processor to simulate the performance of each NR approach for
CI users. To ensure that fatigue did not affect the study
participants, each individual only heard a total of 16 test
conditions (2 background noise [2 talker and CJ] × 2 SNR levels
[0 and 3 dB] × 4 signal processing systems [noisy, DDAE,
NC+DDAE, and NC+DDAE_T]) with 10 sentences of 10 words
in each test condition. The participants were instructed to repeat
verbally what they had heard. We evaluated the speech
intelligibility under each test condition using the word correct
rate (WCR) [38-42] calculated as the ratio between the number
of correctly identified words and the total number of words. To
further prevent participant fatigue, tests were paused for 5
minutes every 30 minutes. Moreover, we calculated the
statistical power to see whether the sample size (10 patients in
this study) was large enough to obtain a significant difference
in the result. The statistical power of this study is 1. According
to Cohen et al [43] a statistical power over 0.8 is sufficiently
high to conclude that there is a significant difference in the
hypothesis.
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Figure 3. Spectrograms of the 12 noise signals: (a) 2T_BG_1, (b) 2T_BG_2, (c) CJ, (d) 2T_BB, (e) Cafeteria, (f) MRT, (g) House Fan, (h)
Toy-Squeeze-Several, (i) SSN_IEEE, (j) Siren, (k) Multiple type noise 1, and (l) Multiple type noise 2. 2T_BG_1 is a noise that mixes the speech of a
girl and a boy both speaking repeatedly in English. 2T_BG_1 is a noise that mixes the speech of a girl and a boy both speaking repeatedly in English.
The speakers in 2T_BG_2 are the same as those in 2T_BG_1 but with different sentences. 2T_BB is a noise that overlays 2 sentences in Chinese spoken
by the same male speaker. Multiple type noise 1 is a mix of the sound of sirens and cheering crowd, whereas Multiple type noise 2 is a sound combining
scratching and booing. The other samples are common background noises from daily life. 2T_BB: 2 Talker; 2T_BG_1: 2 talker_unseen1; 2T_BG_2:
2 talker_unseen2; CJ: Construction Jackhammer; MRT: Mass Rapid Transit; SSN_IEEE: speech shape noise from the Institute of Electrical and
Electronics Engineers.

Results

Objective Evaluation Using PESQ and STOI Scores
We compared the newly proposed NC+DDAE_T with the
previously established NR systems, DDAE and NC+DDAE.
The PESQ and STOI scores of these tests are shown in Figures
4 and 5, respectively. As demonstrated in Figure 4, the PESQ
scores of the proposed NC+DDAE_T are generally similar to
those of the NC+DDAE. The details regarding the average

scores of each approach (ie, noisy, DDAE, NC+DDAE, and
NC+DDAE_T) for the 12 background noises at 6 different SNR
levels can be found in Table A1 of Multimedia Appendix 4. In
the STOI scores, the NC+DDAE_T model also achieved the
same level as did the NC+DDAE (Figure 5). The detailed STOI
scores are listed in Table A2 of Multimedia Appendix 4. These
objective evaluation results proved that the NC+DDAE_T could
provide almost the same speech intelligibility performance as
the NC+DDAE.
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Figure 4. Mean perceptual evaluation of speech quality (PESQ) scores of the 4 noise reduction approaches. 2T_BB: 2 Talker; 2T_BG_1: 2 talker_unseen1;
2T_BG_2: 2 talker_unseen2; CJ: Construction Jackhammer; dB: decibel; DDAE: deep denoising autoencoder; NC: noise classifier; NC+DDAE_T:
noise classifier + deep denoising autoencoder with knowledge transfer; MRT: Mass Rapid Transit; PESQ: perceptual evaluation of speech quality;
SNR: signal-to-noise ratio; SSN_IEEE: speech shape noise from the Institute of Electrical and Electronics Engineers.
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Figure 5. Mean short-time objective intelligibility (STOI) scores of the different noise reduction approaches. 2T_BB: 2 Talker; 2T_BG_1: 2
talker_unseen1; 2T_BG_2: 2 talker_unseen2; CJ: Construction Jackhammer; DDAE: deep denoising autoencoder; NC: noise classifier; NC+DDAE_T:
noise classifier + deep denoising autoencoder with knowledge transfer; MRT: Mass Rapid Transit; SNR: signal-to-noise ratio; SSN_IEEE: speech shape
noise from the Institute of Electrical and Electronics Engineers; STOI: short-time objective intelligibility.

Recognition in Listening Tests
Figure 6 shows the average WCR scores of 10 individuals with
CI in the 2 Talker and CJ noise conditions each at 0- and 3-dB
SNR levels. The detailed results are as follows: The respective
average WCR scores and standard error of the mean (SEM) for
noisy, DDAE, NC+DDAE, and NC+DDAE_T with 2 Talker
background noise were 4.1 (SEM 1.87), 27.8 (SEM 5.42), 38.9
(SEM 8.83), and 43.2 (SEM 9.33) at the 0-dB SNR level; and
10.3 (SEM 3.84), 27.7 (SEM 5.24), 48.2 (SEM 9.69), and 50.3
(SEM 8.98) at the 3-dB SNR level. In the CJ background noise,
the respective average scores and SEMs were 19.3 (SEM 5.76),
27.7 (SEM 5.24), 42.2 (SEM 9.64), and 50.6 (SEM 10.0) at the
0-dB SNR level; and 37.1 (SEM 9.84), 38.8 (SEM 8.41), 49.3
(SEM9.31), and 50.9 (SEM 10.13) at the 3-dB SNR level. These
results demonstrated that the NC+DDAE_T provided better

speech intelligibility scores than did noisy speech. Moreover,
the newly developed NC+DDAE_T model achieved slightly
higher intelligibility performances than did the NC+DDAE
approach under most test conditions. The 1-way analysis of
variance (ANOVA) [44] with least significant difference post
hoc comparison [45] was used to analyze the results of the 4
NR systems (noisy, DDAE, NC+DDAE, and NC+DDAE_T)
in the 4 test conditions. The 1-way ANOVA result confirmed
that the WCR scores differed significantly among the 4 systems
(F=13.256; P<.001). The least significant difference post hoc
comparisons (Table 1) further revealed that the noisy condition
was significantly different from the other 3 systems (DDAE:
P=.16; NC+DDAE: P<.001; NC+DDAE_T: P<.001).
Meanwhile, the differences between the NC+DDAE and
NC+DDAE_T models were not significant (P=.50).
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Figure 6. Mean intelligibility scores of 10 participants with cochlear implants in 4 types of simulated test conditions. 2T_BB: 2 Talker; CJ: Construction
Jackhammer; dB: decibel; DDAE: deep denoising autoencoder; NC: noise classifier; NC+DDAE_T: noise classifier + deep denoising autoencoder with
knowledge transfer.

Table 1. The mean difference, standard error, and significance of the listening test in each noise reduction system.

P valueaMean difference (I–J) (standard error)Method (I) by test (J)

Noisy (I)

.016 c–13.18 (5.428)DDAEb (J)

< .001–26.95 (5.428)NCd+DDAE (J)

< .001–30.60 (5.428)NC+DDAE_Te (J)

DDAE (I)

. 0213.18 (5.428)Noisy (J)

.01–13.78 (5.428)NC+DDAE (J)

.002–17.43 (5.428)NC+DDAE_T (J)

NC+DDAE (I)

< .00126.95 (5.428)Noisy (J)

.0113.78 (5.428)DDAE (J)

.50–3.65 (5.428)NC+DDAE_T (J)

NC+DDAE_T (I)

< .00130.60 (5.428)Noisy (J)

. 00217.43 (5.428)DDAE (J)

.503.65 (5.428)NC+DDAE (J)

aP values are significant at α = .05. Least significant difference was selected to conduct post hoc testing.
bDDAE: deep denoising autoencoder.
cValues in italics represent significant values.
dNC: noise classifier.
eNC+DDAE_T: noise classifier + deep denoising autoencoder with knowledge transfer.

Comparison of the Numbers of Parameters
The original structure of the NC+DDAE system used 12
ND+DDAEs and 1 NI+DDAE for the NR. In this study, the

newly developed NC+DDAE_T system only needed 1
NI+DDAE and 12 different layer parameters to achieve the
same performance as the previous NC+DDAE system. We
further compared the numbers of parameters between the
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NC+DDAE and NC+DDAE_T approaches. The NC+DDAE_T
approach required only 0.1 million parameters while the
previous NC+DDAE system needed 4.4 million parameters.
The number of parameters was thus reduced by 76.5% compared
to the previous approach.

Discussion

Layers for Substitution
This study proposed a new NC+DDAE_T NR model that helps
CI users to improve speech intelligibility in noisy listening
conditions. Knowledge transfer technology was used to reduce
the parameter requirements in comparison to the previous
NC+DDAE approach. The experimental results of the objective
evaluation and the subjective listening tests demonstrated that
the NC+DDAE_T achieved performances comparable to those
of the NC+DDAE approach, while the number of parameters
used by the NC+DDAE_T was reduced by 76.5% compared to
the NC+DDAE. Therefore, knowledge transfer technology could
be a useful approach to further improve the benefits of
NC+DDAE in reducing the cost of implementation in the future.

The architecture of the NC+DDAE_T, (ie, which layer is
substituted) is the basis for achieving higher performance with
this novel system compared to the NC-DDAE. According to
the objective evaluation by PESQ and STOI scores (Multimedia
Appendix 1), the substitution of the middle layer can achieve
better performances. To further analyze why the middle layer
was so important, t-distributed stochastic neighbor embedding
(t-SNE) [46] was used to visualize the features that output by
each layer. The acoustic features of noisy and clean speech (ie,
LPS) were the inputs for the trained NI-DDAE NR model. The

output features of each NI-DDAE layer were analyzed using
t-SNE, which can project the distribution of each layer onto a
2D plane. Figure 7 shows the results of this feature visualization.
Green dots represent the output features of clean speech,
whereas blue dots indicate features of noisy speech. The less
overlap is apparent between the green and blue areas, the better
the layer can separate the features. These results indicate that
clean and noisy data were primarily separated in the output from

h(2) and h(3), implying that the front layers help to distinguish
noisy speech from clean features and thus could be the most
important layers. This interpretation is also consistent with the
objective evaluation results in Multimedia Appendix 1.

To explain the phenomenon illustrated in Figure 7, we suggest
that the NC+DDAE_T model may work similarly to the human
brain. The first layers of the model may try to separate the noise
from the speech features. Therefore, these features would
diverge completely in the middle layers of this NR model. The
model would then try to reconstruct the enhanced speech and
lower the volume of the noise in the final layers of the model;
hence, the features would converge again in the t-SNE analysis.
Based on these hypotheses, the second layer may be the key to
feature separation because the features are well separated after
the second layer. Therefore, to adapt the NR model to a specific
type of noise, substituting the second layer would be the best
choice, which corresponds to the results of the objective
evaluation. The other parts of the NC+DDAE_T model may
work as preprocessing and vocoder units. These parts are
common units of all NR models; thus, different ND-DDAEs
can share the same weight and bias values. Therefore, the
concept of knowledge transfer can be used in this part to
decrease the size of each model.

J Med Internet Res 2021 | vol. 23 | iss. 10 | e25460 | p. 10https://www.jmir.org/2021/10/e25460
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 7. t-distributed stochastic neighbor embedding (t-SNE) feature analysis of each layer in the noise-independent deep denoising autoencoder
(NI-DDAE) model with noisy and clean speech data. The green dots represent the output features of clean speech and the blue dots indicate features of
noisy speech. 2T_BB: 2 Talker; CJ: Construction Jackhammer.

Future Perspectives
Based on previous and current results of objective evaluation
and listening tests, we can conclude that the proposed
NC+DDAE_T performs comparably to the NC+DDAE. In
addition, the NC+DDAE_T needs only a quarter of the number
of parameters compared to the 12 ND-DDAE models. These
characteristics suggest a great potential for future
implementation of the NC+DDAE_T model. With the decreased

number of parameters, an implemented device would require
less memory. To prove this concept, we have implemented the
NC+DDAE_T architecture in an app on an iPhone XR mobile
phone (Apple Inc) as shown in Figure 8. The processing time
could satisfy the maximum group delay requirement of assistive
listening devices. With this advantage of edge computing, the
proposed NC+DDAE_T may become a new kind of hearing
assistive technology in the near future.

J Med Internet Res 2021 | vol. 23 | iss. 10 | e25460 | p. 11https://www.jmir.org/2021/10/e25460
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 8. Schematic of the noise classifier deep denoising autoencoder with knowledge transfer (NC+DDAE_T) implementation.

Limitations
The proposed NC+DDAE_T is an adaptable NR system, which
means that the system benefits may be affected by the training
data (eg, background noise types, speakers). Therefore, if the
proposed system faces noisy conditions that are very different
from the training data (ie, mismatch conditions), the proposed
system would require major improvements, and new recordings
of noise data may be needed. Overcoming this issue requires
future study. Additionally, although the proposed system was
implemented in an app, the full implementation of the proposed
system in the hardware of currently used CI devices is still a
way off. However, as studies increasingly focus on the
acceleration of DL-based models in microprocessors [47,48],

there is a greater chance that DL technologies may be
implemented into CI devices in the near future.

Conclusions
This study proposed a novel NC+DDAE_T system for NR in
CI devices. The knowledge transfer approach was used to lower
the number of parameters of the DDAE model. The experimental
results of the objective evaluations, along with the listening
tests, showed that the proposed NC+DDAE_T model provided
comparable performance to the previously established
NC+DDAE NR model. These results suggest that the proposed
NC+DDAE_T model may be a new NR system that can enable
CI users to hear well in noisy conditions.
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NC+DDAE_T: noise classifier + deep denoising autoencoder with knowledge transfer
ND: noise-dependent
NI: noise-independent
NR: noise reduction
PESQ: perceptual evaluation of speech quality
SEM: standard error of the mean
SNR: signal-to-noise ratio
SSN_IEEE: speech shape noise from the Institute of Electrical and Electronics Engineers
STOI: short-time objective intelligibility
TMHINT: Taiwan Mandarin version of the hearing in noise test
t-SNE: t-distributed stochastic neighbor embedding
WCR: word correct rate

Edited by R Kukafka; submitted 09.11.20; peer-reviewed by YC Chu, ST Tang; comments to author 30.11.20; revised version received
11.02.21; accepted 27.04.21; published 28.10.21

Please cite as:
Li LPH, Han JY, Zheng WZ, Huang RJ, Lai YH
Improved Environment-Aware–Based Noise Reduction System for Cochlear Implant Users Based on a Knowledge Transfer Approach:
Development and Usability Study
J Med Internet Res 2021;23(10):e25460
URL: https://www.jmir.org/2021/10/e25460
doi: 10.2196/25460
PMID:

©Lieber Po-Hung Li, Ji-Yan Han, Wei-Zhong Zheng, Ren-Jie Huang, Ying-Hui Lai. Originally published in the Journal of
Medical Internet Research (https://www.jmir.org), 28.10.2021. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is
properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as
this copyright and license information must be included.

J Med Internet Res 2021 | vol. 23 | iss. 10 | e25460 | p. 15https://www.jmir.org/2021/10/e25460
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1145/3081333.3081358
http://dx.doi.org/10.1109/jproc.2019.2921977
https://www.jmir.org/2021/10/e25460
http://dx.doi.org/10.2196/25460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

