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Abstract

Background: Named entity recognition (NER) plays an important role in extracting the features of descriptions such as the
name and location of a disease for mining free-text radiology reports. However, the performance of existing NER tools is limited
because the number of entities that can be extracted depends on the dictionary lookup. In particular, the recognition of compound
terms is very complicated because of the variety of patterns.

Objective: The aim of this study is to develop and evaluate an NER tool concerned with compound terms using RadLex for
mining free-text radiology reports.

Methods: We leveraged the clinical Text Analysis and Knowledge Extraction System (cTAKES) to develop customized pipelines
using both RadLex and SentiWordNet (a general purpose dictionary). We manually annotated 400 radiology reports for compound
terms in noun phrases and used them as the gold standard for performance evaluation (precision, recall, and F-measure). In
addition, we created a compound terms–enhanced dictionary (CtED) by analyzing false negatives and false positives and applied
it to another 100 radiology reports for validation. We also evaluated the stem terms of compound terms by defining two measures:
occurrence ratio (OR) and matching ratio (MR).

Results: The F-measure of cTAKES+RadLex+general purpose dictionary was 30.9% (precision 73.3% and recall 19.6%) and
that of the combined CtED was 63.1% (precision 82.8% and recall 51%). The OR indicated that the stem terms of effusion, node,
tube, and disease were used frequently, but it still lacks capturing compound terms. The MR showed that 71.85% (9411/13,098)
of the stem terms matched with that of the ontologies, and RadLex improved approximately 22% of the MR from the cTAKES
default dictionary. The OR and MR revealed that the characteristics of stem terms would have the potential to help generate
synonymous phrases using the ontologies.

Conclusions: We developed a RadLex-based customized pipeline for parsing radiology reports and demonstrated that CtED
and stem term analysis has the potential to improve dictionary-based NER performance with regard to expanding vocabularies.

(J Med Internet Res 2021;23(10):e25378) doi: 10.2196/25378
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Introduction

Background
The widespread adoption of electronic medical record (EMR)
systems in recent years has increasingly brought opportunities
to research communities regarding the secondary use of EMR
data such as medical images and clinical notes [1] to support
clinical and translational research. It is expected that real-world
data will contribute to generating medical evidence, optimizing
the use of medical resources, and creating high-quality
diagnostic or treatment guidelines [2,3]. To establish effective
retrieval and extraction of such data stored in the EMR, standard
codes are usually used to describe patient records and make
them computable and interpretable. For example, the
International Classification of Diseases is a standard code
system used to classify diseases or diagnoses for medical records
[4]. The International Classification of Diseases can be used
to identify classified disease names from medical records in
information-retrieval applications. In addition, a standard code
system can also be used to extract features from medical texts
such as pathology reports, radiology reports, and family history
reports. For example, SNOMED-CT (Systematized
Nomenclature of Medicine-Clinical Terms) is a standard
terminology in the field of medical care [5], which is often used
as a resource for the automatic named entity recognition (NER)
of medical texts [6]. Moreover, SNOMED-CT is formalized as
an ontology, which has a hierarchical structure of terms and
semantic relationships between terms. Such an ontology supports
medical reasoning with standard concept definitions and axioms
among concepts.

In the field of radiology, a large amount of medical imaging
data and diagnostic reporting data is stored in the EMR, which
has become an important data source for acquiring knowledge.
The use of standard code systems is critical for the effective
mining of the data source. RadLex, produced by the
Radiological Society of North America, is a controlled-standard
biomedical ontology that provides codes, conceptual
relationships, and procedures of imaging examinations [7].
RadLex was historically developed as indexing teaching files
for radiologists, provided by the American College of Radiology
[8]. Currently, RadLex is widely used to support the creation
of templates for generating radiology reports [9], mining
radiology reporting data [10], indexing medical images and
reports [11], and standardizing examination descriptions [12].
From the perspective of data interoperability in the radiology
domain, RadLex is a unique ontology in that it enables semantic
parsing of free-text radiology reports by playing a role in
integrating identified entities into a higher-level semantic
concept such as anatomical entities, clinical findings, imaging
observation, and procedures.

NER is usually used for preprocessing unstructured data for
machine learning research, for example, extracting features
from radiology reports [13]. In a previous study on the NER
evaluation based on radiologist agreement, it was reported that
the F-measure of dictionary-based NER was lower than that of
conditional random fields (CRFs) [14,15] and rule-based natural
language processing (NLP) [16,17]. However, machine

learning–based NER does not provide a relationship between
terms, and the reason for the F-measure of dictionary-based
NER being lower than that of machine learning–based NER is
that it is difficult to identify various patterns of compound terms
using standard terminologies or ontologies. For example, in the
case of the compound term right-sided IJ central venous
catheter, all the words in the term except for catheter are
modifiers. In short, there are several patterns such as IJcentral
venous catheter and venous catheter that can be identified as
annotations by radiologists.

Objective
Although an ontology such as RadLex can be leveraged to
enhance data interoperability and track relationships and
hierarchical structure, we consider that the ontology should also
be applied to improve the NER of compound terms in radiology
reports. However, few studies have been conducted to evaluate
the coverage of RadLex for the NER of compound terms for
mining radiology reports. To evaluate and extend the coverage
of the lexicon for extracting features from radiology reports,
the aim of this study is to develop and assess an NER tool based
on RadLex, explore the entities included in RadLex, and
subsequently extend the ontology for a higher F-measure on
feature extraction by dictionary-based NER.

Methods

RadLex Features
RadLex is a controlled-standard biomedical ontology produced
by the Radiological Society of North America, which provides
unique codes, conceptual mapping based on hierarchal structure,
and procedures of imaging examinations [7]. We used and
analyzed RadLex version 1.3.4 [18], which includes 46,434
primary terms and 42,831 compound terms.

General Purpose Dictionary
We used a general purpose dictionary (GPD), SentiWordNet
[19], to compare RadLex coverage with a general dictionary.
SentiWordNet, which is a GPD for sentiment analysis in the
context of social network services, provides a negative or
positive score of terms. The number of words of parts of speech
(POS) is 117,659, including 82,115 distinct nouns, 13,767 verbs,
18,156 adjectives, and 3621 adverbs. The number of compound
terms is 48,469.

Clinical Text Analysis Knowledge Extraction System
The clinical Text Analysis Knowledge Extraction System
(cTAKES), which is an NLP system for extraction of
information from EMR clinical free text, contains an automatic
NER tool using a dictionary lookup mechanism [20]. The default
dictionary of cTAKES is based on the Unified Medical
Language System (UMLS) [21] and provides annotations of
diseases or disorders, signs or symptoms, anatomical sites,
procedures, and medications. For example, the dictionaries
based on SNOMED-CT and RxNORM, which is part of the
UMLS, cover the fields of general clinical findings and
medications. We investigated the compound terms in each
dictionary for the analysis.
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Medical Information Mart for Intensive Care-III
The Medical Information Mart for Intensive Care-III
(MIMIC-III) is a free, open database provided by the
Massachusetts Institute of Technology Laboratory for
Computational Physiology, which includes approximately
60,000 deidentified admissions of patients at the Beth Israel
Deaconess Medical Center from 2001 to 2012 [22]. Using
PostgreSQL, we queried the note events table of the MIMIC-III
database, which includes approximately 520,000 radiology
reports.

Procedures
The overall goal of our study is to clarify the coverage of
RadLex-based dictionaries with compound terms and to

construct and evaluate the NER tools that use the RadLex-based
dictionaries for mining free-text radiology reports. First, we
customized cTAKES to build the RadLex and GPD dictionaries.
As previously mentioned, the default dictionaries of cTAKES
provided by the UMLS are SNOMED-CT and RxNORM.
Second, we combined these three dictionaries in the following
patterns: Default, Default+RadLex, and Default+RadLex+GPD.
Third, we removed single terms from each dictionary and
evaluated their performance. Finally, we carried out the three
processes of analysis (step 1 to step 3) to obtain profiles of the
stem terms for improving the performance of NER (Figure 1).

Figure 1. Overview of methods. cTAKES: clinical Text Analysis and Knowledge Extraction System; CtED: compound terms–enhanced dictionary;
FN: false negative; NPI: noun phrase identification; TP: true positive.

Creating Annotation Corpus of Radiology Reports
We randomly selected 400 reports of computed tomography
(CT), magnetic resonance imaging (MRI), positron emission
computed tomography (PET), and radiography (x-ray) from the
MIMIC-III database (100 reports for each imaging modality
type). These reports were in a free-text format and were
categorized into sections; we used the Findings, Interpretations,
and Impressions sections, which play a core role in diagnosis.
There were 28.9 sentences per report and 179.1 tokens per
report. An additional 100 reports (25 reports for each imaging
modality type) were randomly selected and used in the validation
study for compound terms.

We first conducted stop word removal and exchanged all the
characters to the lower case. Next, we leveraged the
AggregatePlaintextProcessor of cTAKES to identify noun
phrases in the radiology reports so that we could perform a
manual annotation for noun phrases. Next, we applied manual
reviews to annotate compound terms. The compound terms
were also tagged with all conceivable patterns based on the stem
term. For example, the compound term right upper lobe is
divided into right upper lobe and upper lobe. After the
annotation, we can obtain two compound terms from right upper
lobe. In this case, we defined lobe as a stem term. We also
separated right upper lobe of lung base into right upper lobe
and lung base. Thus, we defined the stem term as the modified

term of a compound term in this study. These manual
annotations were conducted and agreed on by 3 researchers with
a background in radiology (n=1) and computer sciences (n=2).
Generally, the annotations for compound terms are performed
by expert radiologists and are agreed upon through discussion.
As some studies have revealed that the annotation patterns of
compound terms are different with institutions, we used all the
patterns of compound terms as the gold standard.

Developing a RadLex-Based NER Tool
First, we created a customized NER tool using cTAKES, which
uses a dictionary lookup–based parser for NER. It extracts terms
that can be looked up in the installed dictionary. Some previous
studies have attempted to create customized dictionaries (eg,
UMLS) [11] for NER, but few studies have investigated NER
using RadLex for mining radiology reports [23]. In this study,
we built a customized dictionary using RadLex as a
domain-specific dictionary and SentiWordNet as a GPD.
RadLex can be used to automatically extract technical terms
from radiology reports [24], whereas SentiWordNet is usually
used for sentiment analysis, which clarifies positive or negative
descriptive text on social networking services. Moreover, we
created dictionaries for compound terms. The terms of each
dictionary were stored in the bar-separated value (BSV) file and
located in the dictionary lookup–first directory, which allows
the term to be extracted preferentially. cTAKES uses a
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SNOMED-CT and RxNORM dictionary by default. Finally,
we created a collection of customized dictionaries in the
following patterns: Default (SNOMED-CT and RxNORM),
Default+RadLex, and Default+RadLex+GPD.

Step 1: Performance Evaluation of Each Pipeline
For each customized pipeline, we evaluated the performance
of four different sets of the three dictionary patterns using
standard measures (ie, precision, recall, and F-measure). The
formulas for the measures are as follows:

Precision = True positives / (True positives + False
positives) × 100      (1)

Recall = True positives / (True positives + False
negatives) × 100      (2)

F-measure = 2 × Precision × Recall / (Precision +
Recall)      (3)

Here, true positive (TP) is defined as the number of manual
annotations matched with the dictionary phrases, false positive
(FP) is defined as the number of dictionary phrases matched
with entities other than manual annotations, and false negative
(FN) is defined as the number of annotations not matched with
the dictionary phrases. We also evaluated the performance of
four major imaging modalities: CT, MRI, x-ray, and PET. GATE
(General Architecture for Text Engineering) developer version
8.4.1 [25] was used to compute these measures.

Step 2: Creating and Evaluating a Compound
Terms–Enhanced Dictionary
We also created a compound terms–enhanced dictionary (CtED)
to improve performance (Figure 1). We added these compound
terms to the FN category (as identified in the initial evaluation)
in the custom dictionaries that were used for parsing 400
radiology reports. At the same time, we removed these
compound terms in the FP category from these dictionaries. To
validate the performance of the CtED, we carried out NER for
another 100 radiology reports (25 reports for each imaging
modality type; Figure 1). Finally, we calculated the precision,
recall, and F-measure for the performance evaluation.

Step 3: Stem Term Analysis for Expanding Dictionary
To obtain the full benefit of using RadLex, which is an
ontology-based tool, we created 2 measures for a stem term.
We first defined a measure called the occurrence ratio (OR) to
determine the frequency of stem terms in TPs and FNs from
step 2. The OR gives priority measures to add compound terms
with stem terms into RadLex. For example, if the value of the
OR for a stem term in TPs is high, it means that the number of
compound terms (containing the stem term) that are correctly
identified by the pipeline is high. In contrast, if the value of the
OR for the stem term in FNs is high, it means that the number
of compound terms (containing the stem term) that are identified

as negative by the pipeline is high. Moreover, if a high OR stem
with both TP and FN is identified, we can hypothesize that this
stem shows that there is a high demand to extract the entity of
reports but still lacks the compound terms having the stem. In
short, the OR can visualize a profile of the demand and supply
of stem term–oriented compound terms in the corpus.

Occurrence ratio (%) = Occurrence of a stem term in
TP or FN / Total number of stem terms in TPs or FNs
× 100%      (4)

Second, we defined a measure called the matching ratio (MR)
to describe the distribution of stem terms in FNs that are
matched with the dictionaries. The MR (%) was calculated using
the formula presented below. The MR can guide the basic
concept of the RadLex or SNOMED-CT (cTAKES default
dictionary) concept that matches the stem terms. For example,
if a stem term of effusion is found in RadLex, we continue to
trace the parent concept until the concept is under the top
hierarchy. Finally, we identified the concept of clinical findings.
The MR provides the criteria for identifying the number of
concepts. We used 15 concepts under the RadLex entity (ie,
anatomical entity, clinical finding, imaging modality, imaging
observation, nonanatomical substance, object, procedure,
process step, process, property, RadLex descriptor, RadLex
nonanatomical set, report, report content, and temporary entity).
Each stem term was tracked using their upper-class ID (RadLex
ID). For the cTAKES default dictionary, we used 19 concepts
under the top class of SNOMED-CT (RxNORM was excluded
because it does not have a hierarchal structure). The class are
Body structure, Clinical finding, Environment or geographical
location, Event, Observable entity, Organism,
Pharmaceutical/biologic product, Physical force, Physical
object, Procedure, Qualifier value, Record artifact, Situation
with explicit context, SNOMED-CT Model Component, Social
context, Special concept, Specimen, Staging and scales, and
Substance. We manually checked all stem terms based on the
criteria of the exact match through the BioPortal site (National
Center for Biomedical Ontology) [26].

Matching ratio (%) = Occurrence of a stem term in
FN matched with RadLex or SNOMED-CT / Total
number of stem terms in FNs × 100%      (5)

Results

Performance Evaluation of Each Pipeline
The F-measure of the pipeline with the dictionaries
Default+RadLex+GPD for compound terms was nearly the
same as that of the pipeline with the dictionaries
Default+RadLex (31.5% vs 31.4%; Table 1). In step 2—building
and evaluating the CtED—the F-measures of the pipeline with
the dictionaries Default+RadLex+GPD with and without the
CtED were 63.1% and 30.9%, respectively (Table 2).
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Table 1. F-measure, precision, and recall of each dictionary (step 1: number of reports=400).

Recall, %Precision, %F-measure, %Dictionaries

16.493.427.9Default

18.894.931.4Default+RadLex

1993.231.5Default+RadLex+GPDa

aGPD: general purpose dictionary.

Table 2. F-measure, precision, and recall of each dictionary (step 2: number of reports=100).

Recall, %Precision, %F-measure, %Dictionaries

19.673.330.9Default+RadLex+GPDa without enhancement

5182.863.1Default+RadLex+GPD with enhancement

aGPD: general purpose dictionary.

Regarding each imaging modality (Table 3), the F-measure of
cTAKES+RadLex+GPD for x-ray was higher (64.3%) than that
without enhancement (26.7%). The most frequent stem terms
in the FNs were effusion (9.1% x-ray), change (3.5% CT),
change (4.1% MRI), and uptake (12% PET; Table 4). The

number of words in the compound terms in the FPs was mainly
2 (31,774/42,871, 74.12%), 3 (7876/42,871, 18.37%), and 4
(2271/42,871, 5.29%), which is approximately 97.78%
(41,921/42,871) of all FNs.

Table 3. F-measure of the compound terms–enhanced dictionary of each modality.

cTAKES+RadLex+GPD+CtEDc (%)cTAKESa+RadLex+GPDb (%)Modality

62.433.5Computed tomography

63.630.7MRId

63.430.3PETe

64.326.7x-ray

63.130.9All

acTAKES: clinical Text Analysis and Knowledge Extraction System.
bGPD: general purpose dictionary.
cCtED: compound terms–enhanced dictionary.
dMRI: magnetic resonance imaging.
ePET: positron emission computed tomography.

J Med Internet Res 2021 | vol. 23 | iss. 10 | e25378 | p. 5https://www.jmir.org/2021/10/e25378
(page number not for citation purposes)

Tsuji et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Top five occurrence ratios in each imaging modality.

ORa, n (%)StemModality

Computed tomography

TPb (n=1127)

100 (8.87)lobe

59 (5.24)effusion

50 (4.44)node

39 (3.46)artery

37 (3.28)hemorrhage

FNc(n=3532)

125 (3.54)change

98 (2.77)collection

95 (2.69)lesion

94 (2.66)effusion

69 (1.95)evidence

MRId

TP (n=840)

146 (17.38)artery

49 (5.83)lobe

29 (3.45)sinus

20 (2.38)matter

20 (2.38)body

FN (n=3732)

176 (4.72)change

144 (3.86)lesion

132 (3.54)enhancement

95 (2.55)evidence

89 (2.38)study

PETe

TP (n=1123)

192 (17.1)node

102 (9.08)lobe

69 (6.14)gland

39 (3.47)nodule

36 (3.21)disease

FN (n=4708)

567 (12.04)uptake

250 (5.31)node

180 (3.82)lesion

169 (3.59)avidity

157 (3.33)disease

x-ray

TP (n=323)
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ORa, n (%)StemModality

46 (14.24)effusion

37 (11.45)tube

27 (8.36)lobe

18 (5.57)edema

17 (5.26)lung

FN (n=1279)

117 (9.15)effusion

69 (5.39)tube

67 (5.24)opacity

62 (4.85)pneumothorax

57 (4.46)line

aOR: occurrence ratio.
bTP: true positive.
cFN: false negative.
dMRI: magnetic resonance imaging.
ePET: positron emission computed tomography.

In addition, the most frequent FPs that were removed from the
cTAKES+RadLex+GPD dictionaries were related to (34/239,
14.2%), abdomen and pelvis (23/239, 9.6%), and head and neck
(21/239, 8.8%).

Most Frequent Stem Terms
The ORs of the TPs and FNs in each imaging modality (step 3)
are shown in Figure 2. The stem terms of the TPs in the CT
reports were more diverse than those in the MRI, PET, and

x-ray reports. The FNs in the CT and MRI reports also showed
the same trends. The most frequent stem terms in the TPs were
lobe (100/1127, 8.87% CT), artery (146/840, 17.4% MRI), node
(192/1123, 17.1% PET), and effusion (46/323, 14.2% x-ray;
Table 4). In contrast, the most frequent stem terms in the FNs
were change (125/3532, 3.54% CT), change (176/3732, 4.72%
MRI), uptake (567/4708, 12.04% PET), and effusion (117/1279,
9.15% x-ray). Table 4 shows that stem terms such as effusion,
node, tube, and disease had a need in both TPs and FNs.

Figure 2. Occurrence ratio of true positives and false negatives in each imaging modality. CT: computed tomography; FN: false negative; MRI: magnetic
resonance imaging; PET: positron emission computed tomography; TP: true positive.

Table 5 illustrates the distribution of the stem terms in FNs that
are matched with a RadLex upper concept using the MR. The
result of the MR was 71%, which included a connectivity of
47.4% with RadLex and 51.5% with the cTAKES default
dictionary (SNOMED-CT and RxNORM). The stem terms that
did not match RadLex and the cTAKES default dictionary
accounted for 28.15% (3687/13,098). The matched classes in

RadLex included clinical finding (1839/13,098, 14.04%),
imaging observation (1508/13,098, 11.51%), and process
(1000/13,098, 7.63%), and those in the cTAKES default
dictionary included Body structure (1428/13,098, 10.9%), Over
two category (1265/13,098, 9.66%), and Qualifier value
(935/13,098, 7.14%).
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Table 5. Classification of stem terms in false negatives based on cTAKESa, RadLex, and combined dictionary (n=13,098).

Proportion, n (%)ClassStem terms

cTAKES default (SNOMED-CTb)

6349 (48.47)N/Ac

1428 (10.9)Body structure

1265 (9.66)Over two categories

935 (7.14)Qualifier value

878 (6.7)Clinical finding

723 (5.52)SNOMED-CT model component

721 (5.5)Procedure

217 (1.66)Environment or geographical location

206 (1.57)Physical object

143 (1.09)Substance

233 (1.78)Other

RadLex

6893 (52.63)N/A

1839 (14.04)Clinical finding

1508 (11.51)Imaging observation

1000 (7.63)Process

997 (7.61)Anatomical entity

295 (2.25)Property

248 (1.89)RadLex descriptor

210 (1.6)Object

91 (0.69)Procedure

11 (0.08)Imaging modality

5 (0.04)Nonanatomical substance

1 (0.01)Report component

cTAKES default (SNOMED-CT)+RadLex

9411 (71.85)cTAKES+RadLex

3687 (28.15)N/A

acTAKES: clinical Text Analysis and Knowledge Extraction System.
bSNOMED-CT: Systematized Nomenclature of Medicine-Clinical Terms.
cN/A: not applicable.

Discussion

Overview
In this study, we first constructed RadLex-based NER tools for
mining free-text radiology reports and evaluated the coverage
of the pipelines (step 1). Second, we built a CtED extracted
from the FNs of step 1 to improve performance (step 2). Third,
we defined OR and MR to consider the potential of expanding
the dictionary using RadLex ontology (step 3).

Performance Evaluation of Each Pipeline (Step 1 and
Step 2)
First, the performance of cTAKES+RadLex+GPD was 30.9%
(precision 73.3% and recall 19.6%) on its own and 63.1%
(precision 82.8% and recall 51%) with the CtED. The CtED for
compound terms increased the F-measure by 32.2%, but the
F-measure was not obviously changed by the GPD (31.4% vs
31.5%). This indicated that the GPD did not cover the specific
compound terms in radiology reports different from the single
words. The merit of using RadLex is that we can use the
standard vocabularies and relationships such as Is-A and
May_cause. RadLex provides 15 concepts under the top entity,
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which can assign labels such as anatomical entity and clinical
finding to each entity.

Our tool using cTAKES was able to customize dictionaries by
creating a BSV file, which provides a convenient way to
leverage those vocabulary resources that are not covered by the
default dictionary. In addition, the BSV file stores IDs that can
be used to track the parent concepts for a particular term, which
enables the classification or profiling of extracted terms using
high-level concept classes defined in a vocabulary.

Stem Term Analysis for Expanding Dictionary (Step
3)
The OR provides profiles of demand and supply for stem terms
in the corpus. For example, the stem terms of disease (PET),
node (PET), effusion (x-ray), and tube (x-ray) had a high OR
value in both TPs and FNs (Table 4). This means that creating
compound terms with high OR–value stem terms in FNs
potentially improves precision for capturing entities in each
modality’s reports compared with the effort of applying the
other vast vocabularies in the pipeline. In addition, the features
of the FNs also showed that 97.78% (41,921/42,871) of the
compound terms consisted of 2-4 words. This fact suggests that
NER performance can be effectively improved by identifying
1 to 3 modified words and stem term from each imaging
modality. With regard to the MR, RadLex improved 20.33% of
the connectivity with stem terms in the FNs compared with the
cTAKES default (SNOMED-CT). The contribution of the
improvement can provide criteria in terms of whether we should
add phrases to RadLex or to SNOMED-CT. Therefore, stem
term–related information such as OR and MR would contribute
to expanding dictionaries that have ontological structures. This
kind of dictionary-based NER would provide ontology-based
benefits such as reasoning concepts and using standard codes
and vocabularies. Although it is known that CRFs achieve a
higher F-measure than dictionary-based approaches, CRFs
generate entities that have no hierarchical structure and
relationships.

In contrast, our approach is based on an ontology, which enables
interoperable processing and data mining of reports. For
example, when we identify the term pleural effusion, RadLex
ontology can guide us to the parent class effusion so that we
can finally reach the Clinical findings tracking upper concepts.
RadLex can also provide relationships such as pleural effusion
may cause of vascular cut-off sign.

Limitations
The limitation of this study is that our pipeline is optimized for
identifying short compound terms because we divided compound
terms using stop words such as and. For example, we set the

stop word and so that we lead to separate the compound term
abdomen and neck into abdomen and neck. This approach has
the merit of identifying as possible as the stem term, splitting
the long phrase right pleural effusion and left lung
pneumothorax into right pleural effusion and left lung
pneumothorax. Therefore, in the case of capturing long
compound terms, we need to combine short phrases. Generally,
noun phrase identification for free-text radiology reports is
considered difficult because there are many variants of long
compound terms. We believe that our method has the potential
to capture long compound terms when applying a combination
of single and short compound terms.

Future Work
The annotation tool GATE that we used can identify a partial
match with TPs, which means that the types of NER are the
same, but the span is not the same. In this study, such partial
positives were treated as FNs. We reviewed these uncertainty
negatives based on the rule of the stem words and found that
35.4% (90/254) of the partial positives had the potential to
change into TPs. This was equivalent to 0.7% of the increased
F-measure (cTAKES+RadLex+GPD+CtED). The details of the
partial match require further analysis.

The study by Jiang et al [27] demonstrated a state-of-the-art
text-mining tool of the Stanford Parser. The study’s results
showed that POS-based grammatical approaches are efficient
in capturing named entities in free-text radiology reports. In
future work, we will extract the POS information to define a
pattern of the modified words of the compound term.

Lately, Word2Vec technology has been explored for generating
synonyms and expanding the radiology-specific dictionary
[28,29]. These studies claimed that a machine learning
technology such as Word2Vec supports the building of enhanced
dictionaries and reduces the annotation cost. We agree with this
claim and believe that it is useful to use Word2Vec to calculate
vectors of single terms in the noun phrase, creating modifiers
for each stem term. In future work, we will generate modified
words using this type of machine learning approach. The
customized text-mining tool combined with machine learning
technology can help further extract features from radiology
reports.

Conclusions
In this study, we developed a customized NER tool based on
RadLex for the recognition of technical terms. We demonstrated
that the CtED and stem term analysis have the potential to
improve the performance of the dictionary-based NER with
regard to expanding vocabularies.
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