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Abstract

Background: The impending scale up of noncommunicable disease screening programs in low- and middle-income countries
coupled with limited health resources require that such programs be as accurate as possible at identifying patients at high risk.

Objective: The aim of this study was to develop machine learning–based risk stratification algorithms for diabetes and hypertension
that are tailored for the at-risk population served by community-based screening programs in low-resource settings.

Methods: We trained and tested our models by using data from 2278 patients collected by community health workers through
door-to-door and camp-based screenings in the urban slums of Hyderabad, India between July 14, 2015 and April 21, 2018. We
determined the best models for predicting short-term (2-month) risk of diabetes and hypertension (a model for diabetes and a
model for hypertension) and compared these models to previously developed risk scores from the United States and the United
Kingdom by using prediction accuracy as characterized by the area under the receiver operating characteristic curve (AUC) and
the number of false negatives.

Results: We found that models based on random forest had the highest prediction accuracy for both diseases and were able to
outperform the US and UK risk scores in terms of AUC by 35.5% for diabetes (improvement of 0.239 from 0.671 to 0.910) and
13.5% for hypertension (improvement of 0.094 from 0.698 to 0.792). For a fixed screening specificity of 0.9, the random forest
model was able to reduce the expected number of false negatives by 620 patients per 1000 screenings for diabetes and 220 patients
per 1000 screenings for hypertension. This improvement reduces the cost of incorrect risk stratification by US $1.99 (or 35%)
per screening for diabetes and US $1.60 (or 21%) per screening for hypertension.

Conclusions: In the next decade, health systems in many countries are planning to spend significant resources on
noncommunicable disease screening programs and our study demonstrates that machine learning models can be leveraged by
these programs to effectively utilize limited resources by improving risk stratification.

(J Med Internet Res 2021;23(1):e20123) doi: 10.2196/20123
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Introduction

Noncommunicable diseases, including diabetes, hypertension,
and cardiovascular disease, are a global health priority [1].
Noncommunicable diseases disproportionally affect low- and

middle-income countries, wherein more than 75% of all
noncommunicable disease deaths (~31 million per year) occur,
including over 16 million annual deaths in adults between the
ages of 30 years and 69 years [1]. India faces the largest burden
of noncommunicable diseases in the world with an estimated
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73 million reported with diabetes and over 400 million people
reported with hypertension [2,3]. Moreover, an estimated 58%
of the patients with diabetes and 60%-75% of the patients with
hypertension in India are undiagnosed, thereby creating a
population health crisis [4]. Early detection via screening and
subsequent treatment initiation can significantly reduce the
burden of both diabetes and hypertension [5,6]. However, health
systems in many low- and middle-income countries are already
overburdened with an unfinished agenda on infectious diseases
[7] and do not have enough capacity to conduct national-level
noncommunicable disease screening programs [8].

Community-based screening programs can be leveraged to
augment the capacity of the existing health systems by using
community health workers (with limited training to conduct
diabetes and hypertension screening) [9]. Owing to the large
number of undiagnosed patients and the lack of awareness of
noncommunicable diseases, community health workers typically
conduct door-to-door and camp-based (ie, a tent staffed with
community health workers) screenings to identify patients with
undiagnosed diabetes and hypertension and subsequently refer
them to a physician for assessment.

Community-based screening programs in low- and
middle-income countries typically employ risk stratification
methods that have been developed in high-income countries,
leading to 3 key limitations [10,11]. First, at-risk populations
in low- and middle-income countries differ significantly in
social, lifestyle, and genetic aspects, thereby limiting the validity
of models from high-income countries [12,13]. Second, a
community-based approach severely limits the amount and
complexity of data that can be collected by community health
workers. Consequently, many models from high-income
countries, which rely on advanced data (eg, triglyceride levels
for diabetes [14]), are not applicable. Third, models from
high-income countries are often calibrated to estimate the
long-term risk of developing the disease [11,15] (eg, 2-10 years)
rather than identifying the short-term risk of developing the
disease. Owing to these limitations, application of approaches
from high-income countries to community-based screening
programs in low- and middle-income countries can result in
poor risk stratification accuracy, reduced screening program
yield, and increased cost per case identified [16].

In this study, we developed new risk stratification algorithms
that are tailored for community-based screening programs in
low- and middle-income countries with limited screening data.
In particular, we used data collected by community health
workers in Hyderabad, India and developed risk stratification
models to estimate the short-term (2-month) risk for both
diabetes mellitus and primary hypertension. We compared our
results with several approaches from the literature, including
previously developed risk scores from the United States and
the United Kingdom. We also analyzed the trade-off between
model accuracy and data availability by quantifying the
incremental value of each data type collected during screening.
Lastly, we quantified the expected reduction in the number of
patients incorrectly stratified and the expected cost of incorrect
risk stratification per patient.

Methods

Study Setting
Our study was based in Hyderabad, the capital of the state of
Telangana and the fourth largest city in India with a population
of 7 million [17]. Hyderabad has more than 1.7 million people
living in 1400 urban slums [18]. Our catchment area included
52 urban slums and the surrounding communities. This
population comprises individuals working as drivers, daily wage
earners, domestic helpers, vendors, and self-employed
professionals in the unorganized sector of the economy. The
average family income of these residents ranges between INR
15,000 and INR 30,000 per month, which is equivalent to US
$200-US $400, while the median income in Hyderabad is INR
25,000 (US $1=INR 75) per month [19].

Data Collection
We obtained retrospective data from a social enterprise based
in Hyderabad that provides screening and management of
diabetes and hypertension for low-income households. These
data were collected through door-to-door and camp-based
screenings conducted in the urban slums of Hyderabad between
July 14, 2015 and April 21, 2018 by community health workers.
The door-to-door screenings were conducted in low-income
areas throughout Hyderabad. In our context, “camp-based”
refers to individuals that were screened at a “screening
camp”—a tent staffed with community health workers and setup
in a low-income area. These “screening camps” were conducted
in the same locations that community health workers conducted
door-to-door screenings and allowed individuals to present
themselves for screening.

Each community health worker was equipped with a
“Doc-in-the-Bag” kit that included a weighing scale, measuring
tape, blood glucose monitor, and blood pressure/heart rate cuffs
(see Figure S1 of Multimedia Appendix 1 for photographs of
the kit). A mobile tablet was used to record patients’ responses
to the questionnaire about family history, lifestyle,
demographics, symptoms of common ailments, and to record
certain anthropometric measurements and vitals (see the Data
Description or Screening Questionnaire sections in Multimedia
Appendix 1 for more details).

We included all individuals who visited a physician within 2
months following the screening to be assessed for a diagnosis
of diabetes and hypertension. Hypertension was diagnosed based
on 2 physician visits by using the JNC-VII (Seventh Report of
the Joint National Committee on Prevention, Detection,
Evaluation, and Treatment of High Blood Pressure) definition
of hypertension [2]. Diabetes was diagnosed based on one of
the following criteria: glycated hemoglobin (HbA1c) higher than
6.5% (48 mmol/mol) or fasting blood glucose level higher than
126 mg/dL (7 mmol/L) [10].

Data Analysis
We developed separate models to estimate the risks for diabetes
and hypertension. In each model, the outcome variable (the
target) was a binary variable, indicating that a physician made
a positive disease diagnosis and the predictor variables (features)
were obtained from the screening data. Our primary analysis

J Med Internet Res 2021 | vol. 23 | iss. 1 | e20123 | p. 2http://www.jmir.org/2021/1/e20123/
(page number not for citation purposes)

Boutilier et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


focused on determining the best models for predicting diabetes
and hypertension risk and compared these models to previously
developed risk scores from the United States and the United
Kingdom. We compared the performance of 5 commonly used
risk prediction models: decision trees, regularized logistic
regression, K-nearest neighbors, random forest, and AdaBoost
decision trees. We compared the performance of these models
with several baseline approaches from the United States and
the United Kingdom (see Table S2 of Multimedia Appendix 1).
For each baseline, we calculated 3 variants (where applicable):
(1) the original version based on a regression model with
parameters derived from the original dataset, (2) an approximate
score-based version that is intended for ease of computation by
patients and providers, and (3) a version of the original
regression model retrained using our Hyderabad data. In total,
we considered 6 baseline models for diabetes (2 original, 2
score-based, and 2 retrained) and 2 baseline models for
hypertension (1 original and 1 retrained). The hypertension
model that we considered did not have an approximate
score-based version (see the Baseline Approaches section in
Multimedia Appendix 1 for more details).

In line with common practice, we used disjoint training (train
the model), validation (tune the hyperparameters), and testing
sets (test the model). We used a 10-fold cross-validation
procedure to partition our data into training and testing sets. We
then used 3-fold cross validation on the training set to choose
our hyperparameters (see the Hyperparameter Tuning section
in Multimedia Appendix 1 for more details). Once the final
hyperparameters were selected, we applied the final model to
the test set (that was not used as part of the model selection or
fitting process in any way) to estimate generalization. We
repeated the entire process 25 times to obtain more robust
estimates and error bars.

For each model, we varied the discriminant threshold applied
to the test set, calculated the resulting true and false positive
rates, plotted them in the form of a receiver operating
characteristic curve, and calculated the area under the receiver
operating characteristic curve (AUC), which we used as a metric
to compare different models. In total, we generated 250 test sets
(25 repetitions * 10-fold) receiver operating characteristic curves
for each model.

As a secondary analysis, we compared the performance of our
risk stratification models, each trained with 5 different feature
sets, where each set incrementally adds measurements obtained

using an additional device: (1) only the questionnaire (no device
measurements), (2) questionnaire and weight (weighing scale),
(3) questionnaire, weight, height, and waist circumference
(weighing scale and tape measure), (4) questionnaire, weight,
height, waist circumference, blood pressure, and heart rate
(weighing scale, tape measure, and blood pressure/heart rate
cuffs), and (5) questionnaire, weight, height, waist
circumference, blood pressure, heart rate, and blood glucose
(weighing scale, tape measure, blood pressure/heart rate cuffs,
and glucometer).

Finally, we performed a cost analysis to estimate the expected
cost of incorrect risk stratification per screening for both diabetes
and hypertension. We relied on previous research to estimate
the cost of false positives, the cost of false negatives, and disease
prevalence in India for both diabetes and hypertension. We also
conducted a sensitivity analysis on each component used to
estimate the expected cost of incorrect risk stratification per
screening (see the Cost Analysis section of Multimedia
Appendix 1 for more details).

Statistical Analysis
For all model comparisons, we conducted a 2-sided Wilcoxon
signed rank test [20] (with a significance level of .05) to check
whether the medians of the AUC distributions (or cost
distributions) of the 2 models were different from each other.
All models and statistical tests were implemented using Python
3.5, SciPy package, and the Scikit-learn package [21]. The data
and source code that support the findings of this study are
available from the corresponding author.

Results

Data Summary
A total of 51,474 individuals were screened between July 14,
2015 and April 21, 2018. Of these individuals, 2278 (4.6%)
visited a physician within 2 months following the screening
(see Figure S2 of Multimedia Appendix 1). Table S1
(Multimedia Appendix 1) displays the summary statistics for
individuals who did and did not visit a doctor. Table 1 displays
the summary statistics of all 2278 individuals in the final data
set grouped by outcome. The average age was 50.6 years and
62% (1410/2278) of the patients were female. Both random
blood glucose and blood pressure were notably high with
averages of 167.8 mg/dL and 145/93 mmHg across all
individuals, respectively.
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Table 1. Summary of individual screening data (N=2278).a

All (N=2278)Hypertension diagnosisDiabetes diagnosisCharacteristic

Negative (n=602)Positive (n=1676)Negative (n=1445)Positive (n=833)

1410 (61.9)367 (61.0)1043 (62.2)914 (63.3)496 (59.5)Female, n (%)

50.6 (13.6)45.8 (12.9)52.3 (13.0)49.3 (14.0)52.9 (11.8)Age (years), mean (SD)

1.6 (0.1)1.6 (0.1)1.6 (0.1)1.6 (0.1)1.6 (0.1)Height (m), mean (SD)

63.7 (13.1)61.5 (12.7)64.5 (13.2)62.1 (12.9)66.5 (13.1)Weight (kg), mean (SD)

25.8 (5.5)24.7 (5.2)26.2 (5.5)25.1 (5.4)27 (5.4)BMI (kg/m²), mean (SD)

91.4 (10.9)90 (10.0)91.9 (11.2)90.4 (10.3)93 (11.9)Waist circumference (cm), mean (SD)

86.1 (11.9)86.3 (11.2)86 (12.1)84 (11.6)88 (12.2)Heart rate (per minute), mean (SD)

167.8 (85.6)171 (86.6)166.7 (85.3)129.9 (44.2)233.6 (99.2)Random blood sugar (mg/dL), mean (SD)

144.6 (21.6)136 (19.8)147.6 (21.4)144.6 (21.0)144.4 (22.5)Systolic blood pressure (mmHg), mean (SD)

92.6 (12.1)89.8 (11.8)93.6 (12.0)93.5 (12.0)91.1 (12.2)Diastolic blood pressure (mmHg), mean (SD)

1.7 (1.1)1.5 (1.0)1.8 (1.1)1.5 (0.9)2 (1.2)Urinations per night, mean (SD)

541 (23.7)131 (21.8)410 (24.5)297 (20.6)244 (29.3)Parental diabetes, n (%)

529 (23.2)121 (20.1)408 (24.3)319 (22.1)210 (25.2)Parental hypertension, n (%)

230 (10.1)46 (7.6)184 (11.0)106 (7.3)124 (14.9)Dizziness, n (%)

270 (11.9)46 (7.6)224 (13.3)117 (8.1)153 (18.4)Numbness, n (%)

259 (11.4)43 (7.1)216 (12.9)97 (6.7)162 (19.4)Dry tongue, n (%)

55 (2.4)8 (1.3)47 (2.8)15 (1.0)40 (4.8)Chest pain, n (%)

167 (7.3)38 (6.3)129 (7.7)100 (6.9)67 (8.0)Current smoker, n (%)

991 (43.5)128 (21.3)863 (51.5)413 (28.6)578 (69.4)Medication,b n (%)

aDiabetes and hypertension are doctor-reported diagnoses and correspond to our outcome (target) variable.
bProportion of individuals currently using some type of medication, but no further details on type or reason for medication were collected.

Model Performance
Figure 1 displays the AUC distribution across all 250 test sets
of the 10 models based on 5 machine learning approaches (5
for diabetes and 5 for hypertension). For diabetes, the random
forest model had the highest average AUC value (mean [SD],
0.910 [0.001]), followed by logistic regression (mean [SD],
0.909 [0.001]), AdaBoost decision trees (mean [SD], 0.896
[0.002]), K-nearest neighbors (mean [SD], 0.857 [0.001]), and
decision trees (mean [SD], 0.776 [0.005]). For hypertension,

random forest (mean [SD], 0.792 [0.002]) performed slightly
better than logistic regression (mean [SD], 0.776 [0.001]) and
AdaBoost decision trees (mean [SD], 0.770 [0.003]). K-nearest
neighbors (mean [SD], 0.705 [0.004]) and decision trees (mean
[SD], 0.610 [0.01]) had poorer performance. All pairwise
differences were found to be statistically significant. Given
these results, we focused on the random forest model when
comparing with baseline approaches for both diabetes and
hypertension.
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Figure 1. A comparison of area under the curve (AUC) distributions across 250 test sets between 5 risk stratification models for both diabetes and
hypertension. The random forest model had the highest AUC for both diabetes (mean [SD], 0.910 [0.001]) and hypertension (mean [SD], 0.792 [0.002]).
The upper and lower boundaries of the boxes correspond to the first and third quartiles, respectively. The line inside the box represents the median and
the whiskers correspond to the minimum and the maximum of the distribution. KNN: K-nearest neighbors algorithm.

Figure 2 displays the AUC distribution for the random forest
model and all baseline approaches for both diabetes and
hypertension. For diabetes, the American Diabetes Association
(ADA)–retrained (mean [SD], 0.671 [0.032]) and UK
Diabetes–retrained (mean [SD], 0.671 [0.032]) performed best,
followed by the UK–original model (mean [SD], 0.657 [0.031])
and the ADA–original model (mean [SD], 0.643 [0.033]). The
ADA-scoring (mean [SD], 0.540 [0.021]) and UK-scoring (mean
[SD], 0.604 [0.031]) methods performed considerably worse.

For hypertension, Framingham-retrained (mean [SD], 0.698
[0.037]) performed slightly better than the Framingham–original
model (mean [SD], 0.680 [0.036]). The random forest model
significantly outperformed all baseline approaches. Retraining
the baseline models using our data provided a statistically
significant increase in their accuracy. Nevertheless, the accuracy
of these retrained models was still lower than the accuracy of
our random forest model.

Figure 2. A comparison of the area under curve (AUC) distributions for the random forest model and all baseline approaches. A. For diabetes, the
AUC of the random forest model improved upon the best baseline approach (UK diabetes–retrained) by 0.239 (0.910 vs 0.671, P<.001). B. For
hypertension, the AUC of the random forest model improved upon the best baseline approach (Framingham-retrained) by 0.095 (0.792 vs 0.697, P<.001).

To visualize the trade-off between false positives and false
negatives, Figure S3 (Multimedia Appendix 1) displays receiver
operating characteristic curves from a single randomly selected
test set (out of 250) of the random forest model and baseline

approaches for both diabetes and hypertension. For a fixed
screening specificity of 0.9, the random forest model was able
to reduce the false negative rate, on average from 0.79 to 0.17
for diabetes and from 0.72 to 0.50 for hypertension. In other
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words, the random forest model can reduce the number of false
negatives by 620 patients per 1000 screenings for diabetes and
220 patients per 1000 screenings for hypertension.

Figure S4 (Multimedia Appendix 1) displays the normalized
feature importance extracted from the random forest model. As
expected, blood sugar was the most important feature for
diabetes risk prediction, but several other features including
many self-reported symptoms (eg, urination, dry tongue)
provided predictive power. For hypertension, systolic blood
pressure was the most important, followed closely by blood
sugar, which is not used for hypertensive risk prediction in
high-income countries, even though there is a known link
between these diseases.

Model Performance as a Function of Data Availability
Figure 3 displays the AUC distributions for the 5 risk
stratification models and the 5 different features sets. For both
diabetes and hypertension, a random forest model with access
to only questionnaire-type features was able to capture 87% of
the AUC obtained from a model with access to all features. We
found that the use of a glucose monitor had the largest impact
on diabetes model performance, increasing the average AUC
by more than 0.05 for all models, while the use of a blood
pressure/heart rate cuff had the largest impact on hypertensive
risk prediction, increasing the average AUC by a mean of 0.05
across all models. See Figure S5 (Multimedia Appendix 1) for
a visualization of the trade-off between false positives and false
negatives.

Figure 3. Area under the curve (AUC) distributions for 5 risk stratification models and 5 different features sets. A. Including a glucose monitor had
the largest effect on diabetes risk stratification, increasing average AUC by more than 0.05 for all models. B. Including blood pressure/heart rate cuffs
had the largest effect on hypertension risk stratification, increasing the average AUC by up to 0.05. BP: blood pressure; HR: heart rate; KNN: K-nearest
neighbors algorithm.

Cost Analysis
Figure 4 displays the expected cost of incorrect risk stratification
per screening for the random forest model and the best baseline
approach for diabetes (UK Diabetes–retrained) and hypertension
(Framingham-retrained). For the baseline models, the expected
cost of incorrect risk stratification per screening was US $5.76

and US $7.47 for diabetes and hypertension, respectively. The
random forest model was able to reduce the expected cost of
incorrect risk stratification per screening by US $1.99 (or 35%)
for diabetes and US $1.60 (or 21%) for hypertension. All cost
reductions were found to be statistically significant. Figure S6
(Multimedia Appendix 1) displays the results of our sensitivity
analysis.
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Figure 4. A comparison of the expected cost of incorrect risk stratification per screening across 250 test sets between the random forest and best baseline
approach for both diabetes and hypertension. The random forest reduced the expected cost of incorrect risk stratification by US $1.99 per screening for
diabetes (US $5.76 vs US $3.77, P<.001) and by US $1.60 per screening for hypertension (US $7.47 vs US $5.87, P<.001). The upper and lower
boundaries of the boxes correspond to the first and third quartiles, respectively. The line inside the box represents the median, the whiskers correspond
to the minimum and the maximum of the distribution, and the notches in the box represent the 95% confidence interval around the median.

Discussion

This study developed risk stratification models to predict the
short-term (2-month) risk in a resource-limited setting for both
diabetes and hypertension. Our primary analysis demonstrated
that models from high-income countries do not generalize well
to the low- and middle-income countries. In particular, the
random forest model had the highest prediction accuracy for
both diseases and was able to outperform the best baseline
approach in terms of AUC by 35.5% for diabetes and 13.5%
for hypertension. Our secondary analysis found that risk
stratification can be accurately performed with limited data. A
random forest model with access to only questionnaire-type
features was able to capture 87% of the AUC obtained from a
model with access to all features, suggesting that diabetes and
hypertension risk stratification can be accurately conducted in
extremely resource-limited settings. Although there are
circumstances where advanced measurements may be required,
eliminating the need for the corresponding tools means that
community health workers require less training and can travel
with fewer devices.

The observed performance difference between the baseline
approaches and our models can be attributed to 3 improvements.
First, our models were designed for short-term risk prediction,
while the baseline models were designed for long-term

prediction. Even though we retrained the baseline models with
our data, the features included in the models were selected for
long-term prediction. For example, none of the baseline models
included self-reported symptoms (eg, dry tongue, urination),
which may be more suitable for short-term prediction. Second,
our models include additional features not used by the baseline
approaches that may provide additional insight into the social,
lifestyle, and genetic differences in the population. For example,
none of the risk scores from high-income countries use
self-reported symptoms or random blood glucose. Although
random blood glucose is not typically used in high-income
settings where HbA1c is preferred, it is often captured by
community-based screening programs due to its operational
simplicity (eg, no fasting required). For diabetes, random blood
glucose was the most important feature and increased the AUC
by 0.13, while for hypertension, random blood glucose was the
second most important feature (see Figure S4 of Multimedia
Appendix 1) and also led to an AUC increase. Third, we believe
that the advanced machine learning models allowed us to extract
maximum value from the small sample size and simple features
available to us, whereas simple models with advanced features
and large data sets may be equally effective in high-income
settings.

As a by-product of our analysis, we externally validated the
previously developed baseline approaches by using
India-specific data. Although many of these models have been
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externally validated in a variety of settings, they have not been
compared using India-specific data [10,11]. For example, the
Framingham model for hypertensive risk has been validated in
7 countries with an average AUC of 0.80 (range 0.73-0.84) [11].
Our results show that the model is not as effective in India,
where it had an average AUC of 0.70 after being retrained using
local data. It is challenging to determine why the model
performed poorly, but we believe that it may be due to subtle
differences in the at-risk population, which manifest in the
features selected by the model. Overall, our validation and
comparison of baseline models highlights the importance of
developing risk prediction models specifically for the low- and
middle-income countries of interest.

The translation of our findings to the design and implementation
of nation-wide screening programs must carefully consider
costs, field accessibility, and disease management. The results
of our secondary analysis indicate that the most impactful
features (blood glucose, blood pressure, and heart rate) are
measured using the most expensive field equipment (glucose
monitor and blood pressure/heart rate cuffs). Even though these
devices are more expensive, we find that including glucose
monitors for diabetes screening and heart rate/blood pressure
cuffs for hypertension screening can reduce the expected cost
of incorrect risk stratification by US $1.35 and US $0.70,
respectively (see Figure S7 of Multimedia Appendix 1). A
formal cost-effectiveness analysis is needed to determine
whether the gain in accuracy (and subsequent reduction is risk
stratification cost) is worth the capital investment required to
purchase glucose monitors and heart rate/blood pressure cuffs
in low-resource settings.

There is also an important cost-tradeoff between a high false
positive rate and a high false negative rate, which is determined
by the discriminant threshold used to stratify patients into risk
categories. Research suggests that the financial cost of a false
positive is minimal (US $7 for diabetes and US $15 for
hypertension) compared to that of a false negative (US $288
for diabetes and US $45 for hypertension) [22]. Our results
demonstrated that the random forest model can reduce the
number of false negatives by 620 patients per 1000 screenings
for diabetes and 220 patients per 1000 screenings for
hypertension. Extrapolating these results to a nationwide
screening program in India that screens 600 million people [23]
could save approximately US $1.19 billion for diabetes and US
$960 million for hypertension by reducing the false negatives.
In the next decade, the central government of India is planning
to spend significant resources on noncommunicable disease
screening programs [8] and our models can be leveraged by
these screening programs to effectively utilize limited resources
by improving risk stratification accuracy.

Despite the complex nature of our models, they can be easily
implemented and computed into handheld tablets (or other
mobile health devices) carried by community health workers
without the need for a simplified, hand-computable risk score,
which means we can provide the most accurate prediction

without any extra effort or calculations by the community health
workers. Furthermore, mobile health applications have
demonstrated the ability to increase access to health care for
low-income populations and to improve the capacity of the
existing health systems [24]. Future research is needed to
understand how to best integrate and present the risk
stratification results into the community health worker
workflow.

It is important to note that screening is only the first step to
reducing the burden of noncommunicable diseases. Once
high-risk patients are identified, they need to be linked to
appropriate care and put on a disease management plan [25].
Linking patients to care and initiating disease management is
a nontrivial process and governments need to carefully design
nationwide disease management plans because otherwise,
screening programs are unlikely to have the desired impact.
Therefore, an important direction for future research includes
studying the effect of screening programs on population health
outcomes in the presence of current and enhanced linkages to
care and disease management plans.

Our work has several limitations. First, we did not have access
to an external validation set from a different study population
(eg, rural slums, different state or country) to test our models.
Second, our data displays a clear selection bias toward sicker
patients visiting a physician within 2 months (see Table S1 of
Multimedia Appendix 1). From a risk stratification perspective,
the selection bias toward sicker individuals makes the problem
more difficult because the model must discriminate between
similar individuals. In other words, we need to identify those
who actually have diabetes or hypertension from a pool of
individuals who all appear to be at high risk. Finally, the
differences in disease prevalence and overall health between
our sample and the National Family Health Survey, Hyderabad
suggest that, if applied broadly, our model may experience data
shifting, which occurs when the training data differs from the
application data [26]. See Table S3 of Multimedia Appendix 1
for a comparison of our data sample with the urban sample from
India’s National Family Health Survey. Data shifting can
negatively impact accuracy (similar to how the models from
the United States and the United Kingdom performed poorly
in India) and future research is needed to test our models in
other settings.

In conclusion, this study found that a machine learning–based
risk stratification model tailored to data collected by
community-based screening programs can significantly improve
risk stratification accuracy for both diabetes and hypertension
in low-resource settings. Researchers and international
organizations have proposed machine learning as a game
changer in global health, [27-29] but there is limited documented
evidence that machine learning can be effectively utilized in
the resource-limited settings indicative of global health projects
[30]. This study adds evidence to support machine learning in
global health by quantitatively demonstrating the benefit of
using these models in a novel resource-limited context.
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